1 Research Article

2	Correlation between increased atrial expression of genes related to fatty acid
3	metabolism and autophagy in patients with chronic atrial fibrillation
4	
5	Yasushige Shingu ¹ , Shingo Takada ² , Takashi Yokota ^{2,*} , Ryosuke Shirakawa ² , Akira
6	Yamada ³ , Tomonori Ooka ¹ , Hiroki Katoh ⁴ , Suguru Kubota ¹ , and Yoshiro Matsui ¹
7	
8	¹ Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and
9	Graduate School of Medicine, Hokkaido University, Sapporo, Japan; ² Department of
10	Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine,
11	Hokkaido University, Sapporo, Japan; ³ Department of Cardiovascular Surgery, Teine
12	Keijinkai Hospital, Sapporo, Japan; ⁴ Emergency and Critical Care Center, Hokkaido
13	University Hospital, Sapporo, Japan
14	
15	*Corresponding author: Dr. Takashi Yokota, Clinical Research and Medical
16	Innovation Center, Hokkaido University Hospital, Kita-14, Nishi-5, Kita-Ku, Sapporo
17	060-8648, Japan. Tel: +81-11-706-6001; Fax: +81-11-706-7613. Email:
18	t-yokota@med.hokudai.ac.jp
19	
20	Word count: 3,373 words, Number of Tables and Figures: 9
21	Short title: Fatty acid metabolism & autophagy in AF
22	Grants: This study was supported by KAKENHI Grant-in-Aid for Young Scientists (B)
23	(#JP24791453 to Y.S.), the Cardiovascular Research Fund (to Y.S.), and the Center of
24	Innovation Program from the Japan Science and Technology Agency (#JPMJCE1301 to
25	Т.Ү.).
26	

27 Abstract

28Atrial metabolic disturbance contributes to the onset and development of atrial 29fibrillation (AF). Autophagy plays a role in maintaining the cellular energy balance. We 30 examined whether the altered atrial expression of genes related to fatty acid metabolism 31is linked to that related to autophagy in chronic AF. Right atrial tissue was obtained 32during heart surgery from 51 patients with sinus rhythm (SR, n=38) or chronic AF 33 (n=13). Preoperative fasting serum free-fatty-acid levels were significantly higher in the AF patients. The atrial gene expression of fatty acid binding protein 3 (FABP3), which 3435 is involved in the cells' fatty acid uptake and intracellular fatty acid transport, was 36 significantly increased in AF patients compared to SR patients; in the SR patients it was 37positively correlated with the right atrial diameter and intra-atrial EMD, parameters of 38 structural and electrical atrial remodeling that was evaluated by an echocardiography. In 39 contrast, the two groups' atrial contents of diacylglycerol (DAG), a toxic fatty acid metabolite, were comparable. Importantly, the atrial gene expression of 40 41microtubule-associated protein light chain 3 (LC3) was significantly increased in the AF patients, and autophagy-related genes including LC3 were positively correlated with the 42atrial expression of FABP3. In conclusion, in chronic AF patients, the atrial expression 43 of FABP3 was upregulated in association with autophagy-related genes without altered 44atrial DAG content. Our findings may support the hypothesis that dysregulated cardiac 45 46 fatty acid metabolism contributes to the progression of AF and induction of autophagy has a cardioprotective effect against cardiac lipotoxicity in chronic AF. 474849 **Key words**: atrial fibrillation; atrial remodeling; autophagy; fatty acid metabolism;

50 lipotoxicity

51

52 Introduction

53	Atrial fibrillation (AF) is the most common cardiac arrhythmia, and its presence
54	is associated with increased risks of death, heart failure, and stroke [1-3]. With the
55	current increased prevalence of AF, the prevention of AF is important not only for
56	public health but also to reduce the associated economic burden [4]. The risk factors for
57	AF are diverse, including higher serum levels of free fatty acids (FFAs), obesity,
58	hypertension, inflammation, and oxidative stress [5-7]. The mechanisms underlying the
59	onset and development of AF have not been fully elucidated.
60	The pathophysiology of AF is complex and involves electrical, structural,
61	contractile, and neurohormonal remodeling [8, 9]; metabolic disturbance in the atrial
62	cardiac muscle is a recent focus of AF research, as the heart has a very high energy
63	demand due to its organ-specific feature involving the constant activation of
64	mitochondrial oxidative phosphorylation. In particular, fatty acids are the major fuel for
65	the heart; their use depends on their uptake into the cells, transport from the cytosol into
66	the mitochondria, and β -oxidation in the mitochondria. Prior research has shown that an
67	elevated level of circulating FFAs is a strong risk factor for AF and AF-related
68	stroke [6, 10] and can be a trigger of cardiac lipotoxicity, which is defined as the excess
69	accumulation of toxic fatty acid metabolites such as diacylglycerol (DAG) in the heart.
70	This may occur when the influx of FFAs exceeds the intracellular fatty acid oxidation,

which leads to cardiac dysfunction, cardiac remodeling, and arrhythmias [11]. However,

- 72 it is still unclear how metabolic disturbances including abnormal fatty acid metabolism
- 73 contribute to the development of AF.
- Autophagy, the process of the degradation of intracellular components (e.g.,
- 75 proteins) in lysosomes, plays an important role in cellular homeostasis via cellular
- 76 quality control. Autophagy was also shown to contribute to the cellular energy balance,
- in particular through a mechanism of fatty acid metabolism termed "lipophagy" (the
- degradation of excess lipids by autophagy) and the degradation of lipid stores in the
- cells [12]. Accordingly, autophagy may regulate the fatty acid metabolism in
- 80 cardiomyocytes. Alterations of the autophagy in the atrial muscles of patients with
- 81 persistent AF [13, 14] or post-operative AF have been reported [15]. Although it is still
- 82 controversial whether the induction of autophagy has a cardioprotective or detrimental
- 83 effect in AF, it is possible that autophagy is involved in metabolic remodeling in the
- 84 atrium in chronic AF patients.

We conducted the present study to determine: (1) whether the expression of genes related to fatty acid metabolism and autophagy are altered in the atria of patients with chronic AF, and (2) whether changes in these gene expression patterns are correlated with each other. We used human atrial tissue excised from patients during

- 89 cardiac surgery, and our findings provide new insight into the pathophysiology of AF,
- 90 focusing on fatty acid metabolism and autophagy in the human atrium.

91

93 Materials and Methods

94 **Patients**

95	This study was conducted at Hokkaido University Hospital and Teine Keijinkai
96	Hospital and included 51 consecutive patients: 38 with sinus rhythm (SR) and 13 with
97	chronic AF who underwent cardiovascular surgery between 2013 and 2019 at either of
98	these hospitals. All of the patients were Japanese. The patients with SR in the present
99	series partly overlap with those of our recently published report [16].
100	After the establishment of a cardiopulmonary bypass (10 min after the infusion of
101	heparin 300 IU/kg), right atrial myocardial tissue (approx. 100 mm ²) was excised from
102	the right atrial incision site or the insertion point of a drainage cannula. The tissue was
103	frozen and stored at -80°C until analysis.
104	Type 2 diabetes was defined as a fasting glucose level \geq 7.0 mmol/L and/or taking
105	antidiabetes medications. Coronary artery disease was evaluated by coronary
106	angiography, and stenosis \geq 75% was defined as significant; a patient with a history of
107	percutaneous coronary intervention was also regarded as having coronary artery disease.
108	The study protocol was approved by the Ethics Committees of Hokkaido
109	University Hospital and Teine Keijinkai Hospital and performed according to the
110	Declaration of Helsinki. Written informed consent was obtained from each patient

111 before the surgery. This study was registered in the UMIN Clinical Trials Registry:

- 112 UMIN000012405 and UMIN000018137.
- 113

114 Transthoracic echocardiography

115	A Vivid Seven system (GE/Vingmed, Milwaukee, WI, USA) with an M3S (2.5-
116	3.5 MHz) transducer, an Aplio system (Toshiba Medical Systems, Tokyo) with a
117	2.5-MHz transducer, or a Philips system (Philips Ultrasound, Bothell, WA) with a
118	2.5-MHz transducer was used for the pre-operative echocardiography. The left
119	ventricular and atrial diameters were measured from the parasternal long-axis view. The
120	right atrial diameter (the largest minor-axis diameter in the four-chamber view) was
121	obtained at end-systole [17].
122	The electromechanical delay (EMD) of the right atrium was assessed in all but
122 123	The electromechanical delay (EMD) of the right atrium was assessed in all but one of the SR patients as a time interval (T1) from the beginning of the P-wave on
123	one of the SR patients as a time interval (T1) from the beginning of the P-wave on
123 124	one of the SR patients as a time interval (T1) from the beginning of the P-wave on surface ECG to the beginning of the late diastolic wave (A') of the tricuspid annulus
123 124 125	one of the SR patients as a time interval (T1) from the beginning of the P-wave on surface ECG to the beginning of the late diastolic wave (A') of the tricuspid annulus [17]. T2 was the time interval from the beginning of the P-wave on the surface ECG to

129	regurgitation	jet area-to-left atrium ratio ((mild, <20%)	; moderate	, 20%–40%;	severe,

130 >40%).

131	Tricuspid regurgitation was graded using the regurgitation jet area (mild, <5 cm ² ;
132	moderate, 5–10 cm ² ; severe, >10 cm ²). Aortic stenosis was defined using the valve area
133	(mild, >1.5 cm ² ; moderate, 1.0–1.5 cm ² ; severe, <1.0 cm ²). Aortic regurgitation was
134	determined using a combination of the jet width/outflow tract, the pressure half-time,
135	and the diastolic reverse flow at the abdominal aorta (mild, moderate, severe) [18].
136	
137	Blood biochemistry
138	Blood was collected from each patient early in the morning after a 10-hr fast
139	within 2 days before surgery. The blood glucose, hemoglobin A1c, insulin, and FFA
140	levels were measured by an enzymatic reaction involving glucose oxidase,
141	high-performance liquid chromatography, an enzyme immunoassay, and the enzymatic
142	method, respectively. Total cholesterol and triglycerides were assessed by enzymatic
143	methods. The plasma levels of B-type natriuretic peptide (BNP) were evaluated by a
144	chemiluminescent enzyme immunoassay.
145	
146	The atrial expression of genes related to fatty acid metabolism

147 and autophagy

148	The atrial expression of the following genes related to fatty acid metabolism and
149	autophagy was determined by reverse transcription-polymerase chain reaction
150	(RT-PCR): cluster of differentiation 36/fatty acid translocase (CD36), carnitine
151	palmitoyltransferase 1B (CPT1B), fatty acid-binding protein 3 (FABP3),
152	autophagy-related gene 5 (ATG5), Unc-51-like kinase 1 (ULK1), Beclin-1 (BCLN1),
153	and microtubule-associated protein light chain 3 (LC3). Myocardial mRNA was isolated
154	from frozen tissue using a High Pure RNA Tissue Kit (Roche, Penzberg, Germany) and
155	was then reverse-transcribed into cDNA using a Transcriptor First Strand cDNA
156	Synthesis Kit (Roche).
157	The RT-PCR was performed using FastStart Essential DNA Probes Master
158	(Roche) and the Real-time Ready Assay (Roche Assay ID: CD36, 144833; CPT1B,
159	126501; FABP3, 118811; ATG5, 125999; ULK1, 109914; BCLN1, 100115; LC3,
160	144582; TBP, 143707). PCR amplification was then performed with a reaction volume
161	of 20 μ L using a LightCycler Nano (Roche) under the conditions specified by the
162	manufacturer. After the initial denaturation and activation of the enzyme for 10 min at
163	95°C, 45 cycles of denaturation at 95°C for 10 sec, and annealing and extension at 60°C
164	for 30 sec were performed. TBP (TATA-binding protein) was used as a reference gene,
165	as we confirmed that TBP is not influenced by the occurrence of AF.
166	

167 The atrial enzymatic activities of the mitochondrial TCA cycle

168 and fatty acid β-oxidation

169	We spectrophotometrically determined the activity levels of both citrate synthase
170	(CS), a key enzyme in the tricarboxylic acid (TCA) cycle, and β -hydroxyacyl CoA
171	dehydrogenase (β -HAD), a key enzyme in fatty acid β -oxidation, in the myocardial
172	samples as described [19]. Due to the lack of atrial muscle samples, these enzymatic
173	activities were measured in 20 of the 38 patients with SR and eight of the 13 patients
174	with AF.
175	
176	The atrial DAG content
177	Heart tissue was homogenized in 1.5 mL of methanol, followed by mixing with
178	2.25 mL of 1 M NaCl and 2.5 mL of chloroform. The mixture was centrifuged at 1,500
179	g for 10 min at 4°C, and the organic phase was dried. DAG was then detected with a
180	DAG assay kit (Cell Biolabs, San Diego, CA) following the manufacturer's instructions.
181	Due to the lack of atrial muscle samples, the atrial DAG content was measured in six

182 patients with SR and six patients with AF.

183

184 Statistical analyses

185	Values are presented as the mean \pm standard deviation (SD) or the median
186	(interquartile range [IQR]) as appropriate. We used Student's t-test for continuous
187	variables that are normally distributed and the Mann-Whitney U-test for other
188	continuous variables. The chi-square test or Fisher's exact test were used for categorical
189	variables. We conducted a Pearson's correlation analysis to determine linear
190	relationships between continuous variables. The statistical analyses were performed
191	using GraphPad Prism ver. 8 (GraphPad Software, San Diego, CA), and significance
192	was defined as p<0.05.

193

Results

Patient characteristics

197	The characteristics of the SR and AF patients are summarized in Table 1. The
198	median duration of AF was 12 years (range 1–16 years). Except for the use of
199	medications, all parameters including cardiovascular risk factors were comparable
200	between the two groups. The surgical procedures performed after the excision of atrial
201	specimens included aortic valve replacement in 30 cases, total arch replacement in eight
202	cases, coronary artery bypass grafting in 10 cases, aortic root replacement in six cases,
203	and mitral valve repair in 12 cases. Multiple procedures were performed in some
204	patients.
205	
206	Transthoracic echocardiography
207	As shown in Table 2 , the diameters of the left and the right atria were
208	significantly increased in the AF group. The left ventricular size (i.e., left ventricular
209	end-diastolic diameter [LVDd]) and the left ventricular systolic function (i.e., the
210	LVEF) were comparable between the two groups. Regarding valvular heart disease, the
211	grade of mitral regurgitation was higher in the AF group than in the SR group.
212	

The serum levels of FFA and the atrial expression of genes

related to fatty acid metabolism

215	The serum FFA levels were significantly higher in the AF group compared to the
216	SR group (719 ± 107 vs. 416 ± 37 μ mol/L, p=0.001, Fig 1).
217	The expressions of genes related to fatty acid metabolism in the right atrial
218	muscle are shown in Fig 2. The gene expression of CD36, which facilitates fatty acid
219	uptake across the plasma membrane, tended to be higher in the AF group than in the SR
220	group (Fig 2A). The gene expression of FABP3, which facilitates fatty acid uptake into
221	the cell and intracellular fatty acid transport, was significantly increased in the AF group
222	(Fig 2B), but there was no significant difference between the two groups in the atrial
223	expression of CPT1B, which is located on the outer mitochondrial membrane for fatty
224	acid transport into the mitochondria (Fig 2C).
225	In the SR patients, FABP3 gene was positively correlated with the right atrial
226	diameter (Fig 3A) and the intra-atrial EMD (Fig 3B), indicating that increased atrial
227	gene expression related to intracellular fatty acid transport was associated with
228	structural and electrical atrial remodeling.
229	
230	The atrial enzymatic activities of the mitochondrial TCA cycle

231 and fatty acid β-oxidation

Fig 4 illustrates the enzymatic activities related to the mitochondrial fatty acid

233	β -oxidation and TCA cycle in the right atrial muscle. The CS activity was comparable
234	between the SR and AF groups (Fig 4A), as was the β -HAD activity (Fig 4B).
235	
236	The atrial DAG content
237	Despite the higher serum levels of FFA and the upregulated atrial gene
238	expression of FABP3 in the AF group, there was no significant difference in the atrial
239	content of DAG, a major toxic fatty acid metabolite, between the SR and AF groups
240	(Fig 5).
241	
242	The atrial expression of autophagy-related genes
243	The gene expression of $LC3$ in the right atrial muscle was significantly higher in
244	the AF group than in the SR group (Fig 6D), but there was no significant difference in
245	other autophagy-related genes including ATG5, ULK1, and BCLN1 between the SR and
246	AF groups (Figs 6A–6C).
247	
248	The linear relationship between the atrial expression of
249	FABP3 gene and autophagy-related genes
250	The gene expression of FABP3 was positively correlated with autophagy-related
251	genes including LC3 gene in all patients (Fig 7). Similar correlations were observed

- between *FABP3* gene and autophagy-related genes even when they were analyzed
- separately for the SR group (*FABP3* and *ATG5*: r²=0.510, p<0.001; *FABP3* and *ULK1*:
- 254 r²=0.622, p<0.001; *FABP3* and *BCLN1*: r²=0.740, p<0.001; *FABP3* and *LC3*: r²=0.384,
- p < 0.001) and the AF group (*FABP3* and *ATG5*: $r^2=0.670$, p < 0.001; *FABP3* and *ULK1*:
- 256 r²=0.790, p<0.001; *FABP3* and *BCLN1*: r²=0.768, p<0.001; *FABP3* and *LC3*: r²=0.534,
- 257 p=0.005).
- 258

Discussion

261	Our findings demonstrated that the atrial expression of a gene involved in fatty
262	acid metabolism, FABP3, was upregulated in patients with chronic AF compared to the
263	SR patients. In the SR patients, the increased atrial expression of FABP3 was positively
264	correlated with the right atrial diameter and the intra-atrial EMD, which are parameters
265	of structural and electrical remodeling of the atrium. In contrast, there was no increase
266	in the atrial content of DAG despite the increased atrial expression of FABP3 and higher
267	serum levels of FFA in our patients with chronic AF. Intriguingly, the atrial expression
268	of a gene related to autophagosome maturation, LC3, was increased in the chronic AF
269	patients, and autophagy-related genes including LC3 were positively correlated with the
270	atrial expression of FABP3. To the best of our knowledge, this is the first study showing
271	that the atrial expression of FABP3 gene is increased in association with
272	autophagy-related genes in patients with chronic AF.
273	
274	The dysregulated fatty acid metabolism in the atrium of
275	chronic AF patients
276	Compared to the SR patients, the chronic AF patients had higher serum FFA
277	levels. The Cardiovascular Health Study has reported that an increase in the plasma
278	levels of FFA by 200 μ mol/L presents an 11% higher risk of AF occurrence even after

280	mass index, coronary heart disease, congestive heart failure, smoking, alcohol use,
281	log-C-reactive protein, diabetes mellitus, and hypertension in older adults [6].
282	Accordingly, elevated FFA levels can be an independent risk factor of AF.
283	The fatty acid-binding proteins (FABPs) reversibly bind to fatty acid and other
284	lipophilic molecules. FABPs, which are located on the plasma membrane, facilitate
285	fatty acid uptake into the cells, and intracellular FABPs transport fatty acid to other
286	locations such as the nucleus and mitochondrion. Among the 10 isoforms of FABPs
287	distributed in various tissues in mammals, FABP3 is most predominantly expressed in
288	the heart [20]. Here, we observed that the gene expression of FABP3 in the right atrial
289	muscle was enhanced in chronic AF patients, which may indicate increased fatty acid
290	uptake into the cells and increased intracellular fatty acid transport in the atrial muscle
291	in chronic AF. In contrast, the gene expression of CPT-1B (which facilitates fatty acid
292	transport across the outer mitochondrial membrane) and β -HAD activity (an enzymatic
293	activity of mitochondrial fatty acid β -oxidation) in the atrium were comparable between
294	our AF and SR groups.

295

The association of the atrial expression of FABP3 with structural and electrical atrial remodeling

298	The results of our analyses revealed that the expression of FABP3 in the right
299	atrial muscle was positively correlated with the right atrium diameter and the intra-atrial
300	EMD in the SR patients. The intra-atrial EMD is the time delay from the electrical
301	activation to the actual motion of the atrial myocardium, and a delayed intra-atrial EMD
302	indicates excitation-contraction uncoupling in the atrium. Prolonged intra-atrial EMD
303	after cardioversion was reported to predict AF recurrence in patients with persistent AF,
304	and histopathological changes characterized by myocardial fibrosis in the atrium appear
305	to be a major determinant of the prolonged intra-atrial EMD [21].
306	Boldt et al. revealed that the atrial expression of collagen type I is enhanced in
307	patients with lone AF, indicating that the occurrence of AF can directly increase the
308	expression of collagen type I and cause myocardial fibrosis in the atrial muscle [22].
309	Although we did not conduct histopathological evaluations, previous reports and our
310	present findings raise the possibility that the dysregulation of atrial fatty acid
311	metabolism is linked to structural and electrical atrial remodeling, which may contribute
312	to a future onset or recurrence of AF.
313	

314 Altered autophagy in the atrium in chronic AF

Garcia et al. first reported impaired cardiac autophagy characterized by reduced
LC3 processing (i.e., a reduced protein expression of LC3B II) with an accumulation of

317	lipofuscin deposit — a potential trigger of AF — in the atrial myocardium in patients
318	with post-operative AF [15]. A pair of studies have shown that in chronic AF patients,
319	the cardiac autophagy characterized by an increased protein expression of LC3B ${\rm I\!I}$ is
320	induced in the atrial myocardium in association with AMPK or endoplasmic reticulum
321	(ER) stress [13, 14]. Our present findings demonstrated that the atrial gene expression
322	of $LC3$ was upregulated in the patients with chronic AF. Taking these results together,
323	we speculate that altered cardiac autophagy in the atrium may be involved in the
324	progression of AF.

325

Implications of the association between the atrial expression of FABP3 and autophagy

The intracellular lipid content is generally deteremined by an imbalance between 328 329 the uptake and the utilization of fatty acid, and thus the increased atrial expression of FABP3 that we observed might contribute to the accumulation of lipids including DAG 330 in the atrial myocardium in chronic AF. However, we did not detect an accumulation of 331 332DAG in the atrium in our patients with chronic AF as was reported in another study [23]. Autophagy has been shown to play a role in the regulation of fatty acid 333 334 metabolism via the degradation of excessive intracellular lipids, termed "lipophagy" [12]. Our findings of an association between the atrial expression of FABP3 gene and 335

336	autophagy-related genes in chronic AF patients may support our hypothesis that in
337	chronic AF, autophagy at least in part contributes to the prevention of the accumulation
338	of toxic fatty acid metabolites via a degradation of intracellular lipids. Further research
339	is necessary to clarify the mechanistic roles of cardiac autophagy in the atrium in AF
340	progression.
341	
342	The difference in the atrial expression of FABP3 between
343	post-operative AF and chronic AF
344	We observed that the atrial gene expression of <i>FABP3</i> was reduced in patients
345	with post-operative AF in our prior study [16]; this is inconsistent with our present
346	results regarding chronic AF patients. One of the possible explanations is a difference in
347	pathophysiology between post-operative AF and chronic AF. It was demonstrated that
348	in patients with metabolic syndrome, impairment in the mitochondrial respiratory
349	capacity in the atrial tissues predicts the occurrence of post-operative AF [24]. In
350	contrast, the mitochondrial respiratory capacity in the atrium was reported to be
351	increased in chronic AF patients [25]. Taken together, these findings indicate that
352	impaired energy metabolism (including reduced fatty acid utilization) in the atrial
353	muscle might be a primary pathogenesis of post-operative AF, but in chronic AF,

354	excessive fatty acid uptake into the atrial cells seems to play a crucial role in AF

356

355

357	Study	limita	ntions
-----	-------	--------	--------

progression.

358	Several limitations	of this study	should be	addressed.	First. mo	ost of the	patients
000		or this study	Should be	uuui obbeu.	1 1150, 110		patients

- 359 had valvular heart diseases, and the results of this study thus cannot be directly applied
- 360 to patients with lone AF. Second, we were unable to perform western blotting to assess
- the protein levels of the autophagic marker due to the limited number of specimens.
- 362 Therefore, based on our results alone we cannot definitively show whether autophagic
- 363 flux is activated in the atrium. Finally, we cannot conclude that there is a causal
- 364 relationship between fatty acid metabolism and autophagy in the atrium.

365

367 Conclusions

368	Our study is the first to demonstrate that compared to patients with SR, the atrial
369	expression of FABP3 gene was upregulated in association with autophagy-related genes
370	in patients with chronic AF. We also observed that the atrial gene expression of <i>FABP3</i>
371	was related to structural and electrical remodeling in SR patients. Despite the increased
372	atrial expression of FABP3 with higher serum levels of FFA, atrial contents of DAG
373	were not increased in patients with chronic AF. These findings provide new insights
374	into the pathophysiology of chronic AF, and they suggest that dysregulated cardiac fatty
375	acid metabolism might contribute to the progression of AF and induction of autophagy
376	might have a cardioprotective effect against cardiac lipotoxicity in chronic AF.
377	

379 Acknowledgements

380 We thank Haruki Niwano for the technical assistance.

383 **References**

384	1.	Benjamin EJ,	Wolf PA,	D'Agostino RB,	Silbershatz H, Kanr	el WB, Levy D.
-----	----	--------------	----------	----------------	---------------------	----------------

- 385 Impact of atrial fibrillation on the risk of death: the Framingham Heart Study.
- 386 Circulation. 1998;98: 946-952.
- 387 2. Schnabel RB, Rienstra M, Sullivan LM, Sun JX, Moser CB, Levy D, et al. Risk
- assessment for incident heart failure in individuals with atrial fibrillation. Eur J Heart
- 389 Fail. 2013;15: 843-849.
- 390 3. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk

factor for stroke: the Framingham Study. Stroke. 1991;22: 983-988.

392 4. Wolf PA, Mitchell JB, Baker CS, Kannel WB, D'Agostino RB. Impact of atrial

fibrillation on mortality, stroke, and medical costs. Arch Intern Med. 1998;158:

394 229-234.

- 395 5. Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress
- and inflammation as central mediators of atrial fibrillation in obesity and diabetes.
- 397 Cardiovasc Diabetol. 2017;16: 120.
- 398 6. Khawaja O, Bartz TM, Ix JH, Heckbert SR, Kizer JR, Zieman SJ, et al. Plasma
- 399 free fatty acids and risk of atrial fibrillation (from the Cardiovascular Health Study). Am
- 400 J Cardiol. 2012;110: 212-216.

- 401 7. Lau DH, Nattel S, Kalman JM, Sanders P. Modifiable risk factors and atrial
- 402 fibrillation. Circulation. 2017;136: 583-596.
- 403 8. Goette A, Honeycutt C, Langberg JJ. Electrical remodeling in atrial fibrillation.
- 404 Time course and mechanisms. Circulation. 1996;94: 2968-2974.
- 405 9. Casaclang-Verzosa G, Gersh BJ, Tsang TS. Structural and functional
- 406 remodeling of the left atrium: clinical and therapeutic implications for atrial fibrillation.
- 407 J Am Coll Cardiol. 2008;51: 1-11.
- 408 10. Choi JY, Jung JM, Kwon DY, Park MH, Kim JH, Oh K, et al. Free fatty acid
- 409 as an outcome predictor of atrial fibrillation-associated stroke. Ann Neurol. 2016;79:
- 410 317-325.
- 411 11. D'Souza K, Nzirorera C, Kienesberger PC. Lipid metabolism and signaling in
- 412 cardiac lipotoxicity. Biochim Biophys Acta. 2016;1861: 1513-1524.
- 413 12. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy
- 414 regulates lipid metabolism. Nature. 2009;458: 1131-1135.
- 415 13. Yuan Y, Zhao J, Yan S, Wang D, Zhang S, Yun F, et al. Autophagy: a potential
- 416 novel mechanistic contributor to atrial fibrillation. Int J Cardiol. 2014;172: 492-494.
- 417 14. Wiersma M, Meijering RAM, Qi XY, Zhang D, Liu T, Hoogstra-Berends F, et
- al. Endoplasmic reticulum stress is associated with autophagy and cardiomyocyte

419 remodeling in experimental and human atrial fibrillation. J Am Heart Assoc. 2017;6:

- 420 e006458.
- 421 15. Garcia L, Verdejo HE, Kuzmicic J, Zalaquett R, Gonzalez S, Lavandero S, et
- 422 al. Impaired cardiac autophagy in patients developing postoperative atrial fibrillation. J
- 423 Thorac Cardiovasc Surg. 2012;143: 451-459.
- 424 16. Shingu Y, Yokota T, Takada S, Niwano H, Ooka T, Katoh H, et al. Decreased
- 425 gene expression of fatty acid binding protein 3 in the atrium of patients with new onset
- 426 of atrial fibrillation in cardiac perioperative phase. J Cardiol. 2018;71: 65-70.
- 427 17. Xu ZX, Zhong JQ, Zhang W, Yue X, Rong B, Zhu Q, et al. Atrial conduction
- 428 delay predicts atrial fibrillation in paroxysmal supraventricular tachycardia patients after
- radiofrequency catheter ablation. Ultrasound Med Biol. 2014;40: 1133-1137.
- 430 18. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine
- 431 RA, et al. Recommendations for evaluation of the severity of native valvular
- 432 regurgitation with two-dimensional and Doppler echocardiography. J Am Soc
- 433 Echocardiogr. 2003;16: 777-802.
- 434 19. Takada S, Masaki Y, Kinugawa S, Matsumoto J, Furihata T, Mizushima W, et
- 435 al. Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial
- 436 biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor
- 437 signalling. Cardiovasc Res. 2016;111: 338-347.

438	20.	Yamamoto T, Yamamoto A, Watanabe M, Matsuo T, Yamazaki N, Kataoka
439	M, et al.	. Classification of FABP isoforms and tissues based on quantitative evaluation
440	of transo	cript levels of these isoforms in various rat tissues. Biotechnol Lett. 2009;31:
441	1695-17	701.
442	21.	Ari H, Ari S, Akkaya M, Aydin C, Emlek N, Sarigul OY, et al. Predictive
443	value of	atrial electromechanical delay for atrial fibrillation recurrence. Cardiol J.
444	2013;20	: 639-647.
445	22.	Boldt A, Wetzel U, Lauschke J, Weigl J, Gummert J, Hindricks G, et al.
446	Fibrosis	in left atrial tissue of patients with atrial fibrillation with and without
447	underly	ing mitral valve disease. Heart. 2004;90: 400-405.
448	23.	Gizurarson S, Stahlman M, Jeppsson A, Shao Y, Redfors B, Bergfeldt L, et al.
449	Atrial fi	brillation in patients admitted to coronary care units in western Sweden - focus
450	on obesi	ity and lipotoxicity. J Electrocardiol. 2015;48: 853-860.
451	24.	Montaigne D, Marechal X, Lefebvre P, Modine T, Fayad G, Dehondt H, et al.
452	Mitocho	ondrial dysfunction as an arrhythmogenic substrate: a translational
453	proof-of	f-concept study in patients with metabolic syndrome in whom post-operative
454	atrial fit	prillation develops. J Am Coll Cardiol. 2013;62: 1466-1473.

- 455 25. Slagsvold KH, Johnsen AB, Rognmo O, Hoydal MA, Wisloff U, Wahba A.
- 456 Mitochondrial respiration and microRNA expression in right and left atrium of patients
- 457 with atrial fibrillation. Physiol Genomics. 2014;46: 505-511.

458

459

461 Figure legends

462	Fig 1: Preoperative levels of serum FFA.	
-----	--	--

463 Lines indicate the median with the interquartile range (IQR) in each group (SR, n=35; AF, n=12). AF, atrial fibrillation; FFA, free fatty acids; SR, sinus rhythm. 464465466Fig 2: Gene expression related to fatty acid metabolism in the right atrial 467 myocardium. 468 (A) CD36, (B) FABP3, and (C) CPT1B. Lines indicate the median with IQR in each 469 group (SR; n=38, AF; n=13). CD36, cluster of differentiation 36 (fatty acid translocase); 470CPT1B, carnitine palmitoyltransferase 1B; FABP3, fatty acid binding protein 3. 471472Fig 3: Association between gene expression levels of FABP3 in the right atrial 473myocardium and parameters of atrial remodelling in patients with SR. (A) FABP3 and RA diameter (n=38) and (B) FABP3 and intra-atrial EMD (n=37). 474EMD, electromechanical delay; FABP3, fatty acid binding protein 3; RA, right atrium. 475476477Fig 4: Enzymatic activities related to the mitochondrial TCA cycle and fatty acid 478β-oxidation in the right atrial myocardium.

479	(A) CS activit	y and (B)	β-HAD activity	. Lines indicate	the median	with IQR in each
-----	----------------	--------------------	----------------	------------------	------------	------------------

- 480 group (SR, n=20; AF, n=8). β-HAD, β-hydroxyacyl CoA dehydrogenase; CS, citrate
- 481 synthase.

482

483 Fig 5: DAG contents in the right atrial myocardium.

- 484 Lines indicate the median with IQR in each group (SR, n=6; AF, n=6). DAG,
- 485 diacylglycerol; RFUs, relative fluorescence units.

486

487	Fig 6:	Gene ex	pression	related	to auto	nhagy	in the	right	atrial r	nyocardium.
101	1 1 <u>5</u> VI	Gene en	pi 0551011	1 ciacea	to auto	pines,	III UIIC	115110		ii y ocui uiuiii

- 488 (A) ATG5, (B) ULK1, (C) BCLN1, and (D) LC3. Lines indicate the median with IQR in
- 489 each group (SR, n=37 except for ATG5 [n=38]; AF, n=13). ATG5, autophagy-related
- 490 gene 5; *BCLN1*, beclin-1; *LC3*, microtubule-associated protein light chain 3; *ULK1*,
- 491 Unc-51-like kinase 1.

492

493 Fig 7: Association between the expression levels of *FABP3* gene and

494 autophagy-related genes in the right atrial myocardium in patients with SR or AF.

495 (A) *FABP3* and *ATG5* (SR; n=13; AF, n =38), (B) *FABP3* and *ULK1* (SR, n=13; AF,

497 n=13; AF, n=37). *FABP3*, fatty acid binding protein 3. Other abbreviations are

498 explained in the Fig 6 legend.

	SR	AF	
	(n=38)	(n=13)	p-value
Age, yrs	70 ± 13	69 ± 9	0.775
Male	18 (47%)	8 (62%)	0.378
BMI, kg/m²	22.8 ± 3.4	24.8 ± 4.3	0.097
Heart rate, bpm	67 ± 10	73 ± 13	0.134
Systolic blood pressure, mm Hg	118 ± 19	115 ± 18	0.643
Diastolic blood pressure, mm Hg	60 ± 12	68 ± 13	0.051
Diabetes mellitus	7 (18%)	2 (15%)	0.804
Coronary artery disease	13 (34%)	2 (15%)	0.198
Medications			

BNP, pg/mL79 (270)249 (321)0.060Data are mean±SD, median (interquartile range), or n (%). AF, atrial fibrillation; BMI, body

18 (47%)

14 (37%)

18 (47%)

 4.7 ± 0.9

 1.4 ± 0.7

5.5 (0.8)

5.0 (4.0)

 5.7 ± 0.8

13 (100%)

9 (69%)

4 (31%)

 4.4 ± 0.7

 1.0 ± 0.5

5.7 (0.7)

5.8 (8.9)

 5.9 ± 0.6

0.001

0.043

0.297

0.357

0.052

0.802

0.612

0.324

mass index; BNP, B-type natriuretic peptide; HbA1c, hemoglobin A1c; SR, sinus rhythm.

500

Diuretics

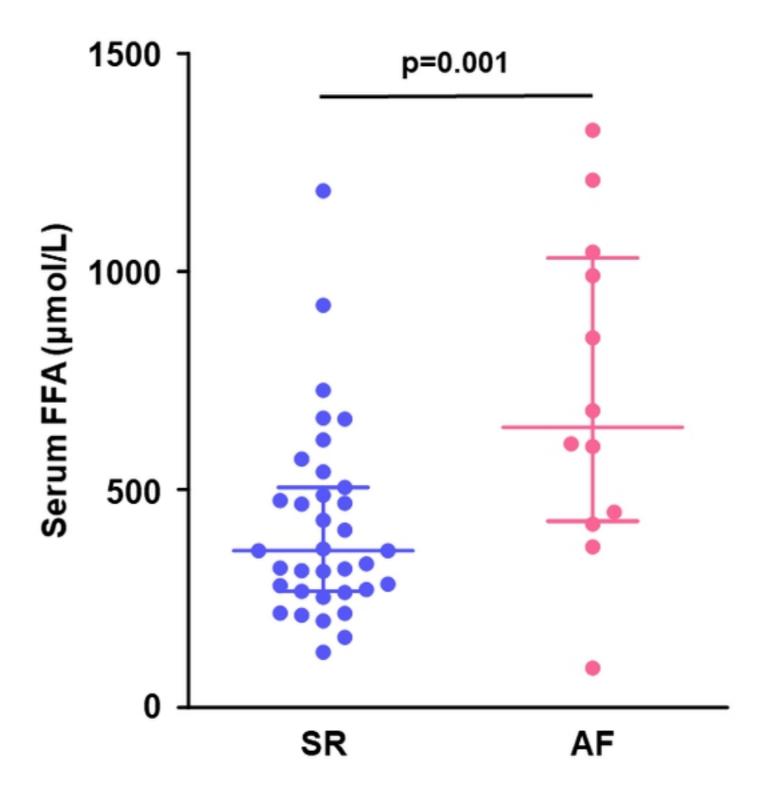
β-blockers

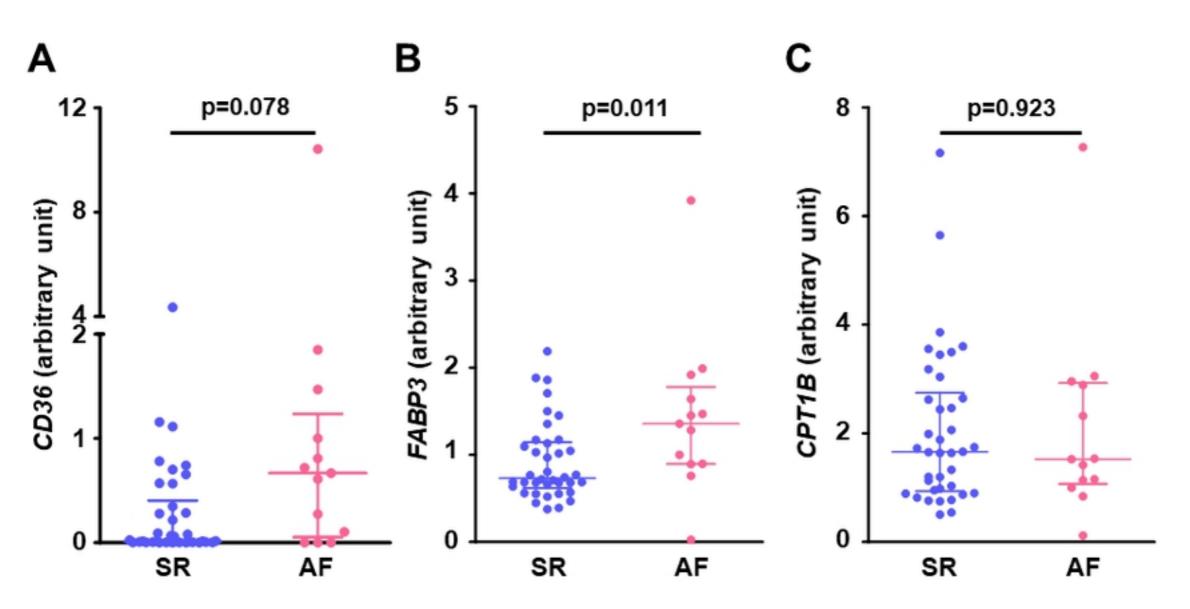
Total cholesterol, mmol/L

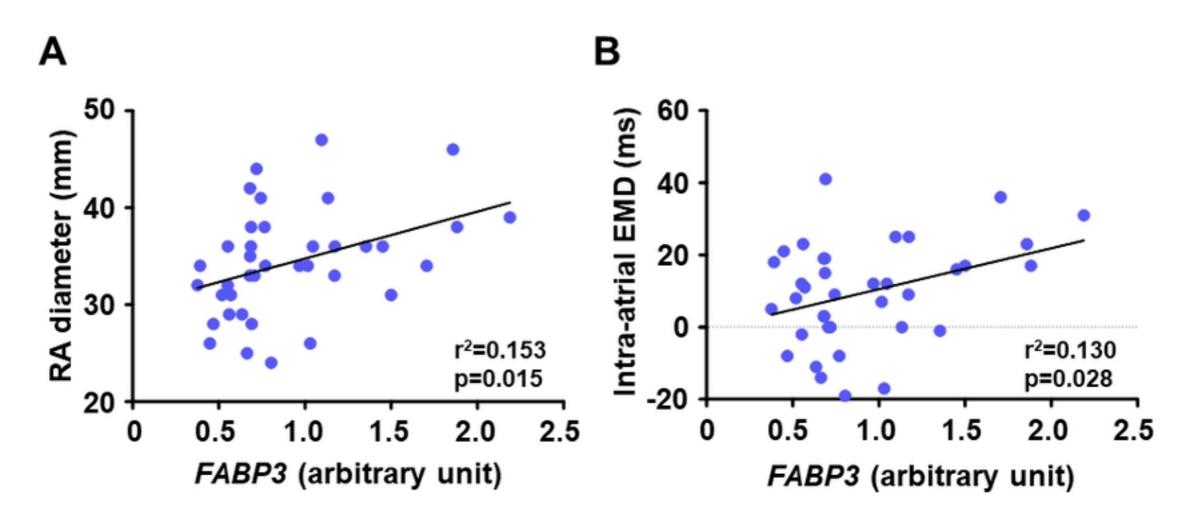
Fasting blood glucose, mmol/L

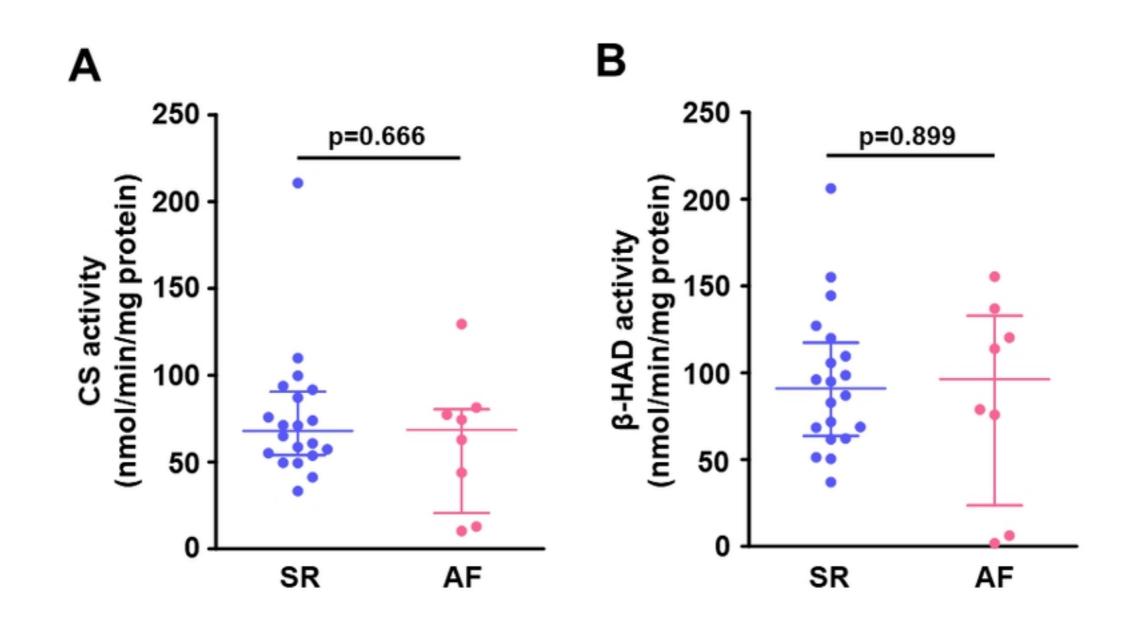
Triglycerides, mmol/L

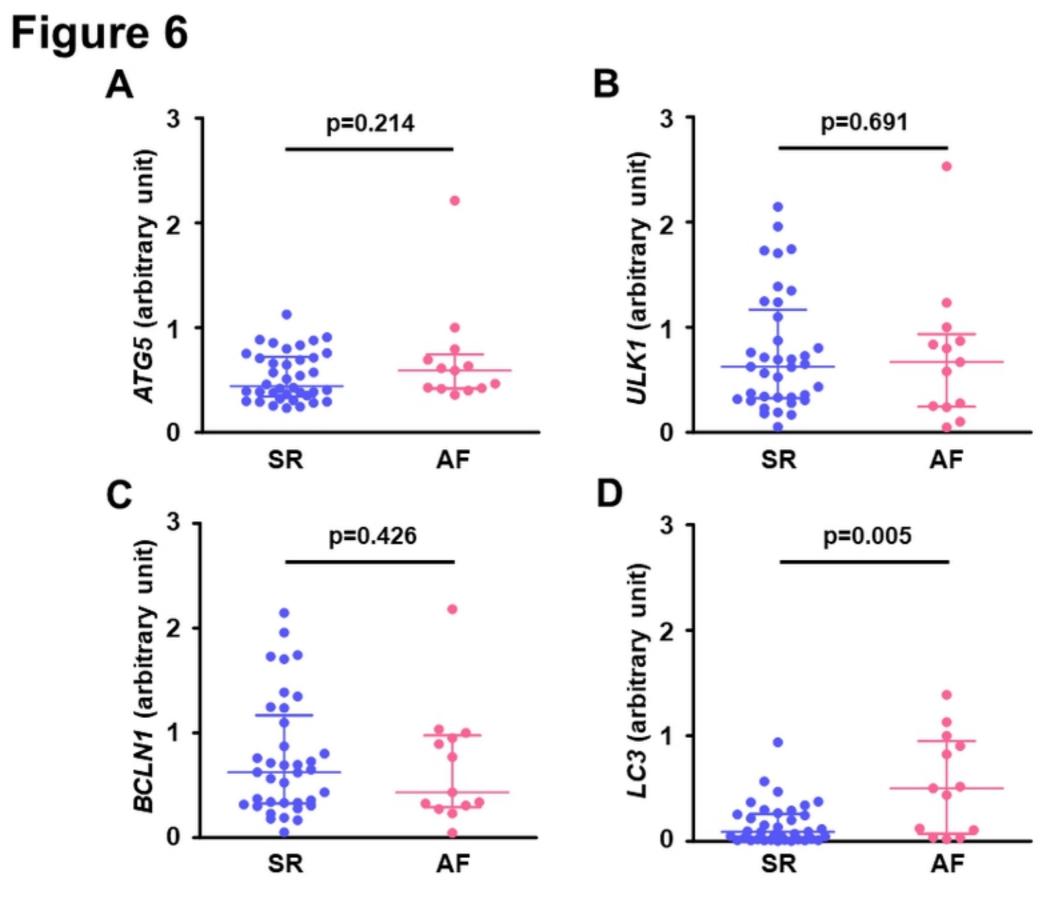
Statins


Insulin, µU/mL


HbA1c, %


	SR AF			
	(n=38)	(n=13)	p-value	
LVDd, mm	48 (20)	59 (17)	0.209	
LVDs, mm	31 (22)	41 (20)	0.132	
LVEF, %	59 ± 14	54 ± 14	0.268	
Left atrial diameter, mm	41 ± 7	53 ± 9	<0.001	
Right atrial diameter, mm	34 ± 6	42 ± 9	0.007	
Aortic stenosis:			0.130	
Mild	1 (3%)	0 (0%)		
Moderate	1 (3%)	1 (8%)		
Severe	15 (39%)	1 (8%)		
Aortic regurgitation:			0.306	
Mild	18 (47%)	4 (31%)		
Moderate	4 (11%)	2 (15%)		
Severe	10 (26%)	2 (15%)		
Mitral regurgitation:			0.002	
Mild	29 (76%)	5 (38%)		
Moderate	2 (5%)	5 (38%)		
Severe	2 (5%)	3 (23%)		
Tricuspid regurgitation:			0.133	
Mild	26 (68%)	6 (46%)		
Moderate	3 (78%)	3 (23%)		
Severe	0 (0%)	1 (8%)		


Table 2. Echocardiographic parameters of the SR and AF patients


Data are mean±SD, median (interquartile range), or n (%). AF, atrial fibrillation; LVDd, left ventricular end-diastolic diameter; LVDs, left ventricular end-systolic diameter; LVEF, left ventricular ejection fraction; SR, sinus rhythm.

