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2 

Abstract 20 

The rapid evolution of influenza is an important contributing factor to its high worldwide 21 

incidence. The emergence and spread of genetic point mutations has been thoroughly studied 22 

both within populations and within individual hosts. In addition, influenza viruses are also 23 

known to generate genomic variation during their replication in the form of defective viral 24 

genomes (DVGs). These DVGs are formed by internal deletions in at least one gene segment that 25 

render them incapable of replication without the presence of wild-type virus. DVGs have 26 

previously been identified in natural human infections and may be associated with less severe 27 

clinical outcomes. These studies have not been able to address how DVG populations evolve in 28 

vivo in individual infections due to their cross-sectional design. Here we present an analysis of 29 

DVGs present in samples from two longitudinal influenza A H3N2 human challenge studies. We 30 

observe the generation of DVGs in almost all subjects. Although the genetic composition of 31 

DVG populations was highly variable, identical DVGs were observed both between multiple 32 

samples within single hosts as well as between hosts. Most likely due to stochastic effects, we 33 

did not observe clear instances of selection for specific DVGs or for shorter DVGs over the 34 

course of infection. Furthermore, DVG presence was not found to be associated with peak viral 35 

titer or peak symptom scores. Our analyses highlight the diversity of DVG populations within a 36 

host over the course of infection and the apparent role that genetic drift plays in their population 37 

dynamics.   38 
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Importance 39 

The evolution of influenza virus, in terms of single nucleotide variants and the reassortment of 40 

gene segments, has been studied in detail. However, influenza is known to generate defective 41 

viral genomes (DVGs) during replication, and little is known about how these genomes evolve 42 

both within hosts and at the population level. Studies in animal models have indicated that 43 

prophylactically or therapeutically administered DVGs can impact patterns of disease 44 

progression. However, the formation of naturally-occurring DVGs, their evolutionary dynamics, 45 

and their contribution to disease severity in human hosts is not well understood. Here, we 46 

identify the formation of de novo DVGs in samples from human challenge studies throughout the 47 

course of infection. We analyze their evolutionary trajectories, revealing the important role of 48 

genetic drift in shaping DVG populations during acute infections with well-adapted viral strains.   49 
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Introduction 50 

Influenza defective viral genomes (DVGs) were first reported by von Magnus (1) and have since 51 

been characterized in vivo during high multiplicity of infection (MOI) passage studies (2–7)  as 52 

well as from clinical human samples (8, 9). DVGs are classified as viral genomes harboring 53 

mutations which render them incapable of self-replication. Their propagation depends on 54 

replication by wild-type helper virus (10). Influenza DVGs are formed by large internal deletions 55 

(11), which retain the 3’ and 5’ untranslated regions that are necessary for replication (12–15) 56 

and virion packaging (16–18). Although DVGs have been observed in all eight influenza gene 57 

segments (8, 19, 20), they have been most commonly found in the three polymerase genes (PB2, 58 

PB1, PA) (19, 21), the longest gene segments of the influenza virus genome. 59 

DVGs that interfere with the replication of wild-type virus have been termed defective 60 

interfering particles, or DIPs. It is thought that DIPs are either preferentially replicated (22) 61 

and/or packaged (23, 24) given their shorter length. This is thought to lead to the characteristic 62 

oscillations in the relative populations of DIP and wild-type virus during passage studies (6) as 63 

DIP populations outcompete wild-type virus initially but ultimately crash when the quantity of 64 

wild-type virus drops below that necessary to maintain DIP populations. DIPs may also 65 

contribute to immune system activation (25, 26). The presence of DVGs during the course of an 66 

infection also appears to be associated with less severe clinical outcomes (9). The use of 67 

exogenous DIPs has been proposed as a potential therapeutic for influenza, with recent animal 68 

studies demonstrating that DIPs administered prophylactically and/or therapeutically can reduce 69 

the severity of clinical disease outcomes  (27–30). 70 

Influenza A virus (IAV) DVGs have been previously detected in natural human 71 

infections from deep sequencing data (8). In this cohort study, DVGs were present in about half 72 
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of the samples analyzed and were most common in the PB2, PB1, and PA gene segments. A 73 

limitation of this study, however, is that it offered only a cross-sectional view of IAV DVG 74 

populations. While it has been shown that Sendai virus DVG populations expand during the first 75 

12 hours of infection in a mouse model (25), the evolution of IAV DVG populations within a 76 

human host over the course of an infection has not been well characterized.  77 

Here, we report an analysis of IAV DVG populations identified from deep sequencing 78 

data taken over the course of infection during two longitudinal human challenge studies with 79 

different treatment cohorts. We observe the generation of de novo DVGs in nearly all subjects, 80 

primarily in the polymerase gene segments (PB2, PB1, and PA). DVG populations were highly 81 

variable over time in DVG species composition as well as in DVG species relative abundance. 82 

Over the course of infection, individual DVG species were observed to arise, fluctuate in 83 

abundance, as well as disappear from the DVG population. Overall, we found no trend towards 84 

decreasing diversity of DVG populations or towards shorter DVG species during the five days 85 

post challenge, likely due to the dominance of stochastic effects. Furthermore, we were unable to 86 

detect an association between DVG levels and peak viral titers, potentially due to the negative 87 

feedback between DVG and wild-type virus. Similarly, higher DVG levels were not associated 88 

with more severe symptoms. This study helps to illustrate the stochastic dynamics of DVG 89 

populations within a host during acute infection with a well-adapted viral strain, a scenario under 90 

which fitness variation in the wild-type virus population is expected to be relatively small.  91 

Materials and Methods 92 

Ethics statement. The procedures followed in the human challenge studies were in accordance 93 

with the Declaration of Helsinki. The studies were approved by the institutional review boards 94 

(IRBs) of Duke University Medical Center (Durham, NC), the Space and Naval Warfare 95 
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Systems Center San Diego (SSD-SD) of the US Department of Defense (Washington, DC), the 96 

East London and City Research Ethics Committee 1 (London, UK), and the Independent 97 

Western Institutional Review Board (Olympia, WA). All participants provided written consent.  98 

Subject enrollment and challenge study protocol. Data analyzed in this study were from two 99 

previously described human challenge studies (“study 1” indicated by three digit sample IDs and 100 

“study 2” indicated by four digit sample IDs beginning with a 5) (31–38). These studies were 101 

originally designed to assess changes in host gene expression during the course of influenza 102 

infection. Subjects were intranasally inoculated with 3.08 – 6.41 log10(TCID50/mL) of the 103 

challenge virus (“reference strain”). The reference strain was produced by passaging a human 104 

isolate of A/Wisconsin/67/2005 (H3N2) [GenBank accession numbers CY114381 to CY114388] 105 

three times in avian primary chicken kidney cells, 4 times in embryonated chicken eggs, and 106 

twice in GMP Vero cells.  107 

 A subset of subjects in study 2 were treated with oseltamivir on the evening of the 108 

first day post challenge (“early treatment cohort”). All study one and remaining study two 109 

received oseltamivir on the evening of the fifth day post challenge (“standard treatment cohort”). 110 

Nasal wash samples were taken at various time-points post-challenge (study 1: 0, 24, 48, 72, 96, 111 

120, 144, 168 hours; study 2: 23, 29, 42, 53, 70, 76.5, 95, 100.5, 118, 124.5, 141.5, 148.5, 165 112 

hours).  113 

Time of peak viral titer was defined as the time from challenge to the earliest time point 114 

at which the maximum viral titer was reached. Duration of infection was defined as the time 115 

from challenge to the latest positive viral titer.  116 

Modified Jackson symptom scores (41) were also collected throughout the seven days 117 

post challenge (study 1: 0, 12, 21, 36, 45, 60, 69, 84, 93, 108, 117, 132, 141, 156, and 164 hours; 118 
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study 2: 0, 8, 16, 24, 32, 40, 48, 56,  64, 72, 80,  88, 96,  104, 112, 120, 132, 144, 156, 168 119 

hours). Time to peak symptom score was defined as the time from challenge to the earliest time 120 

point at which the maximum symptom score was reached. Duration of symptoms was defined as 121 

the time from challenge to the last non-zero symptom score or to the end of follow-up, 122 

whichever occurred sooner. The association between treatment cohort and clinical data was 123 

assessed with Mann-Whitney U tests in RStudio v1.1.447  (42). 124 

 Previous analyses found no association between inoculum dose and probability of 125 

infection. Given infection, inoculum dose was not associated with disease outcome or the 126 

amount of viral shedding (34). We thus did not stratify any of our analyses by subject inoculum 127 

dose. 128 

Generation of sequence data. Samples that were IAV positive by cell culture or quantitative PCR 129 

were further processed for whole genome sequencing. In brief, the eight genomic RNA segments 130 

of IAV were reverse-transcribed and PCR amplified using a multi-segment RT-PCR (39) from 131 

whole RNA extracted from nasopharyngeal samples. Individual samples were then barcoded 132 

twice using the sequence independent single primer amplification (SISPA) method (40), which 133 

involves a primer extension step with a Klenow fragment (37ºC for 60 minutes, 75ºC for 10 134 

minutes and 4ºC hold) [New England Biolabs] and PCR amplification with a DNA polymerase 135 

(Preheat at 94ºC for 2 minutes followed by 45 cycles of 94ºC for 30 seconds, 55ºC for 30 136 

seconds and 68ºC for 30 seconds with a final extension time of 68ºC for 10 minutes and a 4ºC 137 

hold) [Gotaq, Promega]. To reduce chimerism, PCR products were treated with exonuclease I 138 

(37ºC for 60 minutes). Separately, a parallel SISPA was performed from the same sample set, 139 

but was not treated with exonuclease I. Samples treated with or without exonuclease I were 140 

pooled separately and sequenced on an Illumina HiSeq 2000 instrument (Paired-end sequencing; 141 
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2 × 100 bp read). SISPA barcoded reads were then demultiplexed and merged based on the 142 

barcode sequence, followed by primer and barcode removal and quality trimming using an in-143 

house script at the JCVI. Sequencing runs with or without exonuclease I were used as technical 144 

replicates. 145 

Sequence data analysis. PCR chimeras were removed using a python v2.7 (43) script by 146 

identifying forward and reverse reads from the same DNA fragment with conflicting barcodes. 147 

Following the removal of chimeric reads, FastQC v0.11.3 (44) was performed on all samples to 148 

ensure sequencing quality. Kraken2 v2.0.8-beta (45) with a complete RefSeq viral database was 149 

used to identify reads assigned to influenza A, which were then further quality trimmed with 150 

Trimmomatic v0.38 (46). Leading or trailing bases with quality < 3 were removed. Reads were 151 

cut when the average quality per base in 4-base wide sliding windows was < 15, and reads with 152 

less than 50 bases were excluded. Reads were aligned to the reference strain (GenBank 153 

CY114381 - CY114388) using STAR v2.7.0e (47). A STAR pre-indexing string of length six 154 

was used to generate genome indexing files. SAM files including only uniquely mapped reads 155 

were converted to BAM files which were sorted and indexed using SAMtools v1.9 and HTSlib 156 

v1.9 (48). Single-nucleotide polymorphisms (SNPs) were called using the BCFtools v1.9 (48) 157 

“mpileup,” “call,” and “norm” commands. Only reads with mapping quality ≥ 255 (uniquely 158 

mapped) and bases with quality ≥ 20 were used. BCFtools “consensus” was used to generate 159 

sample-specific reference genomes including SNPs present in more than 50% of the high-quality 160 

reads at a given position. Reads were aligned to sample-specific reference genomes using STAR 161 

in basic two pass mode. BAM files including only primary alignments were generated using 162 

SAMtools. PCR duplicates were marked and removed using Picard Tools v2.20.02 (49).  163 
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Read depth and read length statistics of the final BAM files were calculated using the 164 

SAMtools “depth” and “view” commands along with a simple bash script. Read depth and length 165 

statistics were combined for both sequencing runs (with and without exonuclease) for the final 166 

analysis. 167 

DVG identification. Split reads (reads with segments mapping to unique locations in the gene 168 

implying the presence of large internal deletions) were identified using a Python v2.7 script and 169 

pysam 0.15.2 (https://github.com/pysam-developers/pysam). Split reads with at least 15 170 

alignment matches to the reference, a minimum of five consecutive alignment reference matches, 171 

no more than three small indels, and a minimum of 100 consecutive deleted reference bases were 172 

used to generate a filtered BAM file. Junction sites for individual DVGs were identified from the 173 

“jI” SAM tag, tabulated, and normalized to the total number of reads aligned to that gene 174 

segment (norm. DVG reads) using a bash script. Split read depth was calculated using the 175 

SAMtools “depth” command.  176 

 In order to reduce the number of spurious DVGs, we included only DVGs on a per 177 

sample-day basis which were identified in both sequencing runs (with and without exonuclease 178 

I) in the final analysis. Raw and normalized DVG read support measurements were combined 179 

between the technical replicates. All bioinformatic analyses were performed at the Pittsburgh 180 

Supercomputing Center using the Bridges resources. 181 

We define a “DVG species” as DVGs with identical deletion breakpoints and “DVG 182 

populations” as all of the observed DVG species within a sample. DVG species are identified by 183 

the first and last reference bases deleted (first_last). DVG load for a given gene segment is 184 

defined as the sum of the normalized DVG read count for all observed DVGs. DVG load for all 185 

gene segments is the average of the normalized DVG read count over the eight genes. The effect 186 
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of treatment cohort on peak DVG load was assessed using a Mann-Whitney U test calculated in 187 

RStudio.  The association between DVG presence on different gene segments was assessed using 188 

Fisher’s exact test calculated in RStudio. 189 

DVG diversity calculation. To evaluate the degree of DVG diversity within a sample while 190 

adjusting for the variable number of observed DVG species, we utilized Pielou’s evenness index 191 

(50), given by !∑ #$	&'	 #$(
$)*
&' +

 where s is the number of DVG species and 𝑝- is the proportion of 192 

DVG reads which support that DVG species. An evenness of 1 corresponds to a population in 193 

which all observed species are present at the same frequency. This metric was calculated in 194 

RStudio.  195 

All figures were generated in RStudio using ggplot2 v3.1.0 (51) and cowplot v0.9.3 (52).  196 

Raw sequencing data are accessible under NCBI BioProject PRJNA577644. Scripts used 197 

for the generation of data and figures in this report are available at 198 

https://github.com/koellelab/IAV_human_challenge_study_code.  199 

Results 200 

Data summary. Of the 37 participants in the human challenge studies, 17 were successfully 201 

infected and had at least one sample successfully sequenced. Seven of these 17 individuals 202 

belonged to the early treatment cohort; the remaining ten belonged to the standard treatment 203 

cohort.  Peak viral titers ranged from 1.75 to 6.25 log10(TCID50/mL) (mean [population standard 204 

deviation (sd)]: 4.5 [1.2] log10(TCID50/mL)) and occurred 24 to 120 hours post-challenge (mean 205 

[sd]: 58 [26] hours)). Peak viral titer did not appear to differ between the early and standard 206 

treatment group (mean [sd]: 4.3 [1.5] v. 4.6 [0.8] log10(TCID50/mL); p-value = 0.922). However, 207 

those in the early treatment cohort tended to reach peak viral titer faster (cohort (mean [sd]: 48 208 
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[20] v. 65 [27] hours; p-value = 0.080) and tended to have shorter durations of infection (mean 209 

[sd]: 74 [22] v. 118 [37] hours; p-value = 0.035; Figure S1a, Table S1, Table S2).  210 

Peak total symptom scores ranged from 1 to 16 (mean [sd]: 6.5 [4.8]) and did not differ 211 

significantly between treatment cohorts (p-value = 0.922). Time to peak symptom score was 212 

shorter in the early treatment cohort (mean [sd]: 29 [14] v. 59 [18]; p-value = 0.003) as was the 213 

duration of symptoms (mean [sd]: 83 [37] v. 134 [17]; p-value: 0.005). Cumulative symptom 214 

scores were highly variable between subjects and no difference was observed between the two 215 

cohorts (mean [sd]: 43 [50] v. 35 [29]; p-value = 0.922; Figure S1b, Table S1, Table S2).  216 

A total of 43 samples, including the inoculum, were successfully deep-sequenced. The 217 

number of successfully sequenced samples per subject ranged from one to five (Figure 1A). 218 

Following read trimming, the per-sample, per-gene average read length ranged from 70 to 72 219 

nucleotides (nt). The average genome-wide read depth was 118 reads (range: 63 to 166) (Table 220 

S3, Figure S2A, Figure S2B). 221 

Widely observed de novo DVGs. DVGs in the challenge stock were largely absent, identified at 222 

only low levels in the NP, NA, and NS gene segments and absent from the other gene segments 223 

(Figure S3). On the contrary, DVGs were observed in all but one successfully infected subject 224 

(Figure 1). For the subject in which no DVGs were detected (subject 5017), only a single sample 225 

(day two) was sequenced. This subject was in the early treatment cohort and was also positive 226 

for influenza on day three, however, this sample was not successfully sequenced.  227 

Amongst the other subjects, we observed DVGs in at least one of IAV’s eight gene 228 

segments in 38/41 successfully sequenced samples. As expected, DVGs were more commonly 229 

observed in the polymerase genes (PB2 (n = 31), PB1 (n = 28), and PA (n = 26) v. HA (n=7), NP 230 

(n = 7), NA (n = 12), M (5), and NS (10)). DVGs were observed as early as day one and as late 231 
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as day six post challenge. We did not observe a difference in peak DVG load between treatment 232 

cohorts (p-value: 0.713).  233 

 Normalized DVG read counts, a proxy for the number of DVGs relative to wild-type 234 

virus in vivo, ranged from 0.0004 to 0.064 (Table S4, Figure S2C). Among samples with DVGs, 235 

deletions in polymerase genes tended to have higher normalized DVG counts, indicating the 236 

presence of more DVGs generated from these segments within a given host. Presence of DVGs 237 

in the PB2, PB1, and PA gene segments were positively associated with one another (PB2 × PB1 238 

p-value: 2.5 × 10-6; PB2 x PA p-value: 5.2 × 10-3; PB1 x PA p-value: 2.5 × 10-3; Figure S4).  239 

To determine whether certain junction locations were favored in identified DVG species, 240 

we tabulated the most commonly observed 3’ and 5’ junction sites (Figure S5, Table S5). 241 

Unsurprisingly, most 3’ junction locations were located in the first 500 nt of each gene and the 5’ 242 

junction locations in the last 500 nt of each gene. We observed no junction locations within 40 nt 243 

of either end of the three polymerase genes, consistent with the theory that the sequences at 244 

either end are necessary for replication (12–15) and virion packaging (16–18). The mean [sd] 245 

(weighted by normalized DVG read support) number of deleted nucleotides was comparable 246 

between gene segments (PB2: 1646 [392]; PB1: 1625 [397], PA: 1593 [332]). A small number of 247 

DVGs were observed with 3’ junction sites located towards the 5’ end of a given gene segment. 248 

With the exception of a single PB2 DVG, these tended to be found in a small number of samples 249 

with low normalized DVG read support. However, 1482_2101 in PB2 was observed in 0.0045 250 

and 0.0068 normalized reads in subject 5020 on days two and four, respectively. This was the 251 

dominant DVG present at day two and one of a number of codominant DVGs present at day 252 

four.  253 
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We observed the presence of identical DVG species across both samples and subjects in 254 

the PB2 (n = 16), PB1 (n = 13), PA (n = 13), NP (n = 2), NA (n = 2), and NS (n = 1) genes 255 

(Table S6). Repeat DVGs were most commonly present in multiple samples from the same 256 

subject (n = 37). For example, the PB2 deletion from nt 356 to nt 1937 in the reference sequence 257 

was observed in subject 5021 at four consecutive time points (day two through day five).  258 

However, a number were also present in multiple subjects (n = 10). For example, DVG 476_703 259 

in the PB2 gene segment was observed in subject 5006 at day one, subjects 5019 and 5020 at day 260 

2, and subject 5021 at day three. DVG 696_1378 in the NP gene segment was observed in the 261 

challenge stock as well as in subject 5002 (day two) and subject 5019 (day two and three, but not 262 

one). Given its identification in only these 4 samples, it is unclear whether this DVG was 263 

transmitted during challenge or whether it appeared de novo in these two subjects (with lack of 264 

detection on day one in subject 5019).   265 

Dynamic within-host DVG populations. Due to the longitudinal nature of these data, we wished 266 

to analyze whether systematic changes in the DVG populations within individual hosts were 267 

evident. Specifically, we looked at the population composition within hosts to determine whether 268 

there was evidence of positive selection for specific DVG species or for changes in the 269 

composite characteristics of DVG populations. However, given the acute nature of the infections 270 

in this study, any positive selection may be overwhelmed by stochastic effects, as has been 271 

previously described for point mutations in acute influenza infections (53).  272 

Our analyses revealed that the composition of DVG populations changed rapidly within-273 

hosts. Individual DVG species were found to rise and fall in their relative read support, and DVG 274 

species arose and disappeared throughout the course of infection (Figure S6). For example, in 275 

subject 013 the number of individual DVG species increased notably between days two and 276 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814673doi: bioRxiv preprint 

https://doi.org/10.1101/814673
http://creativecommons.org/licenses/by-nd/4.0/


 
 

14 

three, more than doubling in the PB2 and PB1 genes (Figure 2A). However, in general the DVGs 277 

observed at day two were still present in the sample at day three. Considerably different 278 

dynamics were observed in subject 5021 (Figure S6), from which we have data for day one 279 

through four. DVG populations in this subject underwent considerable turnover on day three. 280 

Amongst the two PB2 DVGs observed at day two, neither were observed at day three. However, 281 

one of these two was observed again at day four. Similar dynamics were observed in both the 282 

PB1 gene (in which no DVGs were observed at day three) and the PA gene (in which a unique 283 

DVG was observed only at day three).  284 

The generation of novel DVG species between sampling timepoints was very common. 285 

However, in most cases at any given time point a small number of DVG species accounted for 286 

the majority of the relative read support. In certain cases, these dominant DVG species were 287 

consistent between time points, however in others the dominant DVG species varied 288 

considerably between time points. This suggests that while many different DVG species can be 289 

formed during viral replication, stochastic effects during DVG generation or a selective 290 

advantage of certain DVG species leads to the observed DVG species unevenness within hosts at 291 

any given time point.  292 

To quantitatively assess whether there was evidence for selection for specific DVG 293 

species, we determined the trajectory of DVG diversity, measured by Pielou's evenness (J’), over 294 

the course of infection in individual subjects (Figure 2B). We did not observe a trend towards 295 

decreasing diversity over the course of infection. For example, amongst PB2 DVGs, subject 296 

5004 as well as subject 5021 witnessed net decreases in DVG diversity overtime whereas there 297 

was limited change in J’ for subjects 012 and 5006. Subject 5019 experienced only a transient 298 

reduction in diversity on day two when the DVG population was dominated by a single DVG 299 
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(172_2079). In contrast, subject 5020 experienced a transient increase in diversity on days two 300 

and three. Similar stochastic patterns of diversity were also observed in PB1 and PA DVGs.  301 

It has been proposed that DVG species are preferentially replicated over wild-type virus 302 

due to their shorter length (22). Therefore, it is reasonable to hypothesize that selection might 303 

lead to the evolution of shorter DVG species over the course of infection. To address this 304 

hypothesis, we analyzed the number of reference bases deleted over the course of infection 305 

amongst those subjects with DVGs in a specific gene at multiple time points (Figure S7). Our 306 

data indicated no systematic change in DVG length over the course of infection (Figure 2C, 307 

Figure S8). In certain subjects, DVGs tended to get shorter (subject 5004 PB2, subject 5019 PB1, 308 

subject 5020 PB2), however in others there was no discernible change in DVG length (subject 309 

012 PB2 and PB1, subject 5002 PA). These results suggest that either genetic drift overwhelms 310 

selective forces or that factors other than DVG length more strongly affect DVG fitness.    311 

Correlation between DVG presence and clinical data. While this study was not powered to 312 

detect statistically significant associations between the presence of DVGs and clinical data, we 313 

wished to see if there were any qualitative correlations. We first analyzed the relationship 314 

between peak viral titer and the peak DVG load within a subject (Figure 3A), expecting a 315 

positive correlation as wild-type virus is necessary for the replication of DVGs. We were unable 316 

to detect an association between the two measures in this study. The cyclical nature of relative 317 

DVG abundance is well established in vitro (6) and it is possible that while wild-type virus is 318 

necessary for DVG replication, the inhibitory effect of DVG replication on the amount of wild-319 

type virus which is replicated (thereby reducing peak viral titers) obscures any obvious 320 

correlation between the two.  321 
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 Previous reports have suggested an associated between DVG presence and IAV clinical 322 

outcomes (9). While none of the subjects in this controlled challenge study experienced severe 323 

clinical outcomes, we analyzed the association between self-reported symptom scores and DVG 324 

presence. As DVGs are thought to dampen the clinical manifestation of IAV infection, we 325 

expected high DVG levels to be associated with less severe symptom scores. However, we were 326 

unable to detect an association between peak DVG load and peak symptom score in this study 327 

(Figure 3B). This lack of association may be due to the contrasting effects of DVGs interfering 328 

with wild-type virus replication and packaging and their activation of the innate immune 329 

response (25, 26), which is known to be responsible for influenza symptom manifestation. 330 

Furthermore, our inability to find an association between DVG load and symptoms may be 331 

because the seasonal IAV strain used in this study is relatively avirulent and all subjects were 332 

healthy, leading to relatively mild clinical presentations.  333 

Discussion 334 

The presence of defective influenza genomes has been well characterized in cell cultures (2–7) 335 

and animal models (25). Influenza DVGs have also been observed in clinical human H1N1 336 

samples (8). However, to date, no studies have performed longitudinal analyses of naturally 337 

occurring DVG populations within humans. Here we presented an analysis of DVG populations 338 

in samples from two H3N2 human challenge studies with different treatment protocols for up to 339 

seven days post-challenge.  340 

Our analysis supports prior findings that DVG presence is nearly universal and most 341 

commonly found on the polymerase gene segments (8), both in terms of presence/absence as 342 

well as abundance. Furthermore, we observed that DVGs are often found on multiple polymerase 343 

genes within the same subject. The timing of oseltamivir treatment was not found to affect the 344 
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peak viral titer, peak symptom score, or cumulative symptom scores, nor did it effect the 345 

accumulation of DVGs within a host. We observed identical DVG species within single hosts at 346 

multiple time points as well as across multiple hosts. As identical DVG species were more likely 347 

to be observed within, as opposed to between hosts, this implies that ongoing within-host 348 

replication of DVG species following their stochastic generation is likely driving this 349 

phenomenon.  350 

DVG populations were shown to be to be highly dynamic in terms of both the DVG 351 

species they comprised and the abundance levels of these species. There was no evidence for 352 

decreased diversity of DVG populations within a host over the course of infection. Furthermore, 353 

we saw no trend towards DVG species becoming on average shorter over time. These results 354 

imply that in vivo genetic drift may be overwhelming selective forces in shaping the evolutionary 355 

dynamics of DVG species in this study. IAV genetic drift playing a strong role in these human 356 

challenge studies is not unanticipated, given that the challenge reference strain was a seasonal 357 

influenza strain that was relatively well adapted to human hosts and that egg- and cell culture-358 

adapted variants were quickly excluded from the in vivo viral populations (31). The effect of 359 

spatial structure within the host respiratory system (54) may further augment the effects of 360 

genetic drift on DVG populations.  361 

We did not observe an association between peak viral titer or peak symptom score and 362 

peak DVG loads. This points to the complex feedback mechanisms which govern the amount of 363 

DVG and wild-type virus within a host as well as between the replicative inhibitory effect of 364 

DVG generation on wild-type virus replication and the interaction between DVGs and the host 365 

immune response. 366 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814673doi: bioRxiv preprint 

https://doi.org/10.1101/814673
http://creativecommons.org/licenses/by-nd/4.0/


 
 

18 

This analysis has several limitations, largely due to the nature of the available data. The 367 

sequencing reads were generated in 2013 and therefore read lengths are shorter and mean read 368 

coverage is lower than in more recently generated viral deep sequencing datasets. Furthermore, 369 

we did not confirm the presence of DVG species using PCR, as has been done in other studies 370 

(8) because samples from these human challenge studies are no longer available. Furthermore, a 371 

certain level of noise in the bioinformatics pipeline used to identify DVGs is to be expected. In 372 

order to reduce this noise we analyzed only DVG species present in both technical replicates 373 

(with and without exonuclease I), however, we opted not to remove DVG species with low 374 

supporting read counts as has been previously proposed (55) in order to maintain sensitivity in 375 

our measure of DVG diversity. The very low number of split reads observed in the non-376 

polymerase genes, which are known to rarely form DVGs, implies that the level of noise in our 377 

analysis is relatively low.  378 

Furthermore, sequencing data were only available at most once per day for each subject 379 

and therefore we were unable to assess the fine-scale evolution of DVG species. This sparse 380 

sampling is likely why observed DVG populations were so variable between time points. With 381 

more frequent sampling we predict it would be possible to observe more gradual transitions 382 

between DVG population compositions within a host.  383 

Despite these limitations, this study adds to the growing body of evidence that influenza 384 

DVGs are present during human infections and evolve over the course of infection. While the 385 

expansion of DVGs in individual infections are surely impacted by wild-type viral dynamics, 386 

whether DVGs in turn play a role in shaping infection dynamics and determining disease 387 

progression remains an open question.  388 
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Further studies with greater temporal resolution and sequencing to a higher read depth 389 

may help to more precisely characterize the evolutionary trajectory of DVG populations within 390 

individual hosts. Analysis of the most common DVG species observed in future studies may 391 

reveal factors that impact DVG stability over the course of an infection. A thorough 392 

understanding of the interaction between wild-type virus, DVGs, and the host immune response 393 

may ultimately aid in the development of therapeutics based on exogeneous DIPs.  394 
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574 

Figure 1. Graphical summary of the data used in this study. A) Heatmap showing the number of 575 

sequencing reads indicating the presence of defective viral genomes in each gene segment 576 

normalized by the total number of sequencing reads aligned to that gene segment. Rows 577 

represent individual subjects (red text indicates early treatment (oseltamivir on the evening of the 578 

first day post challenge) cohort). Columns represent day of sampling; sub columns indicate gene 579 

segment. White space indicates lack of sequencing data. B) Representative coverage plots in 580 

various gene segments. Background colored area shows the total read depth at a given nucleotide 581 

(nt) position. Black color in the foreground represents the coverage depth of split reads, 582 

indicative of DVGs.   583 
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584 

Figure 2. Population dynamics of observed defective viral genome (DVG) populations. A) 585 

Stacked area plots showing the DVG species observed at two and three days post challenge in 586 

subject 013 in the PB2, PB1, and PA gene segments. Each color represents an individual DVG 587 

species. The height of each region represents the normalized number of DVG reads supporting 588 

that DVG. B) Diversity of DVG populations in the PB2, PB1, and PA gene segments for each 589 

subject in the study. Lines connect data points from the same subject at multiple time points. 590 

Diversity is measured my Pielou’s evenness (J’), which is given by !∑ #$	&'	 #$(
$)*
&' +

 where s is the 591 

number of DVG species and 𝑝- is the proportion of DVG reads which support that DVG species. 592 

C) Distribution of the number of deleted references bases in each observed DVG species in the 593 

PB2, PB1, and PA gene segments of subjects 013. Dot size represents the normalized number of 594 
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DVG reads supporting a specific DVG species. Trend lines connect the mean number of 595 

reference bases deleted at each day, weighted by the normalized DVG read support.   596 
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597 

Figure 3. Dot plots of clinical data against the amount of defective viral genomes (DVGs). Each 598 

dot represents a subject. A) Dot plot showing the lack of association between peak viral titer 599 

(log10(TCID50/mL) on the x-axis and the peak number of normalized DVG reads on the y-axis. 600 

B) Dot plot showing the lack of association between peak Modified Jackson symptom score on 601 

the x-axis and the peak number of normalized DVG reads on the y-axis.   602 

0.000

0.005

0.010

0 1 2 3 4 5 6 7
Peak viral titer (log10(TCID50 mL))

Pe
ak

 D
VG

 lo
ad

(n
or

m
. D

VG
 re

ad
s)

A

0.000

0.005

0.010

0 5 10 15 20 25
Peak symptom score

B

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814673doi: bioRxiv preprint 

https://doi.org/10.1101/814673
http://creativecommons.org/licenses/by-nd/4.0/


 
 

32 

Supplemental Material603 

604 

Figure S1. Clinical data included in the study. Red lines represent subjects in the early treatment 605 

(oseltamivir on the evening of the first day post challenge) cohort, grey lines represent subjects 606 

in the standard treatment (oseltamivir on the evening of the fifth day post challenge) cohort. A) 607 

Viral titer (log10(TCID50/mL)) measurements for each subject at various time-points post-608 

challenge. Blue dotted line at 1.25 log10(TCID50/mL) represents the limit of detection of the 609 

assay used. B) Modified Jackson symptom scores for each subject at various time-points post-610 

challenge.   611 
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612 

Figure S2. Summary of sequencing data. Bars are organized first by subject, then by sampling 613 

day, and finally by gene. Genes are also represented by colors. Data are summed across technical 614 

replicates. A) Mean length of mapped reads following read trimming, reference mapping, and 615 

removal of PCR duplicates. B) Mean total read depth following read trimming, reference 616 

mapping, and removal of PCR duplicates. C) Mean depth of split reads following read trimming, 617 

reference mapping, removal of PCR duplicates, and filtering of split reads to exclude those with 618 

0

20

40

60

80

Cha
llen

ge

S00
1:D

1

S00
1:D

2

S00
6:D

1

S00
6:D

3

S00
8:D

2

S01
0:D

3

S01
2:D

2

S01
2:D

3

S01
2:D

6

S01
3:D

2

S01
3:D

3

S01
5:D

4

S50
01

:D2

S50
01

:D3

S50
01

:D5

S50
02

:D2

S50
02

:D3

S50
04

:D2

S50
04

:D3

S50
04

:D4

S50
04

:D5

S50
06

:D1

S50
06

:D2

S50
06

:D3

S50
07

:D1

S50
07

:D2

S50
07

:D3

S50
17

:D2

S50
18

:D1

S50
18

:D2

S50
19

:D1

S50
19

:D2

S50
19

:D3

S50
20

:D1

S50
20

:D2

S50
20

:D3

S50
20

:D4

S50
21

:D1

S50
21

:D2

S50
21

:D3

S50
21

:D4

S50
21

:D5

M
ea

n 
re

ad
 le

ng
th

 (b
p)

A

0

50

100

150

200

250

Cha
llen

ge

S00
1:D

1

S00
1:D

2

S00
6:D

1

S00
6:D

3

S00
8:D

2

S01
0:D

3

S01
2:D

2

S01
2:D

3

S01
2:D

6

S01
3:D

2

S01
3:D

3

S01
5:D

4

S50
01

:D2

S50
01

:D3

S50
01

:D5

S50
02

:D2

S50
02

:D3

S50
04

:D2

S50
04

:D3

S50
04

:D4

S50
04

:D5

S50
06

:D1

S50
06

:D2

S50
06

:D3

S50
07

:D1

S50
07

:D2

S50
07

:D3

S50
17

:D2

S50
18

:D1

S50
18

:D2

S50
19

:D1

S50
19

:D2

S50
19

:D3

S50
20

:D1

S50
20

:D2

S50
20

:D3

S50
20

:D4

S50
21

:D1

S50
21

:D2

S50
21

:D3

S50
21

:D4

S50
21

:D5

M
ea

n 
to

ta
l r

ea
d 

de
pt

h

B

0.00

0.02

0.04

0.06

0.08

Cha
llen

ge

S00
1:D

1

S00
1:D

2

S00
6:D

1

S00
6:D

3

S00
8:D

2

S01
0:D

3

S01
2:D

2

S01
2:D

3

S01
2:D

6

S01
3:D

2

S01
3:D

3

S01
5:D

4

S50
01

:D3

S50
01

:D5

S50
02

:D2

S50
02

:D3

S50
04

:D2

S50
04

:D3

S50
04

:D4

S50
04

:D5

S50
06

:D1

S50
06

:D2

S50
06

:D3

S50
07

:D2

S50
07

:D3

S50
18

:D1

S50
18

:D2

S50
19

:D1

S50
19

:D2

S50
19

:D3

S50
20

:D1

S50
20

:D2

S50
20

:D3

S50
20

:D4

S50
21

:D2

S50
21

:D3

S50
21

:D4

S50
21

:D5

Sample

N
or

m
. D

VG
 re

ad
s

C

PB2 PB1 PA HA NP NA M NS

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814673doi: bioRxiv preprint 

https://doi.org/10.1101/814673
http://creativecommons.org/licenses/by-nd/4.0/


 
 

34 

less than 15 alignment matches, less than 5 consecutive alignment matches, more than three 619 

small indels, and with junction locations less than 100 bases apart.   620 
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621 

Figure S3. Coverage plot for each gene segment in the challenge stock used to infect all patients. 622 

Colored portions represent total read depth and black overlays represent read depth of split reads. 623 

Lack of appreciable split read depth indicates a lack of defective viral genomes (DVGs). The NP, 624 

NA, and NS gene segments each harbored a single DVG species, while no DVG species were 625 

identified in the other 5 gene segments.  626 
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627 

Figure S4. Mosaic plots representing the per-sample dependence of defective viral genome 628 

(DVG) presence in pairwise combinations of the PB2, PB1, and PA gene segments. Axis 629 

represent the proportion of all samples. Grey area indicates lack of DVGs in either gene segment 630 

and colored areas represent DVG presence in either or both gene segments. Fisher’s exact test p-631 

values are listed above each plot. A) Association between DVG presence in the PB2 and PB1 632 

genes. Green area represents samples with DVGs only in the PB2 gene, orange area represents 633 

samples with DVGs only in the PB1 gene and forest green area represents samples with DVGs in 634 

both genes. B) Association between DVG presence in the PB2 and PA gene segments. Green 635 

area represents samples with DVGs only in the PB2 gene, purple area represents samples with 636 

DVGs only in the PA gene, and blue area represents samples with DVGs in both. C) Association 637 

between DVG presence in the PB1 and PA gene segments. Orange area represents samples with 638 

DVGs only in the PB1 gene, purple area represents samples with DVGs only in the PA gene, and 639 

mauve area represents samples with DVGs in both genes.  640 
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641 

Figure S5. Histograms (100 bins) showing the cumulative relative read support values for the 3’ 642 

(green) and 5’ (orange) junction locations (compared to the reference) of the deletions generating 643 

individual DVG species. The relative read support for DVGs observed within individual samples 644 

was first normalized to the total number of reads mapped to that gene segment and then summed 645 

across subjects. Data are shown for DVGs observed in the A) PB2, B) PB1, and C) PA genes.   646 
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Figure S6. Stacked area plots representing the defective viral genome (DVG) species within each 648 

gene for subjects with DVGs observed on multiple days. Each color represents an individual 649 

DVG species. The height of each region represents the normalized number of DVG reads 650 

supporting that DVG. DVG colors are not consistent between subjects.  651 
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Figure S7. Dot plots representing the defective viral genome (DVG) species within each gene for 653 

subjects with DVGs observed on multiple days. The x-axis represents the 3’ junction location 654 

and the y-axis represents the 5’ junction location. Dot size is dependent on the number of reads 655 

supporting a given DVG species, normalized by the number of reads mapped to that gene 656 

segment. Color represents sampling day.  657 
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Figure S8. Dot plots representing the number of reference bases deleted in the observed defective 659 

viral genomes (DVG) species with each gene for subjects with DVGs observed on multiple days. 660 

Dot size is dependent on the number of reads supporting a given DVG species, normalized by 661 

the number of reads mapped to that gene segment. Color represents sampling day. Trend lines 662 

connect the mean number of reference bases deleted on each given day, weighted by the 663 

normalized number of supporting reads.   664 
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TABLE S1 Viral load and symptom scores 
 Cohort   

  All (mean [sd]) Standard (mean [sd]) Early (mean [sd]) p-value 
Peak viral titer (log10(TCID50/mL) 4.46 [1.15] 4.55 [0.84] 4.34 [1.48] 0.922 
Time to peak viral titer (hours) 57.85 [25.75] 64.95 [27.01] 47.71 [19.82] 0.080 
Duration of infection (hours) 99.71 [38.57] 117.80 [37.23] 73.86 [22.32] 0.035 
          
    

 
Peak SS 6.47 [4.75] 6.10 [4.25] 7.00 [5.35] 0.922 
Time to peak SS (hours) 46.65 [22.18] 59.30 [17.57] 28.57 [14.09] 0.003 
Duration of symptoms (hours) 113.06 [36.98] 134.20 [17.21] 82.86 [36.71] 0.005 
Cumulative SS 39.88 [42.94] 43.30 [49.99] 35.00 [29.43] 0.887 

 665 

Table S1. Summary statistics for peak viral titer (log10(TCID50/mL), time to peak viral titer 666 

(hours), duration of infection, peak Modified Jackson symptom score, time to peak symptom 667 

score (hours), duration of symptoms (hours), and cumulative symptom score. Mean and 668 

population standard deviation are presented for all subjects, those in the early (treatment with 669 

oseltamivir on the evening of the first day post challenge) cohort, and those in the standard 670 

(treatment with oseltamivir on the evening of the fifth day post challenge) cohort. P-values 671 

comparing the early and standard treatment cohorts resultant from Mann-Whitney U tests are 672 

shown at right.   673 
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TABLE S2 Clinical data by subject   

Subject Inoculum 
(TCID50/ml) 

Treatment 
cohort 

Peak viral 
titer 
(TCID50/ml) 

Time to peak 
viral titer 
(hours) 

Duration of 
infection 
(hours) 

Peak 
symptom 
score 

Time to peak 
symptom score 
(hours) 

Cumulative 
symptom 
score 

001 6.41 Standard 4.25 24.0 48.0 9 45.0 40 
006 5.25 Standard 5.00 48.0 168.0 7 36.0 55 
008 5.25 Standard 4.75 48.0 74.0 10 60.0 60 
010 4.41 Standard 3.75 74.0 120.0 5 93.0 22 
012 4.41 Standard 5.01 48.0 168.0 4 69.0 18 
013 3.08 Standard 5.50 74.0 96.0 2 69.0 12 
015 3.08 Standard 4.50 120.0 144.0 2 45.0 9 
5001 5.50 Early 2.75 95.0 124.5 2 0.0 11 
5002 5.50 Early 5.50 42.0 70.0 14 40.0 63 
5004 5.50 Standard 2.50 76.5 118.0 3 56.0 23 
5006 5.50 Early 6.25 42.0 76.5 8 40.0 45 
5007 5.50 Early 4.00 42.0 70.0 2 32.0 6 
5017 5.50 Early 1.75 42.0 53.0 1 16.0 1 
5018 5.50 Early 5.00 29.0 53.0 7 40.0 33 
5019 5.50 Early 5.12 42.0 70.0 15 32.0 86 
5020 5.50 Standard 5.00 42.0 100.5 16 40.0 184 

5021 5.50 Standard 5.27 95.0 141.5 3 80.0 10 

 674 

Table S2. Clinical data, including inoculum dose (log10(TCID50/mL)), treatment cohort, peak 675 

viral titer (log10(TCID50/mL)), time to peak viral titer (hours), duration of infection (hours), peak 676 

Modified Jackson symptom score, time to peak symptom score (hours), and cumulative symptom 677 

score, by subject678 
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Table	S3	Sequencing	data		

		 		 Mean	[sd]	read	length	(bp)	

Subject	 Day	 PB2	 PB1	 PA	 HA	 NP	 NA	 M	 NS	

Challenge	 0	 70.86	[0.15]	 70.90	[0.17]	 71.14	[0.17]	 71.18	[0.16]	 71.10	[0.14]	 70.98	[0.18]	 71.23	[0.18]	 70.99	[0.22]	

001	
1	 70.91	[0.17]	 70.83	[0.21]	 70.82	[0.20]	 71.14	[0.20]	 70.81	[0.18]	 70.99	[0.19]	 71.05	[0.19]	 70.70	[0.27]	

2	 71.35	[0.14]	 71.23	[0.18]	 71.29	[0.17]	 71.65	[0.15]	 71.28	[0.15]	 71.44	[0.17]	 71.58	[0.17]	 71.45	[0.25]	

006	
1	 71.16	[0.15]	 70.96	[0.21]	 71.15	[0.18]	 71.17	[0.19]	 70.94	[0.16]	 71.12	[0.18]	 71.09	[0.19]	 71.11	[0.24]	

3	 70.75	[0.16]	 70.50	[0.24]	 70.66	[0.20]	 70.96	[0.19]	 70.60	[0.21]	 71.15	[0.19]	 71.05	[0.20]	 71.01	[0.27]	

008	 2	 70.78	[0.17]	 70.83	[0.19]	 70.73	[0.19]	 70.96	[0.18]	 70.47	[0.18]	 70.88	[0.19]	 71.13	[0.18]	 70.45	[0.27]	

010	 3	 71.11	[0.15]	 71.10	[0.17]	 71.32	[0.14]	 71.25	[0.19]	 71.06	[0.16]	 70.90	[0.19]	 71.54	[0.15]	 71.43	[0.24]	

012	

2	 70.94	[0.16]	 70.91	[0.17]	 70.66	[0.19]	 71.15	[0.16]	 71.12	[0.15]	 71.06	[0.19]	 71.38	[0.17]	 71.11	[0.21]	

3	 70.84	[0.25]	 71.05	[0.26]	 71.12	[0.26]	 71.27	[0.22]	 70.92	[0.24]	 71.12	[0.28]	 71.21	[0.18]	 71.52	[0.23]	

6	 71.13	[0.16]	 71.10	[0.21]	 71.14	[0.20]	 71.51	[0.17]	 71.10	[0.16]	 71.29	[0.21]	 71.41	[0.17]	 71.46	[0.23]	

013	
2	 70.62	[0.18]	 70.54	[0.20]	 70.79	[0.18]	 71.01	[0.17]	 70.81	[0.18]	 70.97	[0.18]	 71.00	[0.19]	 70.65	[0.28]	

3	 70.78	[0.16]	 70.80	[0.20]	 70.99	[0.19]	 71.09	[0.18]	 70.97	[0.18]	 70.91	[0.20]	 71.17	[0.20]	 71.32	[0.28]	

015	 4	 70.59	[0.18]	 70.61	[0.18]	 70.81	[0.16]	 71.00	[0.16]	 70.95	[0.15]	 70.82	[0.18]	 71.46	[0.15]	 70.99	[0.21]	

5001	

2	 70.95	[0.15]	 70.96	[0.17]	 70.94	[0.17]	 71.13	[0.20]	 70.86	[0.18]	 70.88	[0.22]	 71.19	[0.18]	 71.00	[0.27]	

3	 70.80	[0.16]	 70.78	[0.17]	 70.98	[0.17]	 70.98	[0.18]	 70.98	[0.16]	 71.15	[0.17]	 71.21	[0.17]	 70.92	[0.24]	

5	 71.10	[0.15]	 71.13	[0.17]	 71.33	[0.16]	 71.24	[0.17]	 71.17	[0.16]	 71.37	[0.16]	 70.90	[0.21]	 71.13	[0.25]	

5002	
2	 70.70	[0.17]	 70.93	[0.19]	 70.98	[0.18]	 70.93	[0.20]	 70.72	[0.17]	 71.05	[0.17]	 70.97	[0.22]	 70.69	[0.31]	

3	 71.12	[0.16]	 70.82	[0.24]	 70.97	[0.19]	 71.21	[0.18]	 70.81	[0.17]	 70.97	[0.18]	 71.22	[0.16]	 71.16	[0.23]	

5004	

2	 70.77	[0.17]	 70.96	[0.16]	 70.90	[0.17]	 70.97	[0.19]	 70.84	[0.16]	 70.84	[0.19]	 70.98	[0.22]	 71.10	[0.28]	

3	 70.79	[0.15]	 70.77	[0.19]	 70.92	[0.17]	 71.02	[0.17]	 70.94	[0.17]	 71.10	[0.18]	 71.30	[0.17]	 70.80	[0.24]	

4	 70.69	[0.22]	 70.42	[0.24]	 70.58	[0.47]	 70.83	[0.23]	 70.69	[0.20]	 70.94	[0.25]	 70.56	[0.22]	 70.39	[0.50]	

5	 71.36	[0.12]	 71.35	[0.14]	 71.36	[0.14]	 71.61	[0.13]	 71.38	[0.13]	 71.34	[0.16]	 71.49	[0.16]	 71.38	[0.20]	

5006	

1	 71.21	[0.12]	 71.02	[0.14]	 71.21	[0.13]	 71.31	[0.15]	 71.23	[0.13]	 71.17	[0.15]	 71.50	[0.15]	 71.30	[0.20]	

2	 70.88	[0.15]	 70.80	[0.19]	 70.76	[0.18]	 71.07	[0.18]	 70.82	[0.16]	 71.02	[0.17]	 70.80	[0.20]	 70.53	[0.29]	

3	 70.88	[0.17]	 71.24	[0.20]	 71.13	[0.20]	 71.18	[0.19]	 71.00	[0.17]	 71.06	[0.21]	 71.41	[0.19]	 71.00	[0.26]	

5007	

1	 71.14	[0.20]	 71.17	[0.19]	 71.18	[0.19]	 71.20	[0.20]	 71.00	[0.17]	 70.96	[0.30]	 71.00	[0.24]	 71.27	[0.39]	

2	 70.96	[0.14]	 70.79	[0.18]	 70.84	[0.16]	 71.03	[0.16]	 70.85	[0.16]	 71.20	[0.15]	 71.35	[0.17]	 71.00	[0.21]	

3	 70.39	[0.18]	 70.48	[0.19]	 70.46	[0.19]	 70.82	[0.17]	 70.65	[0.18]	 70.54	[0.20]	 70.99	[0.19]	 70.77	[0.23]	

5017	 2	 70.73	[0.18]	 70.60	[0.19]	 70.52	[0.29]	 70.83	[0.22]	 70.63	[0.18]	 70.87	[0.23]	 70.99	[0.22]	 70.90	[0.35]	

5018	
1	 70.71	[0.16]	 70.65	[0.21]	 70.74	[0.21]	 70.97	[0.24]	 70.37	[0.21]	 70.86	[0.23]	 70.94	[0.21]	 70.87	[0.31]	

2	 70.97	[0.15]	 70.87	[0.17]	 71.02	[0.17]	 71.03	[0.19]	 70.96	[0.16]	 70.98	[0.19]	 71.31	[0.17]	 71.03	[0.24]	

5019	

1	 70.70	[0.15]	 70.44	[0.17]	 70.82	[0.15]	 70.98	[0.15]	 70.85	[0.15]	 70.94	[0.16]	 70.97	[0.18]	 71.06	[0.19]	

2	 70.78	[0.15]	 70.65	[0.20]	 70.67	[0.18]	 70.84	[0.19]	 70.75	[0.17]	 70.67	[0.21]	 71.13	[0.18]	 70.90	[0.28]	

3	 71.06	[0.12]	 70.75	[0.16]	 71.04	[0.14]	 71.09	[0.15]	 71.00	[0.15]	 71.22	[0.14]	 71.42	[0.16]	 71.12	[0.20]	

5020	

1	 71.35	[0.13]	 71.31	[0.18]	 71.17	[0.16]	 71.41	[0.16]	 71.28	[0.13]	 71.17	[0.16]	 71.45	[0.16]	 71.22	[0.22]	

2	 71.14	[0.16]	 71.24	[0.18]	 71.32	[0.16]	 71.13	[0.17]	 71.11	[0.17]	 71.29	[0.19]	 71.27	[0.18]	 71.39	[0.25]	

3	 70.71	[0.15]	 70.77	[0.18]	 70.72	[0.18]	 70.98	[0.17]	 70.88	[0.16]	 70.98	[0.18]	 70.94	[0.19]	 70.96	[0.24]	

4	 71.14	[0.14]	 70.82	[0.18]	 71.12	[0.16]	 71.23	[0.16]	 71.12	[0.15]	 71.10	[0.18]	 71.17	[0.17]	 71.05	[0.22]	

5021	

1	 70.48	[0.17]	 70.16	[0.26]	 70.62	[0.17]	 70.72	[0.19]	 70.81	[0.15]	 70.80	[0.19]	 70.92	[0.21]	 71.06	[0.25]	

2	 71.21	[0.14]	 71.36	[0.16]	 71.25	[0.15]	 71.42	[0.15]	 71.41	[0.14]	 71.32	[0.16]	 71.62	[0.15]	 71.55	[0.20]	

3	 71.00	[0.14]	 70.83	[0.17]	 71.03	[0.16]	 71.02	[0.18]	 71.02	[0.15]	 71.12	[0.16]	 71.00	[0.20]	 70.73	[0.26]	

4	 70.62	[0.15]	 70.43	[0.17]	 70.82	[0.16]	 70.79	[0.18]	 70.62	[0.17]	 70.83	[0.18]	 70.66	[0.21]	 70.81	[0.23]	

5	 71.01	[0.15]	 70.92	[0.19]	 71.19	[0.15]	 71.38	[0.17]	 70.98	[0.16]	 70.74	[0.20]	 71.32	[0.17]	 71.11	[0.23]	
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Table	S3	(cont.)	Sequencing	data		

		 		 	 Mean	[sd]	read	depth	

Subject	 Day	 Genome	 PB2	 PB1	 PA	 HA	 NP	 NA	 M	 NS	

Challenge	 0	 130.06	[52.95]	 127.70	[38.73]	 	91.83	[42.16]	 	95.24	[39.26]	 125.10	[34.74]	 198.38	[40.59]	 137.17	[39.55]	 176.27	[41.50]	 150.11	[49.92]	

001	
1	 105.56	[41.69]	 103.17	[25.92]	 	68.62	[21.91]	 	83.20	[25.05]	 	88.15	[26.48]	 142.68	[30.72]	 122.12	[27.07]	 185.26	[32.26]	 116.76	[28.61]	

2	 113.22	[41.24]	 127.14	[29.16]	 	69.79	[18.45]	 	86.60	[25.43]	 120.38	[34.46]	 158.72	[30.33]	 123.17	[27.81]	 159.25	[34.73]	 	94.52	[26.69]	

006	
1	 110.78	[42.77]	 116.57	[26.32]	 	66.61	[24.71]	 	87.77	[28.21]	 	94.82	[30.87]	 156.83	[26.89]	 125.91	[23.33]	 171.00	[36.92]	 127.25	[37.10]	

3	 	99.82	[40.89]	 110.84	[57.47]	 	59.49	[15.91]	 	85.41	[23.48]	 100.90	[26.52]	 111.04	[23.14]	 116.61	[22.68]	 153.25	[39.28]	 102.94	[28.13]	

008	 2	 113.41	[40.34]	 106.35	[24.87]	 	76.83	[25.04]	 	92.26	[26.07]	 115.97	[24.47]	 145.97	[28.23]	 128.02	[30.74]	 180.31	[34.93]	 119.10	[47.41]	

010	 3	 119.43	[43.94]	 115.34	[32.97]	 	86.64	[22.62]	 120.70	[35.37]	 	93.73	[24.75]	 156.55	[37.43]	 124.88	[34.71]	 198.01	[38.01]	 100.53	[28.63]	

012	

2	 126.84	[43.61]	 115.09	[32.53]	 101.59	[29.02]	 	96.15	[26.89]	 137.44	[39.56]	 170.32	[36.08]	 114.69	[17.74]	 190.56	[34.17]	 151.51	[40.19]	

3	 	63.32	[43.06]	 	49.91	[39.48]	 	40.00	[23.27]	 	40.92	[14.73]	 	60.78	[26.14]	 	75.17	[19.73]	 	53.68	[13.11]	 165.06	[40.19]	 100.89	[36.52]	

6	 	95.41	[44.16]	 105.38	[39.59]	 	59.09	[21.16]	 	63.29	[22.32]	 	91.49	[36.44]	 133.23	[23.12]	 	90.93	[27.26]	 171.92	[34.36]	 107.00	[37.60]	

013	
2	 112.48	[38.53]	 100.57	[21.73]	 	79.72	[33.78]	 	92.37	[27.64]	 124.28	[32.24]	 140.01	[22.83]	 133.02	[21.51]	 168.21	[38.61]	 111.76	[32.21]	

3	 104.34	[34.72]	 114.63	[40.05]	 	75.03	[18.78]	 	88.39	[24.34]	 105.32	[26.22]	 130.78	[17.15]	 115.17	[25.38]	 145.23	[33.25]	 	81.35	[23.64]	

015	 4	 134.29	[47.29]	 104.83	[28.54]	 	95.00	[25.56]	 113.62	[27.78]	 138.17	[40.59]	 173.60	[24.57]	 148.29	[23.56]	 216.44	[32.05]	 174.65	[46.81]	

5001	

2	 110.54	[36.89]	 127.36	[33.58]	 	93.87	[23.77]	 	98.40	[31.09]	 	82.29	[31.53]	 136.26	[24.58]	 102.39	[29.27]	 162.95	[27.35]	 104.86	[27.77]	

3	 128.28	[40.79]	 113.66	[24.05]	 104.42	[25.65]	 	99.62	[25.44]	 120.32	[27.06]	 175.76	[33.23]	 145.06	[24.48]	 195.75	[33.56]	 129.46	[32.22]	

5	 118.42	[36.63]	 117.02	[27.56]	 	90.22	[27.35]	 	98.79	[28.67]	 117.00	[32.22]	 151.29	[24.31]	 137.83	[22.35]	 157.81	[31.82]	 113.92	[45.35]	

5002	
2	 108.42	[37.70]	 105.78	[30.46]	 	80.25	[22.42]	 	90.56	[29.29]	 	99.65	[26.66]	 153.16	[28.78]	 140.74	[36.07]	 132.97	[27.18]	 	91.97	[26.91]	

3	 107.12	[52.31]	 103.33	[35.41]	 	50.00	[22.62]	 	76.93	[26.53]	 	93.27	[29.64]	 150.14	[31.62]	 141.28	[30.65]	 207.92	[26.98]	 124.62	[34.43]	

5004	

2	 115.79	[37.03]	 105.43	[27.83]	 110.79	[33.77]	 104.62	[31.04]	 101.59	[26.24]	 161.45	[29.79]	 133.09	[24.60]	 129.19	[40.40]	 	88.16	[39.56]	

3	 130.44	[39.07]	 138.70	[27.24]	 	90.92	[18.15]	 105.39	[23.20]	 120.72	[32.72]	 160.42	[22.74]	 143.18	[21.67]	 196.52	[31.48]	 146.21	[33.37]	

4	 	68.14	[42.28]	 	66.86	[30.54]	 	58.40	[18.18]	 	14.78	[	9.39]	 	76.24	[24.65]	 113.55	[29.63]	 	73.08	[18.56]	 147.74	[26.75]	 	35.58	[14.47]	

5	 146.08	[42.29]	 154.27	[27.75]	 108.22	[26.89]	 123.64	[35.86]	 147.62	[43.76]	 191.72	[32.06]	 145.11	[24.71]	 190.59	[26.93]	 148.25	[40.29]	

5006	

1	 165.53	[43.03]	 175.88	[29.02]	 131.60	[25.84]	 152.71	[35.73]	 143.46	[36.89]	 212.54	[33.32]	 174.14	[31.23]	 216.26	[31.28]	 148.85	[43.29]	

2	 119.50	[41.96]	 131.30	[31.50]	 	86.17	[20.91]	 	93.71	[41.21]	 108.39	[33.88]	 164.76	[25.35]	 137.73	[30.07]	 162.43	[34.95]	 104.45	[30.76]	

3	 105.76	[39.33]	 110.57	[28.05]	 	66.47	[21.51]	 	78.56	[21.71]	 105.35	[29.63]	 153.19	[31.31]	 105.67	[17.87]	 158.32	[23.16]	 122.84	[34.83]	

5007	

1	 	77.68	[34.32]	 	66.21	[22.47]	 	72.25	[22.22]	 	72.98	[26.40]	 	83.51	[29.53]	 129.63	[31.82]	 	51.46	[13.22]	 107.91	[23.70]	 	39.23	[16.92]	

2	 137.64	[47.75]	 131.16	[36.17]	 	92.55	[33.66]	 112.74	[29.08]	 140.41	[46.79]	 174.09	[25.26]	 168.71	[36.77]	 193.59	[37.90]	 151.99	[47.76]	

3	 121.60	[37.73]	 107.81	[22.88]	 	90.21	[29.32]	 	99.59	[25.60]	 135.14	[30.84]	 151.99	[22.48]	 128.28	[24.47]	 173.69	[32.53]	 145.66	[38.65]	

5017	 2	 	90.64	[44.18]	 	92.17	[34.62]	 	87.88	[35.07]	 	42.94	[27.10]	 	83.79	[28.90]	 152.08	[30.09]	 	98.05	[24.10]	 131.47	[35.36]	 	59.75	[24.48]	

5018	
1	 	92.19	[35.56]	 118.53	[27.01]	 	72.54	[17.66]	 	69.80	[23.76]	 	64.42	[22.19]	 119.32	[26.95]	 	88.38	[23.81]	 144.81	[29.91]	 	84.16	[28.46]	

2	 119.67	[41.05]	 121.00	[36.26]	 	97.33	[29.51]	 	94.29	[26.36]	 	98.65	[31.48]	 159.58	[29.00]	 126.20	[24.09]	 184.60	[31.24]	 125.66	[35.19]	

5019	

1	 156.68	[44.40]	 135.82	[38.49]	 121.54	[30.87]	 143.33	[32.70]	 162.31	[42.45]	 189.70	[30.71]	 172.60	[23.12]	 200.09	[39.61]	 193.60	[49.27]	

2	 120.85	[45.35]	 137.00	[35.58]	 	79.06	[22.11]	 105.55	[29.20]	 103.99	[34.07]	 175.37	[35.49]	 113.37	[23.06]	 185.75	[31.28]	 102.50	[35.94]	

3	 156.41	[44.08]	 167.84	[38.59]	 111.86	[21.39]	 136.82	[36.14]	 144.16	[37.54]	 181.09	[26.27]	 189.70	[28.79]	 197.68	[39.11]	 172.45	[47.86]	

5020	

1	 137.26	[52.20]	 141.90	[38.88]	 	76.92	[18.67]	 111.84	[33.70]	 120.94	[38.13]	 207.55	[29.35]	 157.01	[25.94]	 202.69	[29.29]	 150.07	[35.68]	

2	 109.16	[36.03]	 100.37	[26.59]	 	78.86	[20.88]	 	95.27	[26.23]	 115.49	[31.89]	 140.46	[27.21]	 115.58	[26.20]	 166.18	[28.39]	 103.89	[32.33]	

3	 129.17	[41.06]	 140.08	[34.40]	 	95.70	[23.80]	 	99.50	[34.00]	 131.35	[38.03]	 161.50	[26.56]	 141.93	[24.15]	 174.47	[44.14]	 129.35	[32.58]	

4	 127.35	[42.12]	 123.43	[29.88]	 	89.79	[27.19]	 	99.87	[25.11]	 127.09	[33.38]	 172.44	[27.99]	 135.91	[23.15]	 186.18	[26.46]	 146.02	[48.68]	

5021	

1	 119.23	[48.62]	 124.16	[40.50]	 	54.82	[22.68]	 120.59	[30.38]	 122.58	[38.86]	 176.88	[33.80]	 127.77	[27.01]	 158.76	[29.81]	 105.67	[44.61]	

2	 129.49	[43.63]	 126.45	[21.87]	 	82.78	[16.16]	 104.53	[27.36]	 126.65	[29.59]	 172.31	[26.37]	 147.77	[26.82]	 210.60	[33.68]	 131.21	[34.92]	

3	 133.33	[39.74]	 136.60	[33.58]	 102.49	[22.82]	 114.86	[32.83]	 118.42	[30.18]	 174.26	[32.23]	 162.01	[28.46]	 165.12	[37.60]	 126.60	[34.94]	

4	 135.21	[45.59]	 136.99	[46.39]	 110.48	[38.74]	 122.80	[60.09]	 126.64	[30.28]	 161.63	[27.12]	 153.02	[26.25]	 158.88	[42.28]	 141.37	[47.72]	

5	 122.18	[45.43]	 123.22	[39.92]	 	81.08	[33.16]	 111.55	[36.85]	 105.47	[28.74]	 157.43	[24.94]	 126.80	[25.93]	 200.10	[31.82]	 129.41	[39.81]	

 680 

Table S3. Sequencing data, including mean [population standard deviation (sd)] read length (bp) 681 

and mean [sd] coverage (reads), for all samples. Data are calculated following read trimming 682 

(removal of Illumina adapters, leading or trailing bases with quality <3, portions of reads where 683 

the average quality per-base in 4-base wide sliding windows was <15 and reads with <50 bases) 684 
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(46), alignment to the reference genome, realignment to a consensus sequence (47), and removal 685 

of PCR duplicates (49). Technical sequencing replicates were processed separately and summary 686 

statistics calculated from the combination of the two samples.   687 
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TABLE S4 DVG read support 
  Normalized DVG reads 
Subject Day PB2 PB1 PA HA NP NA M NS 
Challenge 0         0.0014 0.0014   0.0021 

1001 
1               0.0013 
2 0.0007 0.0026 0.0015           

1006 
1         0.0031       
3 0.0529 0.0259 0.0154     0.0008 0.0009   

1008 2 0.0006 0.0023   0.0007         
1010 3 0.0099 0.0200 0.0641 0.0098   0.0030     

1012 
2 0.0072 0.0131 0.0071           
3 0.0351 0.0452 0.0204 0.0013     

6 0.0179 0.0096       0.0047     

1013 
2 0.0068 0.0365 0.0141     0.0007     
3 0.0168 0.0181 0.0074 0.0008   0.0008     

1015 4   0.0019 0.0016         0.0009 

5001 
3     0.0174           
5 0.0005   0.0006 0.0007   0.0031 0.0026 0.0069 

5002 
2 0.0008 0.0033 0.0042   0.0011       
3 0.0012 0.0106 0.0106           

5004 

2     0.0006         0.0072 
3 0.0021      0.0007  

4      0.0013   

5 0.0038 0.0034           0.0028 

5006 
1 0.0009 0.0072 0.0004           
2 0.0025 0.0132 0.0127 0.0015       0.0023 
3 0.0055 0.0077             

5007 
2 0.0082 0.0083 0.0036           
3 0.0006 0.0029       0.0018 0.0039   

5018 
1         0.0018       
2 0.0044 0.0045   0.0076         

5019 
1 0.0020 0.0005 0.0057   0.0042 0.0023   0.0008 
2 0.0157 0.0008 0.0077   0.0035       
3 0.0132 0.0008 0.0129   0.0017     0.0009 

5020 

1 0.0021 0.0016 0.0014           
2 0.0051 0.0027 0.0053      

3 0.0013  0.0006      

4 0.0170 0.0053 0.0044     0.0010     

5021 

2 0.0012               
3 0.0062 0.0021 0.0006      

4 0.0285 0.0351 0.0440   0.0057   

5 0.0247 0.0392 0.0233       0.0007 0.0055 
 688 

Table S4. Normalized DVG read count for all subjects for each gene segment. Values represent 689 

the proportion of the reads mapped to a given gene which support DVG species present in both 690 
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technical replicates. Blank cells represent instances where no DVG reads were observed. 691 

Subjects highlighted in grey represent those in the early treatment (oseltamivir on the first day 692 

post challenge) treatment cohort.  693 
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TABLE S5 DVG junction sites 
  3' junction site 5' junction site Mean [sd] 

bases deleted 
(nt)   Reference 

length (nt) 
Mean [sd] 
(nt) 

Minimum 
(nt) 

Maximum 
(nt) 

Mean [sd] 
(nt) 

Minimum 
(nt) 

Maximum 
(nt) 

PB2 2310 325 [295] 84 1814 1971 [236] 398 2177 1646 [392] 
PB1 2312 304 [259] 43 2113 1929 [225] 187 2224 1625 [397] 
PA 2192 256 [180] 66 1455 1849 [204] 243 2074 1593 [332] 

 694 

Table S5.  Summary statistics (mean [population standard deviation (sd)], weighted by the 695 

normalized DVG read count) for the 3’ and 5’ junction sites (relative to the reference) of DVGs 696 

observed in the PB2, PB1, and PA genes as well as the mean [sd] number of reference bases 697 

deleted.   698 
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TABLE S6 DVG species observed in multiple samples     
Gene DVG ID Samples 
PB2 93_1983 013, Day 2  013, Day 3   
PB2 154_2069 5019, Day 2  5019, Day 3   
PB2 170_2035 5021, Day 4  5021, Day 5   
PB2 171_2087 010, Day 3  5007, Day 2   
PB2 172_2079 5019, Day 1  5019, Day 2  5019, Day 3  
PB2 187_2125 5006, Day 1  5006, Day 2  5006, Day 3  
PB2 209_1983 010, Day 3  5006, Day 3   
PB2 211_1956 5021, Day 3  5021, Day 4  5021, Day 5  
PB2 241_1982 013, Day 2  013, Day 3   
PB2 249_2005 5021, Day 4  5021, Day 5   
PB2 356_1937 5021, Day 2  5021, Day 3  5021, Day 4  5021, Day 5 
PB2 386_1903 5021, Day 2  5021, Day 4   
PB2 476_703 5006, Day 1  5019, Day 2  5020, Day 2  5021, Day 3 
PB2 505_1743 5021, Day 3  5021, Day 4   
PB2 523_1789 013, Day 2  013, Day 3   
PB2 1482_2101 5020, Day 2  5020, Day 4     
PB1 43_1978 5021, Day 4  5021, Day 5   
PB1 90_2073 5021, Day 4  5021, Day 5   
PB1 131_2028 5006, Day 1  5006, Day 2   
PB1 142_2150 013, Day 2  013, Day 3   
PB1 179_2076 5021, Day 3  5021, Day 4  5021, Day 5  
PB1 183_1994 012, Day 2  012, Day 3   
PB1 183_2092 013, Day 2  013, Day 3   
PB1 226_1924 010, Day 3  5021, Day 5   
PB1 231_1746 5021, Day 4  5021, Day 5   
PB1 232_1986 013, Day 2  013, Day 3   
PB1 313_1863 012, Day 2  012, Day 3   
PB1 631_1603 013, Day 2  013, Day 3   
PB1 689_1544 5021, Day 3  5021, Day 4  5021, Day 5   
PA 102_1936 5002, Day 2  5002, Day 3   
PA 124_1891 012, Day 2  012, Day 3   
PA 153_1941 5020, Day 1  5020, Day 4   
PA 153_2015 013, Day 2  013, Day 3   
PA 160_1903 5021, Day 4  5021, Day 5   
PA 175_1892 5020, Day 2  5020, Day 4   
PA 175_1935 5019, Day 1  5019, Day 2  5019, Day 3  
PA 197_1916 5021, Day 4  5021, Day 5   
PA 229_1944 5006, Day 1  5006, Day 2   
PA 263_1968 5021, Day 4  5021, Day 5   
PA 328_1719 5021, Day 4  5021, Day 5   
PA 331_1824 5021, Day 4  5021, Day 5   
PA 476_767 5001, Day 5  5004, Day 2  5006, Day 2  5019, Day 1 
NP 229_518 006, Day 1  5018, Day 1  5019, Day 1   
NP 696_1378 5002, Day 2  5019, Day 2  5019, Day 3  Challenge, Day 0 
NA  421_803 006, Day 3  013, Day 2     
NA  633_737 010, Day 3  5019, Day 1  5021, Day 4   
NS 291_518 001, Day 1  5004, Day 5  5019, Day 1  5021, Day 5 

 699 

Table S6. Defective viral genome (DVG) species observed in multiple samples. DVGs are 700 

organized by gene segment. DVG IDs represent the first_last deleted reference based as 701 

identified using the “jI” SAM tag.   702 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814673doi: bioRxiv preprint 

https://doi.org/10.1101/814673
http://creativecommons.org/licenses/by-nd/4.0/

