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Abstract 

The propitious developments in molecular biology and next generation sequencing have enabled 

the possibility for DNA storage technologies. However, the full application and power of our 

genomic revolution have not been fully utilized in clinical medicine given a lack of transition 

from research to real world clinical practice. This has identified an increasing need for an 

operating system which allows for the transition from research to clinical use. We present 

eMED-DNA, an in silico operating system for archiving and managing all forms of electronic 

health records (EHRs) within one’s own copy of the sequenced genome to aid in the application 

and integration of genomic medicine within real world clinical practice. We incorporated an 

efficient and sophisticated in-DNA file management system for the lossless management of 

EHRs within a genome. This represents the first in silico integrative system which would bring 

closer the utopian ideal for integrating genotypic data with phenotypic clinical data for future 

medical practice. 

Introduction 

The application of DNA as a digital information storage medium has long been considered a 

viable paradigm, but the real-world impact especially within the confines of actual clinical 

electronic health care record systems remains an enigma.1-8 The initial enthusiasm for such work 

was to enhance and better assimilate disparate health care information for each patient whilst 

integrating one’s underlying genomic data. Yet, the inherent problem with another form of data 

acquisition in health systems is the storage and assimilative properties of these often-large data 

files within the confines of clinical electronic medical systems and electronic health records 

(EHRs). Furthermore, the integration of genomic data coupled with multiple imaging modalities, 

consultation and prescription notes means this also poses a difficult task to formulate a robust, 

secure, accessible and transferable pathway to be applied in real world clinical settings.  

In this regard, we demonstrate a simple, robust and  informative computational clinical pipeline 

whereby genomic data across the genome can both be analyzed and simultaneously be integrated 

with one’s other clinical health records; hence providing a seamless archiving system for medical 

records and clinical genomic data. We have utilized a system in which a copy of the archived 

patient genome is used, and we particularly use the non-coding regions (introns and intergenic 

regions) of the human genome, to archive and store electronic health records as a proof of 

concept, whilst always maintaining the underlying archived genome sequence of the patient for 

future analysis. Moreover, our system can take any set of genomic locations, provided by a user, 

which is deemed not useful for a particular clinical context. 
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Our system is effective with any form of EHR, e.g., physician’s notes, lab reports, various image 

files which are typically stored in DICOM (Digital Imaging and Communications in Medicine) 

format. DICOM is the most universal and fundamental standard in digital medical imaging.  It 

defines all the necessary file formats and network protocols to exchange the medical data. We 

selected computer files to be encoded as a proof of concept for practical DNA-storage, choosing 

a range of common medical formats to emphasize the ability of our system to store arbitrary 

digital information.  

Given the variable spatio-temporal areas of non-coding regions across the human genome, which 

posed difficulty during the storage of files which span greater than the largest continual non-

coding regions, we have innovated a sophisticated file management operating system that first 

encodes an EHR into DNA bases and then split it into chunks so that these chunks can be stored 

across various defined regions in the human genome. However, these regions will not affect 

analysis or interpretation of one’s genome given this is all done in a copied version, whilst 

archiving the original genome sequence. In particular, our contribution entails: 

 An efficient in-DNA file management system (iDFMS).  

 A novel technique for converting binary files to DNA sequences which is specially tailored 

for the binary data stream resulting from medical imaging files, but is suitable for any binary 

file. Our proposed encoding is more compact and better than the traditional binary to DNA 

mapping used in DNA storage. 

 Analyzing and identifying various compression techniques appropriate for archiving EHRs.  

 Introducing several concepts from operating systems (e.g., virtual memory, abstract memory 

space, dictionary for storing meta-data, etc.) to the domain of genome sequence, and DNA 

storage. 

 Introducing efficient encoding (binary to DNA bases) and placement strategies for the in-

DNA dictionary entries. 

All these techniques are seamlessly combined into an integrated pipeline eMED-DNA for 

random and error free management of EHRs within a genome sequence. We believe that our 

system will facilitate the medical practitioners in managing and transferring both genomic and 

clinical phenotypic data across different medical and research institutes, and pave the way for 

meaningful integration of genotypes and phenotypes for precision medicine. Moreover, the new 

binary-to-DNA mapping strategy and in-DNA file management system, that we have introduced, 

will contribute towards the improvement of DNA storage technologies. We implemented eMED-

DNA as a portable and cross-platform proof of concept software, which is publicly available at 

https://github.com/jakariamd/eMED-DNA. A comprehensive step-by-step video tutorial is 

available at https://jakariamd.github.io/eMED-DNA/. 

 

Results 
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Archiving EHRs into DNA sequence 

In this section, we provide a brief overview of eMED-DNA and some of its key components. We 

refer to the Methods section and supplementary materials SM1 for additional details of eMED-

DNA and various algorithms used in it. Our pipeline (shown in Fig. 1) starts with compressing 

EHR components (e.g., physicians’ notes, DICOM files, bills, etc.) using appropriate 

compression techniques. For greater compression ratio, we explored various compression 

techniques for various types of EHR files and proposed customized compression techniques for 

DICOM images as these are the most space consuming components of EHRs. Next, binary bits 

of these compressed files are mapped to DNA base sequence {A, T, C, G}*. The naive and the 

simplest way to convert a binary sequence B = {0,1}* to a DNA base stream D = {A,T,C,G}* is 

to encode two bits of B into one bit of D. Suppose, one can encode 00 to A, 01 to T, 10 to C, and 

11 to G. Another approach is phase-change encoding which takes the run-length of consecutive 

0’s and 1’s into account, and was used in the Microvenus project.10 In run-length encoding, runs 

of 0’s and 1’s are stored as a single data value and count, rather than as the original run. We 

developed a new technique, especially tailored for DICOM files but suitable for any binary data, 

with improved performance compared with the trivial one which encodes two binary bits into a 

particular DNA base (see Methods section for full details of this encoding technique). 

Experiments on a CT (computerized tomography) scan with 262 DICOM files show that our 

method substantially improves upon the trivial mapping and saves more than one hundred and 

seventy thousand DNA bases for this CT scan (see Sec. 1.2 and Fig. S4 in supplementary 

materials SM1). The resultant DNA stream is subsequently compressed for further space 

efficiency. 

Next, we store the resultant DNA bases in patient’s genome sequence. We divide the DNA 

streams into smaller chunks so we can spread them over the non-coding regions of the genome. 

We maintain an in-DNA dictionary for indexing the saved files and their positions in the genome 

so we can retrieve the stored files correctly. The dictionary itself is converted into DNA 

sequence and stored in the genome. It is consequently necessary to differentiate between DNA 

bases corresponding to EHRs from those of dictionary entries. Thus, we have to store and 

manage the dictionary efficiently so we do not lose any meta-data and at the same time we have 

to make sure it does not grow and overwrite the contents of an EHR which has already been 

written into the DNA sequence. For optimization and similar to the concept of the stack in 

random access memory (RAM), we write the dictionary in a reverse direction (relative to EHRs) 

starting from the end of the genome and progressing towards the front end (i.e., from right to 

left), whereas the EHR files are saved from the beginning of the genome (Fig. 3). See 

supplementary materials for full details. 
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Figure 1: Overview of eMED-DNA. We first compress the EHRs with appropriate compression 

techniques. Next, the compressed binary files are mapped to DNA base sequence using our 

proposed binary to DNA base coversion technique. We further compress the DNA base stream, 

and finally we store the resultant DNA base stream within the non-coding regions (alternatively, 

the genomic regions provided by the user) of the patient’s genome. In addition to the EHRs, we 

encode the dictionary entries containing the meta-data into DNA bases and store them in the 

whole genome. The in-DNA file management system provides a random access and lossless 

architecture for archival and retrival of the data in a genome sequence. 

 

eMED-DNA takes a human genome as an input. A reference human genome GRCH38 (Genome 

Reference Consortium Human Build 38), obtained from ENSEMBL, was used in our proof-of-

concept. eMED-DNA also takes two other input files – one containing the locations (start and 

end markers) of the genes in chromosomes to identify the intergenic regions and the other 

containing the numbers of nucleotide bases in each chromosome. eMED-DNA can detect if any 

file has previously been saved in the given genome and shows the users a list of the saved files. 

A user can select, from the list, a filename to decode, so as to view the EHR or save it outside of 

the genome. eMED-DNA allows inserting new EHRs, as well as deleting the existing ones. The 

dictionary and the meta-data are updated accordingly after each operation.  

 

in-DNA File Management System (iDFMS) 

In this section, we briefly discuss various key components of our proposed iDFMS. Non-coding 

regions are of various lengths and are distributed across the whole genome. As already 

mentioned, a stored EHR file may span several non-coding regions (fully or partially), and may 

span over more than one chromosome.  

The deletion of a stored file from the DNA sequence will make the scenario even more 

complicated as it will free some regions in the DNA sequence which we have to mark for future 
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use. To handle these challenges in a reasonably simpler way, we virtually assemble the non-

coding locations from all chromosomes of a genome to form an abstract continuous space. We 

call this abstract space the free genome space (see Fig. 2). 

 

Figure 2: Abstract continuous space in a genome. eMED-DNA virtually assembles the non-

coding regions (alternatively, it can assemble any set of genomic locations provided by the user 

to store EHRs) to an abstract continuous space. 

We denote by a user session the time span, after entering a valid input set to the eMED-DNA 

system, for which the system remains actively open for that input set. At the beginning of every 

user session, our system constructs the corresponding abstract continuous storage space and 

creates a map between locations of abstract space and actual chromosome numbers and 

positions. In this way, a virtual abstract space (free genome space) is created in the beginning of 

a user session, resulting into simple and elegant file management without having to deal with 

complicated calculations for every file operations. While performing various file operations 

(insertion/deletion/retrieval), these abstract locations are converted to actual genomic positions 

appropriately. 

 

 

in-DNA Dictionary 

We introduced an in-DNA dictionary in our iDFMS for storing various types of meta data. For 

each EHR file, we create an entry in the in-DNA dictionary which consists of the following four 

attributes: name of the file, type (DICOM or non-DICOM), transfer syntax and genomic 

locations containing the DNA bases of this particular file. When a genome is given as input, 

eMED-DNA can track the files (if any), which have already been saved in this genome. We have 

developed a new lossless mapping process to convert a dictionary to DNA base sequences 
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(described in Methods) which is completely reversible so that it can decode the dictionary entries 

corresponding to the files that have already been stored in this genome in previous user sessions. 

We store the DNA bases resulting from the in-DNA dictionary in a direction which is opposite to 

the direction of storing DNA bases resulting from the EHRs (as shown in Figure 3). Please see 

Methods and Secs. 1.4 and 1.5 in supplementary materials SM1 for full details. 

 

Figure 3: Placement of the EHR files and dictionary entries in a genome. We write the DNA 

bases resulting from EHRs from the beginning of the free genome space, as opposed to the in-

DNA dictionary which starts from the end and grows towards the front end of a genome.  

To emphasize the effectiveness of eMED-DNA in handling arbitrary digital information, we 

stored various types of EHRs using eMED-DNA and the summary statistics are provided in 

Table 1.  

 

Table 1: Summary statistics of the various types of files stored using eMED-DNA. We 

choose various types of files to demonstrate the ability of eMED-DNA in handling any form of 

EHRs. These files are anonymized and available at https://git.io/fhIDE. 

File name File type File size  

(bytes) 

Number of bases 

in the encoded 

DNA stream 

No of chunks 

required 

MR-MONO2-8-

16x-heart.dcm 

Dicom (Magnetic 

Resonance Imaging) 

10,49,496  16,95,640 22 

US-PAL-8-10x-

echo.dcm 

Dicom 

(Echocardiogram) 

4,83,610 21,04,304 71 
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Clinical note Non-dicom 

(physician’s notes) 

 2,264  5,060 2 

 

Table 2 shows the distribution of the encoded DNA base streams over various chunks of non-

coding regions for a single EHR file. See Sec. 1.7 in supplementary materials for additional 

results. 

 

 

 

Table 2. Distribution of the encoded DNA base streams of a sample DICOM file over 

various non-coding regions using eMED-DNA. This MRI file requires 21 chunks of intergenic 

regions of various sizes to fit the 16,95,640 encoded bases. The sample file is available at: 

https://git.io/fhIDq. 

File Name : MR-MONO2-8-16x-heart.dcm (MRI) 

File Size: 1025 KB (10,49,496 bytes) Encoded DNA Stream Length: 16,95,640 bases 

Location in Genome (21 chunks) 

Chunk 

No 

Chromosome 

No 

Chunk 

Start 

Position 

Chunk 

Size 

Chunk 

No 

Chromosome 

No 

Chunk Start 

Position 

Chunk 

Size 

1 1 4332003 322729 12 1 6579758 243 

2 1 4792535 1070275 13 1 6589281 1443 

3 1 6101194 599 14 1 6624034 832 

4 1 6180124 1145 15 1 6701925 83399 

5 1 6235973 8219 16 1 7769707 1562 

6 1 6245579 1767 17 1 7781433 2887 

7 1 6260976 3293 18 1 7853513 62381 

8 1 6394392 18026 19 1 7943166 11125 
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9 1 6424671 117 20 1 7985506 18898 

10 1 6520062 1285 21 1 8026309 84770 

11 1 6554536 645     

in-DNA Dictionary Entry 

Length: 129 bases Location in 

Genome (1 chunk) 

Chromosome No Chunk Start 

Position 

Chunk 

Size 

Y chromosome 57227181 129 

Discussion 

Due to the advent of next generation sequencing within real world clinical medicine scenarios 

and the boom of the electronic health record systems to democratize personal health information, 

there has been an ongoing drive to integrate genomic data into clinical pathways. 11-14 The “All of 

Us” research program, formerly known as Precision Medicine Initiative, is expected to generate 

genomic data, in combination with electronic health records and participant-reported data, from 

approximately one million US residents with diverse backgrounds, so as to better risk stratify 

patients and enhance personalized diagnostics. 15,16 

 

Precision medicine emphasizes the need for integrating genomic data and patient’s health 

records.17,18 However, including genomic sequences in EHRs has raised some complexities. 

Apart from security and ethical issues, there are practical challenges to integrate genomic data 

into electronic health records which include size and complexity of genetic test results, 

inadequate use of standards for clinical and genetic data, and limitations in EHR’s capacity to 

store and analyze genetic data.19 Furthermore, the plethora of large scale genomic studies has led 

to the discovery of many putative genes for better risk stratifying and enhancing diagnostic 

decision trees.19-23 Therefore, various large-scale initiatives have been taken for translating 

insights from genomics into clinical medicine.11-14,23 Hence, the efficient management, 

organization and protection of both genomic data and clinical records will be a greater necessity. 

eMED-DNA is a unique system for the delivery of genomic and clinical care in one operating 

system. 

The eMED-DNA system not only converts generic file formats such as prescriptions, clinical lab 

results and physician reports, it also deals with clinical image files such as DICOM files and 

converts them into DNA sequences within the genome. This workflow can also be extended 

whereby these converted files can be synthesized into oligonucleotides and archived for a long 

period of time. Apart from the evident benefit in archiving, managing and transferring 

heterogeneous medical data across various medical and research institutes, this will have a direct 

impact in various retrospective medical studies. Although we did not perform any experimental 
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studies to synthesize the genome sequence (obtained by eMED-DNA) into artificial DNA, 

existing DNA storage techniques can easily be coupled with eMED-DNA to facilitate artificial 

DNA synthesis. 8-9 Therefore, although we customized our encoding technique as an in silico 

system to avoid particular forms of repetitions, our system does not explicitly consider various 

issues associated with physical DNA storage, such as, repeats, homopolymers, small reads, etc. 

For example, Goldman et al. avoided repeats by translating the binary computer information into 

ternary number system and then encode the information into DNA bases.5  Yet, it is plausible 

that our in silico digital system can be part of a means to also identify and synthesise various 

EHR data for long term storage. Our proof-of-concept currently does not explicitly consider any 

privacy issue associated with genomic data sharing. However, the human genome can reveal 

sensitive information and is vulnerable to re-identifiability risk.16, 24-30 We believe a more 

sophisticated pipeline, which does not overwrite any region of the genome sequence such as 

ours, is more desirable as future research may reveal relevance of other regions which is 

currently considered as “junk” DNA. Indeed, recent research suggested that there may be 

relationships between introns and proteins, and long intergenic non-coding RNAs (lincRNAs) 

have been shown to have important functionalities.31-32 With a more sophisticated mapping 

system between EHRs and DNA bases, eMED-DNA would be able to retrieve the genomic 

regions, that it uses for storing EHRs, without having to keep an extra copy of the genome. (See 

Sec. 2 in supplementary materials for additional discussion). 

The timing of this approach seems appropriate as obtaining genomic data are becoming easier 

and cheaper, DNA storage techniques are getting better which leads many to speculate on its 

near-term potential as a practical storage media5, population level genetic variation and 

understanding the genetic basis of diseases are getting significant attention from the research 

community33-35, and finally we are witnessing a rapid acceleration in the use of genomic 

information in patient care. We believe our proof-of-concept platform is the first of its kind and 

can greatly facilitate the future of precision medicine. 

 

Methods 

Encoding Binary files to DNA sequence 

The naive and the simplest way to convert binary sequence B = {0,1}* to DNA base stream D = 

{A,T,C,G}* is to encode two bits of B into one bit of D. Suppose, one can encode 00 to A, 01 to 

T, 10 to C, and 11 to G. Another approach is phase-change encoding which takes the run-length 

of consecutive 0’s and 1’s into account, and was used in the Microvenus project.36 In run-length 

encoding, runs of 0’s and 1’s are stored as a single data value and count, rather than as the 

original run. 
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We developed a novel binary to DNA base conversion approach especially targeted for binary 

streams resulting from medical imaging files (DICOM). We observed the presence of long runs 

of 0’s in the binary streams of DICOM files which would be converted into long sequence of A’s 

in the usual encoding.  Such repetitions are problematic for synthesizing, and are more likely to 

be misread by DNA-sequencing machines, leading to errors when reading the information 

back.37 

Although homopolymers of short length does not make much problem in Illumina sequencing 

platforms, sequences of high or low GC content is difficult to sequence correctly.1 And higher 

frequency of A’s, resulting from long streams of 0’s, will decrease the GC content of the entire 

string.  

Although we observed the presence of long runs of 0’s in the binary stream of DICOM files, the 

frequency of shorter runs of 0’s was much higher than the longer runs. For shorter runs of 0’s, 

the run-length based approaches give poorer compression than the naïve encoding. So we came 

up with an approach that does the naive encoding for shorter runs and run-length encoding for 

larger runs. We introduced a hyper parameter, which we call ‘shift’, to serve this purpose. We do 

not take the long runs of 1’s into account as they are not usually prevalent in the binary streams 

of DICOMs due to their particular structures and grayscale values (see Figure S1 in 

supplementary materials SM1). 

 

We read the binary bit stream by 2 bits at a time as the number of bits is always even (1 byte = 8 

bits).  We denote by run-length the length of a run of consecutive 0’s. If the run-length >= shift 

+ 2, we use run-length encoding; otherwise we use the naive encoding technique. Therefore, 

during the decoding step, we need to correctly differentiate the run-length encoded base streams 

from the base streams that have been encoded using the naive mapping. We use a prefix 

comprising a number of consecutive A’s equal to shift/2 +1 to mark the start of run-length 

encoding, and a single ‘A’ as a suffix to denote the end of the run. We store the run-length 

information between the prefix and the suffix by encoding the value of difference. We propose a 

new mapping technique to encode difference using DNA bases. Since ‘A’ is used as a suffix for 

the run-length information, the run-length information must be encoded with a ternary code that 

uses the remaining DNA symbols (C, G and T). One way to encode the difference would be 

converting difference/2 to ternary numbers (base 3), and finally mapping each of the base 3 digits 

(0, 1 and 2) to a different DNA base (T, C and G). However, by encoding difference using this 

approach, ternary numbers starting with 0 (e.g, 0 (T), 00 (TT), 000 (TTT), 010 (TCT), etc.) will 

never appear. In general, for n bits we should be able to use 3n permutations, but using simple 

base 3 conversion would only utilize 2*3n-1 permutations. Therefore, we have developed an 

efficient conversion technique (shown in Table S2 in supplementary materials SM1) which 

would utilize all possible permutations of the available three symbols, and thereby require fewer 

bits than the simple base 3 encoding described above. 
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Our technique is an incremental mapping between DNA bit sequence and the value of difference. 

It is designed in a way that enables us to represent run-lengths using minimum number of DNA 

bits possible.  We developed a DNA base based number system accordingly. Suppose, ‘T’, ‘C’, 

and ‘G’ represent 1, 2 and 3, respectively. Then the numbers using only these characters are as 

follows: 1 (T), 2 (C), 3 (G), 11 (TT), 12 (TC), 13 (TG), 21 (CT), 22 (CC), and so on.  The value 

of difference starts with 2 and is increased by 2 as we read two DNA bases at a time. Note that 

there is no DNA base mapping for the starting value (2) of difference. See supplementary 

materials SM1 for additional details.  

 

 

Converting the dictionary to DNA bases 

For each stored file, we create an entry in the in-DNA dictionary which comprises the following 

attributes: 

 Name: name of file (f). 

 Type (t) (DICOM or non-DICOM): to select decompression procedure based on the type 

of the files. 

 Transfer Syntax (s) (implicit or explicit): this is relevant only for DICOM files as lossless 

DICOM file decompression using j2k method requires transfer syntax. 

 Genomic locations (L): a sorted list of all the chunks (with respect to the starting 

positions) which contain the sequence data of a particular file.  

The dictionary of a genome itself is stored in the genome along with the actual files so that we do 

not have to manage separate files for meta data. After encoding a dictionary entry to a DNA base 

stream and storing it to the genome sequence, we need to be able to distinguish between various 

components (e.g, name, type, transfer syntax, genomic locations etc.) so we can read them back 

and decode the dictionary entry correctly. Therefore, we put some special markers in between 

these components. Note that these markers have to be encoded as DNA bases as well. DNA 

bases used to encode the markers should consequently be distinguishable from the encoded DNA 

base streams of the various dictionary components. Moreover, markers may be required between 

different dictionary entries to enable identification and reading of the individual entries correctly. 

Considering all these challenges, we have designed an efficient dictionary to DNA base stream 

conversion procedure which allows us to distinguish between individual dictionary entries and 

their components so we can decode them without any loss of information and ambiguity. 

For a dictionary entry e with four components (f, t, s, L), we write them (starting from the tail 

end of the genome and progressing towards the front end) in the following order: f, s, L and t. We 

first describe the encoding technique of the file name (f) and the transfer syntax (s). The first 32 

ASCII characters (out of 256) never appear in a file name as they are various control characters. 
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These 32 characters have 0’s in the three most significant positions in an 8-bit binary 

representation, which allows us to use “000” as a part of a marker. We add one more bit to 

incorporate the transfer syntax as well. That means, we use 0000 (AA) to denote the end of the 

file name as well as to denote the implicit transfer syntax, and use 0001 (AT) to denote the end 

of a file name and explicit transfer syntax. These two markers will not appear in the DNA base 

streams of the file names, and can be used to not only mark the end of the file name, but denote 

the transfer syntax as well. 

We now describe the process for encoding L (genomic locations) and t (file type) of a dictionary 

entry. Let L be a set {c1, c2, c3, …, ck} of chunks in the genome sequence that make up a 

particular EHR. Here a chunk ci is identified by its start position (n1) and size (n2). Note that n1 

and n2 are integers and so they do not contain any character other than 0 ~ 9. 

We represent each digit (0 ~ 9) by four bits and encode them into DNA base pairs as shown in 

Table S1 in SM1. We encode 00 by A, 01 by T, 10 by C and 11 by G. As already mentioned, the 

encoding to DNA bases is from right to left as as dictionary entries are written from the tail end 

of the genome, progressing towards the front. For a number n = dkdk-1…d2d1 with k digits, we 

start encoding and writing the digits into the genome sequence from the most significant bit (dk) 

and progress towards the least significant bit (d1). The corresponding DNA base pairs (as shown 

in Table 3) are appended from right to left. In this way, as the symbols are read back from right 

to left, they will be decoded in the appropriate order. For example, let n = 381. This will be 

encoded (starting from the most significant bit) as “TAACGA”. Therefore, while reading them 

back from right to left, we will have “AGCAAT” which will be decoded to 381 (considering two 

characters at a time) according to the example mapping.  

Table 3: Mapping of numerical digits to DNA bases in dictionary to DNA base encoding. 

The base corresponding to the left 2 bits goes to the right. For example, for the digit 2, binary 

bits are 0010. Left 2 bits (00) map to ‘A’ and the right 2 bits (10) map to ‘C’. Now ‘A ‘goes to 

the right of ‘C’, i.e. final 2-length base string for digit 2 is ‘CA’. 

Digit Binary Base 

0 0000 AA 

1 0001 TA 

2 0010 CA 

3 0011 GA 

4 0100 AT 

5 0101 TT 

6 0110 CT 

7 0111 GT 

8 1000 AC 

9 1001 TC 
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There are 24= 16 possible combinations of length four, of which only 10 combinations have been 

used in representing ten digits (see Table S3). The six remaining combinations: 1010 (CC), 1011 

(GC), 1100 (AG), 1101 (TG), 1110 (CG), and 1111 (GG) may be used for marking the 

boundaries between various components and individual dictionary entries. Note that no digit in 

Table 3 starts with a ‘G’ (from right to left), and therefore we use ‘G’ as a separator to mark the 

end of a number n. 

There are two combinations – 1010 (CC) and 1011 (GC) – that are unused in the encoded DNA 

base stream of L. We utilize these two combinations to mark the end of an entry e as well as to 

denote the file type t (DICOM and non-DICOM). For a DICOM file, CC may be used to mark 

the end of L, and GC may be used for non-DICOM files. Thus, by carefully designing the 

encoding techniques for various components of a dictionary entry and defining the order of 

encoding them, it is possible to distinguish between different components of a dictionary entry as 

well as the boundaries between individual entries without any ambiguity and loss of information. 

Figure 4 shows an example of a dictionary entry and the corresponding DNA base stream 

resulted from our encoding technique.  

 

Figure 4: Encoding of a dictionary entry to DNA bases. (a) A dictionary entry with four 

components (name, type, transfer syntax and genomic locations). (b) Encoded DNA bases of this 

entry. We use 0001 (AT) to denote the end of the file name as well as the implicit transfer 
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syntax, and CC is used to denote the end of the entry as well as the file type. In the DNA base 

stream of genomic locations (L), the G’s that are in the odd positions (marked in red) serve as 

markers to separate two numbers. 

 

 

 

 

 

 

Data Availability 

Data supporting the findings of this study are available at https://git.io/fhIDE. 

Code Availability 

The eMED-DNA software is freely available at https://github.com/jakariamd/eMED-DNA. The 

code is available on request from the authors. 
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Supplementary Materials for 

eMED-DNA: An in silico operating system for clinical medical data 

storage within the human genome 

 

These supplementary materials present additional details about various computational techniques 

and algorithms used in eMED-DNA (Section 1), and also present additional discussion (Section 

2). 
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1. eMED-DNA 

eMED-DNA is an in silico integrative pipeline which incorporates compression at different 

levels, a novel Binary-to-DNA base conversion technique, and an in-DNA file management 

system to manage the DNA base streams resulting from the electronic health records (EHRs) and 

the corresponding dictionary entries within ones genome sequence. We proposed customized 

algorithms and computational techniques for each of these key components of eMED-DNA.  

1.1 Compressing DICOM files 

In order to be able to accommodate large scale EHRs, we compress the medical records before 

encoding them as nucleotide bases. In particular, as DICOM files are the most space consuming 

and have special file formats, we proposed customized compression techniques suitable for 

DICOM files. We performed an extensive evaluation study to identify the techniques suitable for 

DICOM and finally, we customize the existing techniques so that they perform well on medical 

imaging files.  

Compressing medical imaging files is challenging. The American College of Radiology (ACR) 

does not provide clear recommendation for compression.1 The US FDA does not permit 

compression storage or transmission of breast imaging. For other categories of image, we should 

carefully choose the type of image compression so that we do not loss any information and do 

not violate the DICOM standards. So, if there is a viable need for compression due to limited 

storage capacity, we should stick to lossless compression techniques.  

There are many algorithms to compress binary data. But we only tried those which are 

recommended by DICOM standard.2 Current DICOM standard supports RLE3 (Run Length 

Encoding), Deflate4, JPEG5, JPEG LS6, and JPEG 20007 compression techniques. Among these, 

JPEG is lossy while RLE, Deflate, JPEG LS and JPEG 2000 are lossless compression 

techniques. With an extensive evaluation study on various lossless compression techniques 

recommended by DICOM standards (results not shown), we decided to use JPEG 2000 for our 

first level of compression, i.e., compressing the binary data of the digital EHR file. 

 

1.2 Compressed binary files to DNA sequence 

We developed a new technique for encoding binary data to DNA base sequence (described in 

Methods section of this paper). In this section, we present additional details, examples and 

supporting experimental results. 
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Figure S1: Histograms showing the frequencies of the pixel grayscale intensity values (0 ~ 

255) for four sample compressed DICOM files (top two plots are for RGB and the bottom two 

are for monochrome files). These files are available at: https://goo.gl/ruzozJ. All of these plots show 

right-skewed distribution. The frequencies of smaller values are much higher which reflects the 

presence of long runs of 0 in the binary stream of the Dicom files. This is due to the larger darker 

portions in DICOM files which have grayscale value of 0, i.e., RGB value of (0, 0, 0).  
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Table S1: A naive binary bits to DNA base ({0, 1}* → {A, T, C, G}*) encoding. Each of the 

four DNA bases can be represented by 2 binary bits. There are 4! = 24 such naive mappings. The 

table shows a mapping that we used for encoding compressed (non-DICOM) EHRs and the 

dictionary entries. 

Bits Base 

00 A 

01 T 

10 C 

11 G 

 

Table S2: A novel run-length encoding of binary bits to DNA base sequence conversion. We 

show the mapping for values up to 76. This mapping allows us to utilize all possible 3n 

permutations of three DNA bases. 

DNA bits Run length – 

shift 

DNA bits Run length – 

shift 

DNA bits Run length – 

shift 

 - 2 TTT 28 CCC 54 

T 4 TTC 30 CCG 56 

C 6 TTG 32 CGT 58 

G 8 TCT 34 CGC 60 

TT 10 TCC 36 CGG 62 

TC 12 TCG 38 GTT 64 

TG 14 TGT 40 GTC 66 

CT 16 TGC 42 GTG 68 

CC 18 TGG 44 GCT 70 

CG 20 CTT 46 GCC 72 

GT 22 CTC 48 GCG 74 

GC 24 CTG 50 GGT 76 

GG 26 CCT 52 ... ... 

 

 

By analyzing the mapping table (Table S2) we can see that if difference = run-length – shift is 

within the range [3n +1, 3n+1 -1], we need n DNA bits to encode this difference value. Our 

encoding algorithm computes the value of n and converts (difference - 3n+1) /2 using a base-3 

conversion and encodes the resulting ternary (base-3) number of n digits using a simple mapping 
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as follows: {0 → T, 1 → C, 2 → G}. For example, let the value of difference be 22. This value 

(22) is within the range [32 +1, 32+1 -1], meaning two DNA symbols are required to encode 

difference. A base 3 conversion of (22 – (32 +1))/2 = 6 is 20 [(6)10 = (20)3]. Finally, we map this 

to DNA bases (20 → GT) using the simple mapping mentioned above. Note that a direct base-3 

conversion of this value (22) would require 3 DNA bits (CTG) as (22/2)10 = (11)10 = (102)3, 

whereas our method takes only 2 DNA bits.   

 

This encoding technique not only offers higher storage capacity, it also allows us to design a 

lossless decoding algorithm. Our decoding technique reads the nucleotide base stream character 

by character. Unless the conditions for transitioning to run-length decoding are met, each 

character of the nucleotide sequence is simply mapped to two binary bits. However, in order to 

monitor for a transition marker, the decoding algorithm checks whether each ‘A’ is part of a run-

length prefix by checking whether there are enough consecutive ‘A’s to be a prefix of run-length 

encoding. If a transition marker/prefix is identified, the DNA bases between the prefix and the 

suffix are read. Let the number of DNA bases in between the prefix and the suffix be len. The 

corresponding encoded value can be determined using the mapping (T → 0, C → 1, G → 2) 

followed by a base-3 to base-10 conversion. Next, the difference can be calculated as follows: 

val*2 + (3n+1) = difference.  Finally, a number of ‘0’s equal to difference + shift is added to the 

decoded binary bit stream. Suppose, the string between suffix and prefix is ‘GT’, then len equals 

2 and val equals (20)3. After a base-10 conversion, val becomes 6 (since (20)3 = (6)10). So, a 

number of ‘0’s equal to 6*2 + shift + 32 +1 or 22 + shift is added to the binary bit stream. The 

pseudo codes for encoding and decoding are shown in Fig. S2 and Fig. S3, respectively.   
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Figure S2: Binary sequence to DNA base stream encoding algorithm. 
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Figure S3: DNA base stream to binary sequence decoding algorithm. 

 

Using this encoding and decoding techniques, we can achieve better compression ratio than the 

naive approach for most of the DICOMs that we tested. We evaluated the performance of our 

method on a CT (computerized tomography) scan of the skull consisting of 262 DICOM files 

and varied the values of the hyper parameter ‘shift’ (see Fig. S4). The average difference 

between our technique with shift = 16 and the naive method is around 650 DNA bases. 

Therefore, for the single CT scan we analyzed, the difference is around one hundred and seventy 

thousand DNA bases (262*650 = 1,70,300) which is clearly a substantial improvement. Thus our 

technique improves upon the naive mapping, especially when there is substantial amount of long 

runs of 0’s, which makes it suitable for DICOM files like CT scans. Further extensive evaluation 

on various types of DICOM files is required to better assess the performance of this encoding 

technique and identify a suitable value for the shift parameter. 
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Figure S4: Comparison between our encoding technique (with various shift values) and the 

naive encoding (without shift parameter). We show the average lengths of the encoded DNA 

base streams on a single CT scan consisting of 262 DICOM files for the naive encoding and our 

technique with various values of shift (4, 6, 8, 10, 12, 14, 16, 18 and 20). The dataset contains 

262 DICOM files in a CT scan of the skull collected from: 

https://wiki.cancerimagingarchive.net/display/Public/APOLLO-1-VA. 

 

1.3 Compressing encoded DNA sequence 

Once the mapping from binary streams to DNA base streams is done, we further compress the 

resulting DNA stream to achieve higher storage capacity within the DNA sequence. We 

performed an extensive evaluation study on various general purpose (Huffman9, Deflate4, RLE3, 

zip, 7zip10, bzip211, gzip12, ANS13 etc.) as well as specialized compression techniques 

(BioCompress-I14, II15, DNACompress16, DNABit17, GenCompress18 etc.) for DNA sequence 

(results not shown). Considering the compression ratio, running time and ease of use of various 

techniques, we decided to use Deflate in eMED-DNA. 
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1.4 Placement of the dictionary in the genome sequence 

As we have already mentioned, we start storing the dictionary (encoded as DNA stream) from 

the tail end of the genome. This is opposite to the direction of storing EHR files. If dictionary 

information were stored alongside the EHR files (from the same end of the genome), dictionary 

base streams would be interleaved with the EHR files. As dictionary entries produce extremely 

shorter base sequences than EHR files, the deletion of a file and its corresponding dictionary 

entry would potentially create small sized free chunks that would be available for storing future 

EHR files. The EHR files spread over these small free chunks would be fragmented, resulting in 

more meta information to store, which in turn results into larger dictionary entries. Storing the 

dictionary from the opposite end of a genome may address these problems.   

Free List  

Throughout an entire user session, we maintain a data structure called free list to keep track of 

the currently available free chunks (i.e., the genome space that are not currently being occupied 

with EHR files or the dictionary). Each user session starts with initializing the dictionary (by 

reading the in-DNA dictionary entries from previous user sessions) and constructing the free 

genome space accordingly.  

1.5 File Operations 

We now briefly describe various file operations within the genome sequence. Each user session 

of eMED-DNA starts with initializing the dictionary (by reading the in-DNA dictionary entries) 

and constructing the free list accordingly. eMED-DNA supports three basic file operations: 

insertion, retrieval and deletion. 

Insertion 

New EHR files may be added to a genome. eMED-DNA converts each input file to nucleotide 

base sequence according to the pipeline described above. For each EHR file, traversing the free 

list from front to end, the system makes a temporary list of chunks required to accommodate the 

encoded DNA base stream of that file. Next, a dictionary entry is formed with these locations 

and other meta data, and converted into DNA base stream. The DNA base stream of the 

dictionary entry is then inserted into the in-DNA dictionary and the DNA base streams of the 

EHR files are written into appropriate genomic locations, given that the genome has sufficient 

free space to accommodate these DNA base streams. 

Retrieval 

eMED-DNA can provide a list of the files that have already been stored in the genome sequence 

by acquiring necessary information from the in-DNA dictionary. eMED-DNA provides a 

graphical user interface so a user can select a file from this list to view or save a copy to the 
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user’s computer. Once a file has been selected to view or save, eMED-DNA looks up the 

corresponding dictionary entry, obtain the genomic locations where this file has been stored and 

read the encoded DNA base sequences accordingly. Finally, eMED-DNA decodes the DNA base 

stream into a binary base stream by following a series of decompression and reverse mapping 

steps. 

Deletion 

With well-designed data structures, and EHR and dictionary placement techniques, removing a 

file from the genome becomes very straight forward. Removing an EHR file may comprise 

merely removing the corresponding entries in the in-DNA dictionary and updating the free list 

accordingly. All the entries after the deleted one are shifted by the size of the deleted entry, in 

order to mitigate fragmentation (similar to the “defragment” operation in an operation system).  

1.7 Additional Results 

Tables S3 and S4 show the distributions of the encoded DNA base streams over various chunks 

of non-coding regions for some representative EHR files. 

Table S3: Distribution of the encoded DNA base stream of a sample DICOM file over 

various non-coding regions using eMED-DNA. This file requires 70 chunks of non-coding 

regions of various sizes to fit the 483,610 encoded bases. The sample file is available at 

https://git.io/fhIDq. 

File Name: US-PAL-8-10x-echo.dcm (Echocardiogram) 

File Size: 473 KB (483610 bytes) Encoded DNA Stream Length: 2104304 bases 

Location in Genome (70 chunks) 

Chunk 

No 

Chromosome 

No 

Chunk 

Start 

Position 

Chunk 

Size 

Chunk 

No 

Chromosome 

No 

Chunk Start 

Position 

Chunk 

Size 

1 1 0 69091 36 1 1540454 1219 

2 1 70009 112384 37 1 1574870 4886 

3 1 184159 764 38 1 1580047 17964 

4 1 200323 250417 39 1 1600097 15318 

5 1 451679 234037 40 1 1630611 1484 

6 1 686655 238225 41 1 1724325 513 
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7 1 959310 1277 42 1 1745993 5239 

8 1 965716 781 43 1 1780458 4827 

9 1 982094 16868 44 1 1891118 23709 

10 1 1000173 965 45 1 1917297 293 

11 1 1014542 5581 46 1 1919274 2677 

12 1 1056119 14847 47 1 2003838 15486 

13 1 1074308 7510 48 1 2030752 19718 

14 1 1116362 57522 49 1 2212721 15974 

15 1 1197936 5572 50 1 2310120 11133 

16 1 1206692 4634 51 1 2391708 67 

17 1 1214139 2769 52 1 2413798 12182 

18 1 1232032 233 53 1 2505531 3002 

19 1 1235042 7404 54 1 2526601 2144 

20 1 1246723 7186 55 1 2530246 25393 

21 1 1273886 6550 56 1 2565383 21108 

22 1 1292030 346 57 1 2632991 2985 

23 1 1324692 64 58 1 2801722 219761 

24 1 1328898 2416 59 1 3022904 46264 

25 1 1349351 3338 60 1 3438622 15804 

26 1 1361778 11952 61 1 3481114 8806 

27 1 1375496 10215 62 1 3611496 13506 

28 1 1399339 2569 63 1 3630128 639 

29 1 1407314 11106 64 1 3736202 16196 

30 1 1421770 4358 65 1 3771646 1142 

31 1 1427788 7073 66 1 3775983 2575 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 23, 2019. ; https://doi.org/10.1101/814830doi: bioRxiv preprint 

https://doi.org/10.1101/814830


32 1 1442883 6806 67 1 3796505 15576 

33 1 1470159 1610 68 1 3857215 52 

34 1 1497849 14302 69 1 3885430 3695 

35 1 1534688 486 70 1 3900294 431709 

in-DNA Dictionary Entry 

Length: 105 bases Location in Genome 

(1 chunk) 

Chromosome No Chunk Start Position Chunk 

Size 

24 57227310 105 

 

Table S4: Distribution of the encoded DNA base stream of two clinical notes over various 

non-coding regions using eMED-DNA. Each of these two files requires two chunks (one for 

the note itself and the other one for the corresponding dictionary entry) of non-coding regions to 

fit the encoded bases. These notes were obtained from MIMIC-III database19
.  

File Name NOTEEVENTS-00002.txt NOTEEVENTS-00007.txt 

File size 2.21 KB (2264 bytes) 1.77 KB (1813 bytes) 

Encoded DNA 

Stream Length 

5060 bases 4064 bases 

Dictionary entry 

length 

107 bases 107 bases 

Location in 

genome 

Chromosome 

No 

Chunk 

Start 

Position 

Chunk 

Size 

Chromosome 

no. 

Chunk 

Start 

Position 

Chunk 

Size 

EHR file  

(1 chunk) 

1 8111079 5060 1 8116139 4064 

Dictionary entry 

(1 chunk) 

24 57227074 107 24 57226967 107 
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2. Additional Discussion 

This study presents a proof-of-concept for archiving medical records within the human genome 

sequences. This integration may last as long as thousands of years if preserved under appropriate 

environment using DNA storage, and thus will contribute towards the advanced research in 

personalized medicine and future healthcare system.21,22 In addition, our study makes significant 

contribution towards in silico DNA storage technology by introducing several novel techniques 

in coding theory and operating systems. Our proposed technique for binary-to-DNA conversion 

is especially tailored for DICOM files but can be used for any digital data.  

eMED-DNA provides random access to the records stored in the genome sequence, and may 

offer the medical practitioners a one-stop solution for easy and efficient storage and 

management of both genotypes and phenotypes of the patients without having to deal with 

heterogeneous sources, types and standards of EHR data. eMED-DNA is expected to facilitate 

the transfer of medical records (along with the genome sequences) across various medical 

institutions as it can convert and store heterogeneous data into DNA bases and store them as 

simple computer files.  

The ultimate goal of this framework is managing genotype-phenotype information of a patient’s 

lifetime in his DNA sequence. Therefore, we proposed compression techniques especially 

customized for medical records to accommodate the large amount of EHRs within the limited 

space available in a genome sequence. However, current compression ratio may not be sufficient 

to achieve the ultimate goal. Apart from developing advanced compression techniques, we can 

consider archiving large EHRs in a secured storage platform (for example, cloud storage) and 

store the link to the remote server along with necessary credentials in the genome sequence so 

that eMED-DNA can retrieve medical information from remote storage media. 

This sort of initiative requires strict policies for privacy issues, and appropriate computational 

techniques for preventing any possible breach of privacy and information loss to unauthorized 

parties. Appropriate private key based cryptographic algorithms may be incorporated to eMED-

DNA so that in case someone gets a genome sequence with encoded medical records, he will not 

be able to retrieve the information by using eMED-DNA unless he receives the private key from 

the original source. In addition to the encryption, strong identity authentication is required which 

guarantees that the sender and recipient of healthcare data, encoded in genomic sequence, are in 

fact who they claim to be. 

In addition to storing and managing EHRs within ones genome sequence and thus facilitating 

genomic medicine, it would be interesting to add some other applications (relevant to genomic 

medicine) in eMED-DNA. For example, genome wide association study (GWAS) considers all 

the variants in the whole genome to see if any variant is associated to a particular trait or 

phenotype. The impact of GWAS in medical science could potentially be substantial as it 

contributes towards understanding the genetic factors contributing to variation in traits and 
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diseases. Therefore, options for assisting GWAS by leveraging the genomic data and clinical 

phenotypes in eMED-DNA will be beneficial. 

We believe eMED-DNA will have immediate positive impact in advanced medical research and 

DNA storage technologies. This will encourage the scientists to develop new architectures or 

enhance the ones presented in this study for better integration of phenotypic and genomic data. 

We believe this study will help the scientists to appreciate the need for integrating medical 

records with genomic data, and drive them towards utilizing this sort of frameworks for precision 

medicine. 
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