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Abstract 23 

Viruses have high mutation rates and generally exist as a mixture of variants in biological samples. Next-24 
generation sequencing (NGS) approach has surpassed Sanger for generating long viral sequences, yet how 25 
variants affect NGS de novo assembly remains largely unexplored.  Our results from >15,000 simulated 26 
experiments showed that presence of variants can turn an assembly of one genome into tens to thousands of 27 
contigs. This “variant interference” (VI) is highly consistent and reproducible by ten most used de novo 28 
assemblers, and occurs independent of genome length, read length, and GC content. The main driver of VI is 29 
pairwise identities between viral variants. These findings were further supported by in silico simulations, 30 
where selective removal of minor variant reads from clinical datasets allow the “rescue” of full viral genomes 31 
from fragmented contigs. These results call for careful interpretation of contigs and contig numbers from de 32 
novo assembly in viral deep sequencing. 33 

34 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/815480doi: bioRxiv preprint 

https://doi.org/10.1101/815480


3 
  

Introduction 35 

 36 

For many years, Sanger sequencing has been used to complement classical epidemiological and 37 

laboratory methods for investigating viral infections.1 As technologies have evolved, the emergence of next-38 

generation sequencing (NGS), which drastically reduced the cost per base to generate sequence data for 39 

complete viral genomes, has allowed scientists to apply viral sequencing on a grander scale.2 Genomic 40 

sequencing is ideal for elucidating viral transmission pathways, characterizing emerging viruses, and locating 41 

genomic regions which are functionally important for evading the host immune system or antivirals.3  42 

  43 

Genomic surveillance of viruses is particularly important in light of their rapid rate of evolution. Viruses 44 

have higher mutation rates than cellular-based taxa, with RNA viruses having mutation rates as high as 1.5 × 45 

10−3 mutations per nucleotide, per genomic replication cycle.4 Due to this high mutation rate, it is well 46 

established that most RNA viruses exist as a swarm of quasispecies,5 with each quasispecies containing unique 47 

single nucleotide polymorphisms (SNPs). The presence of these variants plays a key role in viral adaptation. 48 

 49 

Due to viruses’ rapid evolution, a single clinical sample often contains a mixture of many closely related 50 

viruses. Viral quasispecies are mainly derived from intra-host evolution, with RNA viruses such as poliovirus, 51 

human immunodeficiency virus (HIV), hepatitis C (HCV), influenza, dengue, and West Nile viruses maintaining 52 

diverse quasispecies populations within a host.6, 7, 8, 9, 10, 11, 12, 13 Conversely, the term “viral strains” often refers 53 

to different lineages of viruses found in separate hosts, or a co-infection of viruses in the same host due to 54 

multiple infection events. As a result, sequence divergence is usually higher when comparing viral strains 55 

compared to quasispecies. In this study, we use the term “variant” to encompass both quasispecies and 56 

strains regardless of how the variants originated in the biological samples.  57 

 58 

Since many sequencing technologies produce reads that are significantly shorter than the target 59 

genome size, a process to construct contigs, scaffolds, and full-length genomes is needed. Reference-mapping 60 

and de novo assembly are the two primary bioinformatic strategies for genome assembly. Reference-mapping 61 

requires a closely-related genome as input to align reads, while de novo assembly generates contigs without 62 
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the use of a reference genome, and therefore is the most suitable strategy for analyzing underexplored taxa14 63 

or for viruses with high mutation and/or recombination rates. 64 

 65 

In this study, we first examined how often NGS and de novo assembly were applied in viral sequencing 66 

in GenBank Nucleotide entries (www.ncbi.nlm.nih.gov/nucleotide/). Then we investigated how the presence 67 

of variants affected assembly results - simulated and clinical NGS datasets were analyzed using multiple 68 

assembly programs to explore the effects of genome variant relatedness, read length, and genome length on 69 

the resulting contig distribution.  70 
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Results 71 

 72 

The rise of NGS and de novo assembler use in GenBank viral sequences  73 

 74 

GenBank viral entries from 1982-2017 were collected and analyzed, with extensive analyses performed 75 

to evaluate technologies and bioinformatics programs cited in records deposited between 2011 and 2017. 76 

Through 2017, there were over 2.3 million viral entries in GenBank; however, over 70% (1.7 million) do not 77 

specify a sequencing technology [Supplement Table S1] due to the looser data requirement in earlier years. 78 

When looking at recently deposited records (2014-2017), the Illumina sequencing platform was the most 79 

common NGS platform used for viral sequencing, with about a 2-fold increase over the next most popular NGS 80 

platform [Figure 1d & e]. When long sequences (≥2,000 nt) are considered, NGS technologies surpassed 81 

Sanger in 2017 as the dominant strategy for sequencing, comprising 53.8% (14,653/27,217) of entries 82 

compared to 46.2% of entries (12,564/27,217) for Sanger [Figure 1f and Supplement Table S2]. 83 

 84 

Hybrid sequencing approaches, where researchers use more than one sequencing technology to 85 

generate complete viral sequences, have also become more common over the past several years. The most 86 

common combination observed was 454 and Sanger (18,002 entries), likely due to the early emergence of the 87 

454 technology compared to other NGS platforms [Figure 1c and Supplement Table S3]. However, combining 88 

Illumina with various other sequencing platforms is quite commonplace (>10,000 entries).  89 

 90 

De novo assembly programs (ABySS, BWA, Canu, Cap3, IDBA, MIRA, Newbler, SOAPdenovo, SPAdes, 91 

Trinity, and Velvet) have increased from less than 1% of viral sequence entries in 2012, to 20% of all viral 92 

sequence entries in 2017 [Figure 1h & i]. A similar increase was observed for reference-mapping programs 93 

(i.e., Bowtie and Bowtie2), from 0.03% in 2012 to 6.5% in 2017.  Multifunctional programs (Suppl. Information) 94 

that offer both assembly options were the most common programs cited for the years 2013-2017, but since 95 

the exact sequence assembly strategy used for these records is unknown, the contributions of de novo 96 

assembly are likely underestimated. An expanded summary of the sequencing technologies and assembly 97 

approaches used for viral GenBank records is available in Supplement Tables S1-S6. 98 

 99 
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Effect of variant assembly using popular de novo assemblers 100 

 101 

After establishing the growing use of NGS technologies for viral sequencing, we next focused on 102 

understanding how the presence of viral variants may influence de novo assembly output. We generated 247 103 

simulated viral NGS datasets representing a continuum of pairwise identity (PID) between two viral variants, 104 

from 75% PID (one nucleotide difference every 4 nucleotides), to 99.6% PID (one nucleotide difference every 105 

250 nucleotides) [Figure 2]. For Experiment 1, these datasets were assembled using 10 of the most used de 106 

novo assembly programs [Figure 2 and Supplement Figure S1a] to evaluate their ability to assemble the two 107 

variants into their own respective contigs as the PID between the variants increases. 108 

 109 

One key observation is that the assembly result can change from two (correct) contigs to many 110 

(unresolvable) contigs simply by having variant reads; the presence of viral variants affected the contig 111 

assembly output of all 10 assemblers tested. The output of the SPAdes, MetaSPAdes, ABySS, Cap3, and IDBA 112 

assemblers shared a few commonalities, demonstrated by a conceptual model in Figure 3A. First, below a 113 

certain PID, when viral variants have enough distinct nucleotides to resolve the two variant contigs, the de 114 

novo assemblers produced two contigs correctly [Figure 3]. We refer to this as “variant distinction” (VD), with 115 

the highest pairwise identity where this occurs as the VD threshold. Above this threshold, the assemblers 116 

produced tens to thousands of contigs [Figure 3], a phenomenon we define as “variant interference” (VI). As 117 

PID between the variants continue to increase, the de novo assemblers can no longer distinguish between the 118 

variants and assembled all the reads into a single contig,  a phenomenon we define as “variant singularity” 119 

(VS). [Figure 3]. The lowest pairwise identity where a single contig is assembled is the VS threshold. 120 

 121 

Slight differences in the variant interference patterns (relative to the canonical variant interference 122 

model) were observed for the 10 assemblers investigated. VD was observed for SPAdes, MetaSPAdes, and 123 

ABySS assemblers. While it was not observed with Cap3 and IDBA with the current simulated data parameters, 124 

we speculate that VD may occur at a lower PID level for these assemblers than tested in this study. The PID 125 

range where VI was observed was distinct for each de novo assembler [Figure 3]. During VI, SPAdes produced 126 

as many as 134 contigs and ABySS produced 3,076 contigs, while MetaSPAdes, Cap3, and IDBA produced up to 127 

10. 128 
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 129 

A different pattern was observed for Mira, Trinity, and SOAPdenovo2 assemblers. The average number 130 

of contigs generated by Mira, Trinity, and SOAPdenovo2 was 5, 36, and 283, respectively across all variant PIDs 131 

from 75%–99.96%. Specifically, Mira and Trinity generated fewer contigs at low PID, but produced many 132 

contigs when the two variants reach 97.1% PID and 96.0% PID, respectively. For SOAPdenovo2, a larger 133 

number of contigs were produced regardless of the PID. This indicates that these assemblers generally have 134 

major challenges producing a single genome; this has been observed in previous studies comparing assembly 135 

performance.15  136 

 137 

Finally, Geneious and CLC were the least affected by VI in the simulated datasets tested, returning only 138 

1–5 contigs for all pairwise identities. CLC’s assembly algorithm primarily returned a single contig over the 139 

range of PIDs tested (218/247 simulations; 88.3%), thus favoring VS. In comparison, Geneious predominantly 140 

distinguished the two variants (234/247 simulations; 94.7%), favoring VD.  141 

 142 

Effect of GC content and genome length on variant assembly 143 

 144 

For Experiment 2, we focused our study on evaluating whether VI observed in SPAdes de novo 145 

assembly is influenced by the GC content or genome length of the pathogen. Two datasets were used for the 146 

evaluation: reads generated from four artificial genomes ranging in length from 2 Kb to 1 Mb, as well as from 147 

genome sequences of poliovirus (NC_002058; 7,440 nt in length) and coronavirus (NC_002645; 27,317 nt in 148 

length). No discernable correlation was observed between the GC content of variant genomes and the degree 149 

of VI for any of the simulated datasets [Supplemental Dataset S2, p < 0.0001]. Therefore, for subsequent 150 

analyses examining the effects of genome length on VI, the number of contigs at each PID level was obtained 151 

by averaging the 13 GC simulations. 152 

 153 

Notably, no matter the genome length, SPAdes produced vastly more contigs (i.e., VI) in a constant, 154 

narrow range of PID [99%–99.21% ; Figure 4a & b]. The effect of variants on assembly was characterized by 155 

the three distinct intervals described previously: VD at lower PIDs, VI [Figure 4b], and VS at higher PIDs for all 156 

genome lengths. For example, during VS, a single contig was generated when the two variants shared ≥99.22% 157 
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PID, but tens to thousands of contigs were generated at a slightly lower PID of 99.21%. This PID threshold, 158 

99.21%, marked the drastic transition from VS to VI, whereas the transition from VI to VD (i.e., the VD 159 

threshold) occurred at 98.99% PID [Figure 4b]. A correlation was observed between genome length and the 160 

number of contigs produced during VI, where longer genomes returned proportionally more contigs as 161 

expected as total VI occurrence should increase with length [r2 = 0.967; p <0.0001 Figure 4b and 4c].  162 

 163 

Effect of read length on variant assembly 164 

 165 

The read length of a given NGS dataset will vary depending on the sequencing platform and kits utilized 166 

to generate the data. Since read length is an important factor for de novo assembly success,16 we 167 

hypothesized that it may also influence the ability to distinguish viral variants. For Experiment 3, using SPAdes 168 

we investigated assemblies with four typical read lengths: 50, 100, 150, and 250 nt.  At longer read lengths, 169 

the VD threshold occurred at higher PIDs [Figure 4d & e]. Also, with increasing read length, the width of the 170 

PID window where VI occurs gradually decreased from a 1.52% spread to a 0.21% spread [Figure 4e]. This 171 

indicates that longer reads are better for distinguishing viral variants with high PIDs.  172 

 173 

In silico experiments examining variant assembly with NGS data derived from clinical samples 174 

 175 

For clinical samples, assembly of viral genomes is affected by multiple factors other than the presence 176 

of variants, including sequencing error rate, host background reads, depth of genome coverage, and the 177 

distribution (i.e., pattern) of genome coverage. We next utilized viral NGS data generated from four 178 

picornavirus-positive clinical samples (one coxsackievirus B5, one enterovirus A71, and two parechovirus A3) 179 

to explore VI in datasets representative of data that may be encountered during routine NGS. The NGS data 180 

for each sample was partitioned into four bins of read data: (1) total reads after quality control (T); (2) major 181 

variants only (M); (3) major and minor variants only (Mm); and (4) major variants and background non-viral 182 

reads only (MB) [Figure 5]. These binned datasets were then assembled separately using three assembly 183 

programs: SPAdes, Cap3, and Geneious. By comparing these manipulations, we aimed to test the hypothesis 184 

that minor variants directly affect the performance of assembly through VI in real clinical NGS data.  185 

 186 
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Even with an adequate depth of coverage for genome reconstruction, assembly of total reads (T) in 187 

11/12 experiments resulted in unresolved genome construction – resulting in numerous fragmented viral 188 

contigs [Figure 6]. The only exception was one experiment where one single PeV-A3 (S1) genome was 189 

assembled using Cap3. When only reads from the major variant were assembled (M), full genomes were 190 

obtained for all datasets using SPAdes and Cap3, and for the CV-B5 sample using Geneious. Conversely, 191 

assembly of the read bins containing major and minor variants (Mm) resulted in an increased number of 192 

contigs for 9 of the 12 sample and assembly software combinations tested [Figure 6], indicating that VI due to 193 

the addition of the minor variant reads likely adversely affected the assembly. The presence of background 194 

reads with major variant reads (MB) did not appear to affect viral genome assembly, as the UG50% value, a 195 

performance metric which only considers unique, non-overlapping contigs for target viruses17, was similar 196 

between M and MB datasets.  197 

 198 

Discussion 199 

 200 

Our analysis of the GenBank quantified the decade-long expansion of NGS technologies and de novo 201 

assembly for viral sequencing [Figure 1]. As the number of viral sequences in public databases continues to 202 

grow, an important question that naturally arises is how well current de novo assembly programs perform for 203 

datasets with viral variants. Viral variants are expected in biological samples, with the number of variants and 204 

the extent of the sequence divergence between variants related to the mutation rate of the virus and the 205 

types of specimens that are being investigated. For example, samples containing rapidly evolving RNA viruses, 206 

such as poliovirus, HIV, and HCV7, 9, 18, environmental samples,19 and clinical samples from immunosuppressed 207 

individuals20, 21 usually harbor many variants. The ability to accurately distinguish variants is imperative to 208 

inform treatments (in the case of HIV and HCV), or determine whether a subpopulation of a more virulent 209 

variant is present. 210 

 211 

Several experiments using simulated and clinical sample NGS data were performed to evaluate the 212 

ability of genome assembly programs to distinguish genome variants. All assemblers investigated generated 213 

fragmented assemblies when the data contained reads from two closely related variants due to “variant 214 

interference” (VI). Changes in pairwise identity (PID) as small as 0.01% between the two variants triggered an 215 
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assembler to change from producing one or two contigs to producing hundreds of contigs. A quintessential 216 

example of this phenomenon was the SPAdes assembly of EV-A71 sequences during the in silico experiments 217 

with clinical NGS data. Assembly of major variant reads resulted in one full length contig [Figure 5], whereas 218 

assembly of datasets containing the major and minor variant reads (Mm and T) were characterized by a 219 

number of contigs, resulting in “cobwebs” of contig fragments when visualized using Bandage [Supplement 220 

Figure S2].22 Even though the de novo assembly graph linked the different contig fragments, the assembly 221 

could not differentiate the multiple routes of possible contig construction. We speculate this is the main 222 

reason why VI occurs in the context of de Bruijn graph assemblers. 223 

 224 

The simulated experiments suggested that genome length and read length influence VI; A longer 225 

genome length will produce proportionally more contigs during VI, whereas a longer read length decreases 226 

the PID range where VI occurs [Figure 4]. While longer read length improves assembly, unfortunately, 227 

platforms that produce long reads such as Oxford Nanopore and PacBio have higher error rates.23 Until long 228 

reads can be produced at high fidelity, researchers must continue to rely on combining long- and short-read 229 

NGS datasets, and genome polishing techniques.23  230 

 231 

The large number of contigs generated due to VI may be overwhelming for most researchers, and for 232 

viral ecology studies, could lead to over-estimation of species richness for methods that use contig spectra to 233 

infer richness, such as PHACCS or CatchAll.24, 25, 26 This phenomenon may also impact studies differently 234 

depending on the overall goal for generating viral sequence data. For example, some researchers may only be 235 

concerned with generating a single major consensus genome, even when variants are detected in the data. 236 

This is common during outbreak responses for pathogens such as Ebola virus or Middle East respiratory 237 

syndrome coronavirus, where detection of SNPs (indicative of minor variants) is not immediately important. 238 

On the other hand, some investigations could favor distinguishing variants, such as for investigating the 239 

presence of vaccine-derived poliovirus, where a small number of SNPs may distinguish a vaccine-derived strain 240 

from a normal vaccine strain genome.21 241 

 242 

The effects of VI could potentially be mitigated by running multiple assembly programs. A previous 243 

study testing bioinformatics strategies for assembling viral NGS data found that employing sequential use of 244 
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de Bruijn graph and overlap-layout-consensus assemblers produced better assemblies.15 We speculate that 245 

this “ensemble strategy”15 may perform better because the multiple assemblers complement one another by 246 

having different VI PID thresholds. Future assembly approaches could also consider resolving the VI problem 247 

by possibly discriminating the major and minor variant reads first (perhaps by coverage or SNP analysis), and 248 

then assembling major and minor variant reads separately. 249 

 250 

Since we observed VI occurring in simulated data from 2 Kb to 1 Mb genome lengths, we speculate 251 

that it may not only affect viral data but also larger draft contigs of bacteria and other microorganisms. Even 252 

though bacterial mutation rates are much lower than those of most viruses, bacterial variants are common. 253 

For environmental studies, bacterial metagenomes are known to contain many related taxa and variants 27 28, 254 
29, 30 , and in clinical investigations, minor bacterial variants can harbor SNPs that provide resistance against 255 

antimicrobials. This warrants future investigation into how the presence of variants may impact the assembly 256 

of other microbial datasets. 257 

 258 

This study aimed to understand how variants affect assembly. As an initial investigation, many 259 

confounding factors were simplified for experimentation. Simulated variants studied here only depicted 260 

periodic mutations, set at regular intervals. However, in real viral data, SNPs are never evenly distributed 261 

across the genome, with zones of divergence and similarity.31, 32 Other important factors which influence 262 

genome assembly include sequencing error rates, presence of repetitive regions, and coverage depth. We 263 

limited our experiments to keep these factors constant in order to investigate the sole effect of VI. Through 264 

this exploration, we demonstrated that reads from related genome variants adversely affect de novo 265 

assembly. As NGS and de novo assembly have become essential for generating full-length viral genomes, 266 

future studies should investigate the combined effects of the number and relative proportion of minor 267 

variants, as well as additional assembly factors (e.g., error rates) to supplement this work. 268 

269 
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Methods 270 

 271 

Analyzing NGS and assembler usage in the virus nucleotide collection in GenBank 272 

Viral sequence entries from the GenBank non-redundant nucleotide collection were obtained by 273 

downloading all sequences under the virus taxonomy through the end of 2017. A total of 2,338,775 GenBank 274 

entries were investigated. 275 

 276 

The total number of viral sequences submitted annually in GenBank through December 2017 was 277 

calculated by filtering GenBank submissions by “virus,” followed by application of the following additional 278 

filtering steps: “genomic DNA/RNA” was selected and a “release date: Jan 1 through Dec 31” was applied to 279 

find the total number of viruses for a given year. A custom script was used to filter and count all documented 280 

sequencing technologies and assembly methods used for each GenBank entry. 281 

 282 

Creation of simulated variant genomes and reads 283 

Simulated genomes were generated using custom scripts that randomly assign each nucleotide over a 284 

designated genome length with a weighted distribution dependent on the GC content [Supplement Figure S1]. 285 

The random genomes were then screened using NCBI BLAST to insure no similarity/identity existed to any 286 

classified organism (i.e., no BLAST hits). These simulated genomes served as the initial variant genome (variant 287 

1). To generate the mutated variant genomes (variant 2), a custom script was used to systematically introduce 288 

evenly distributed random mutations at rates from 1 mutation in every 4 nucleotides (75% PID) to 1 mutation 289 

in every 250 nucleotides (99.6% PID), incrementing by 1 nucleotide.   290 

  291 

Following the generation of initial and mutated variant genomes, high-quality fastq reads were 292 

generated using ART,33 simulating Illumina MiSeq paired-end runs at 50X coverage with 250 nt reads, 293 

DNA/RNA mean fragments size of 500, and quality score of 93. Fastq reads were combined in equal numbers 294 

for the initial and mutated variants, and used as input for subsequent de novo assembly experiments 295 

[Supplement Figure S1]. The same process was utilized to generate the artificial genomes, initial and mutated 296 

variant genomes, and reads for each of the experiments. 297 
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Experiment 1: Analyzing simulated reads from variants using different de novo assembly programs 298 

 299 

The simulated datasets containing reads from two variant genomes with nucleotide pairwise identity 300 

ranging from 75%–99.6% were analyzed using 10 different genome assembly programs. The de novo assembly 301 

algorithms used were either overlap-layout-consensus (OLC) [Cap34 and Mira35, 36], de Bruijn graph (DBG) 302 

[ABySS37, IDBA38, MetaSPAdes39, SOAPdenovo240, SPAdes41, and Trinity42], or commercial software packages 303 

[CLC (https://www.qiagenbioinformatics.com/) and Geneious43] whose assembly algorithms are proprietary 304 

[Supplement Table S6]. The simulation settings for the reads were single-end reads, 250 nt read length, and 305 

50X coverage. A total of 2,470 assemblies (247 datasets per genome X 10 assemblers) were analyzed 306 

[Supplement Figure S1a]. 307 

 308 

Experiment 2: Simulated data by varying genome length and GC content 309 

 310 

Artificial genomes were constructed for four genome lengths: 2 Kb, 10 Kb, 100 Kb, and 1 Mb, with 311 

varying GC content from 20%–80%, in 5% increments [Supplement Figure S1b]. Datasets derived using one 312 

poliovirus genome (NC_002058) and one coronavirus genome (NC_002645) were also included in this analysis, 313 

representing the lower and upper genome length range typical of RNA viruses. The original GC content was 314 

kept constant for the poliovirus and coronavirus genomes. For all of these genomes, simulated reads for initial 315 

and mutated variants were generated as above.  316 

 317 

A total of 13,338 SPAdes assemblies were generated, which included 12,844 assemblies for the four 318 

artificial genomes (247 datasets per genome X 4 artificial genome lengths X 13 GC content proportions X 1 319 

assembler) and 494 assemblies for the poliovirus and coronavirus datasets (247 datasets per genome  X 2 320 

genomes X 1 assembler) [Supplement Figure S1b]. JMP v13.0.0 (www.sas.com) was used to calculate 321 

Pearson’s correlation and Spearman’s ρ values to compare the association between percent GC levels and the 322 

number of contigs produced at each PID level. Since there was little statistical difference when comparing the 323 

contig numbers generated at varying percent GC for each of the four genome length datasets (Spearman’s ρ = 324 

0.8299 to 0.9801, p<0.001) [Supplement Excel file], the final contig number was averaged across the 13 GC 325 
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percentages at a given PID. The average contig number was used for plotting the contig assembly results vs 326 

percent PID for each simulated genome length [Figures 4a-b]. 327 

 328 

Experiment 3: Simulated data by varying read length 329 

 330 

Genome variants were generated as described above (“Creation of simulated variant genomes and 331 

reads”) for a genome of size 100 Kb with 50% GC; this was the starting initial variant genome. In this 332 

simulation, initial and mutation variant reads at four sequencing read lengths (50, 100, 150, and 250 nt) were 333 

created using ART. A total of 538 SPAdes assemblies were generated (47, 97, 147, and 247 datasets for the 50, 334 

100, 150 and 250 nt read lengths, respectively) [Supplement Figure S1c].  335 

 336 

Evaluation of NGS datasets from clinical samples 337 

 338 

Four datasets derived from clinical samples containing picornaviruses (one enterovirus A71 [EV-A71], 339 

one coxsackievirus B5 [CV-B5] and two parechovirus A3 [PeV-A3]) were analyzed for this experiment, as 340 

previous sequencing analysis using Geneious indicated the presence of genome variants. The datasets were 341 

analyzed using an in-house pipeline (VPipe),18 which performs various quality control (QC) steps and de novo 342 

assembly using SPAdes. The post-QC reads were considered total reads (T)and mapped to their respective 343 

reference genome in order to determine the major and minor variants present in each sample. Total reads 344 

which mapped with high similarity (≥99%) to the major variant were categorized as reads representing the 345 

major variant (M). Unbinned reads from the major variant reference recruitment were used to construct the 346 

minor variant consensus using a second round of reference recruitment, and these reads were categorized as 347 

the minor variant (m). Remaining reads from the previous two steps were considered background (B) reads.  348 

 349 

De novo assembly for each of the four clinical samples was performed for the following binned NGS 350 

datasets: (1) total reads only (T); (2) major variants only (M); (3) major and minor variants only (Mm); and (4) 351 

major variants and background reads only (MB). This was repeated with three assembly programs: SPAdes, 352 

Cap3, and Geneious. The length of the longest contig produced from each assembly and the performance 353 
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metric UG50%.17 were calculated to compare the results for these 48 assemblies (4 experiments X 4 viruses X 3 354 

assemblers). 355 

 356 
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available upon request. 360 

 361 

Funding Information 362 

This work was supported in part by Federal appropriations to the Centers for Disease Control and Prevention, 363 

through the Advanced Molecular Detection Initiative line item.  364 

 365 

Acknowledgements 366 

We thank Dr. Steve Oberste for thoughtful suggestions on this work. 367 

 368 

Author contributions 369 

All authors contributed to the conceptualization, data analysis, preparation, and review of this manuscript. 370 

C.J.C, R.L.M., and T.F.F.N. wrote this manuscript.    371 

 372 

Competing interests 373 

The authors declare no competing interests.  374 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/815480doi: bioRxiv preprint 

https://doi.org/10.1101/815480


16 
  

References 375 

 376 

1. Rasmussen AL, Katze MG. Genomic Signatures of Emerging Viruses: A New Era of Systems Epidemiology. Cell 377 
Host Microbe 19, 611-618 (2016). 378 

 379 
2. Leung P, Eltahla AA, Lloyd AR, Bull RA, Luciani F. Understanding the complex evolution of rapidly mutating 380 

viruses with deep sequencing: Beyond the analysis of viral diversity. Virus Res 239, 43-54 (2017). 381 

 382 
3. Pierce BG, Keck ZY, Foung SK. Viral evasion and challenges of hepatitis C virus vaccine development. Curr Opin 383 

Virol 20, 55-63 (2016). 384 

 385 
4. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev 386 

Genet 9, 267-276 (2008). 387 

 388 
5. Andino R, Domingo E. Viral quasispecies. Virology 479-480, 46-51 (2015). 389 

 390 
6. Henn MR, et al. Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon 391 

immune recognition during acute infection. PLoS pathogens 8, e1002529-e1002529 (2012). 392 

 393 
7. Herbeck JT, et al. Demographic processes affect HIV-1 evolution in primary infection before the onset of 394 

selective processes. Journal of virology 85, 7523-7534 (2011). 395 

 396 
8. Jerzak G, Bernard KA, Kramer LD, Ebel GD. Genetic variation in West Nile virus from naturally infected 397 

mosquitoes and birds suggests quasispecies structure and strong purifying selection. The Journal of general 398 
virology 86, 2175-2183 (2005). 399 

 400 
9. Lauck M, et al. Analysis of hepatitis C virus intrahost diversity across the coding region by ultradeep 401 

pyrosequencing. Journal of virology 86, 3952-3960 (2012). 402 

 403 
10. Lin S-R, et al. Study of sequence variation of dengue type 3 virus in naturally infected mosquitoes and human 404 

hosts: implications for transmission and evolution. Journal of virology 78, 12717-12721 (2004). 405 

 406 
11. Murcia PR, et al. Intra- and interhost evolutionary dynamics of equine influenza virus. Journal of virology 84, 407 

6943-6954 (2010). 408 

 409 
12. Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. Quasispecies diversity determines pathogenesis through 410 

cooperative interactions in a viral population. Nature 439, 344-348 (2006). 411 

 412 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/815480doi: bioRxiv preprint 

https://doi.org/10.1101/815480


17 
  

13. Thai KTD, et al. High-resolution analysis of intrahost genetic diversity in dengue virus serotype 1 infection 413 
identifies mixed infections. Journal of virology 86, 835-843 (2012). 414 

 415 
14. Yang X, et al. De novo assembly of highly diverse viral populations. BMC Genomics 13, 475 (2012). 416 

 417 
15. Deng X, et al. An ensemble strategy that significantly improves de novo assembly of microbial genomes from 418 

metagenomic next-generation sequencing data. Nucleic Acids Res 43, e46 (2015). 419 

 420 
16. Wommack KE, Bhavsar J, Ravel J. Metagenomics: read length matters. Applied and environmental microbiology 421 

74, 1453-1463 (2008). 422 

 423 
17. Castro CJ, Ng TFF. U50: A New Metric for Measuring Assembly Output Based on Non-Overlapping, Target-424 

Specific Contigs. J Comput Biol 24, 1071-1080 (2017). 425 

 426 
18. Montmayeur AM, et al. High-throughput next-generation sequencing of polioviruses. J Clin Microbiol 55, 606-427 

615 (2017). 428 

 429 
19. Ng TFF, et al. High Variety of Known and New RNA and DNA Viruses of Diverse Origins in Untreated Sewage. 430 

Journal of Virology 86, 12161 (2012). 431 

 432 
20. Ma S, Du Z, Feng M, Che Y, Li Q. A severe case of co-infection with Enterovirus 71 and vaccine-derived Poliovirus 433 

type II. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 72, 434 
25-29 (2015). 435 

 436 
21. Jorba J, et al. Update on Vaccine-Derived Polioviruses - Worldwide, January 2017-June 2018. MMWR Morbidity 437 

and mortality weekly report 67, 1189-1194 (2018). 438 

 439 
22. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. 440 

Bioinformatics (Oxford, England) 31, 3350-3352 (2015). 441 

 442 
23. Lu H, Giordano F, Ning Z. Oxford Nanopore MinION Sequencing and Genome Assembly. Genomics, Proteomics & 443 

Bioinformatics 14, 265-279 (2016). 444 

 445 
24. Herath D, Jayasundara D, Ackland D, Saeed I, Tang SL, Halgamuge S. Assessing Species Diversity Using 446 

Metavirome Data: Methods and Challenges. Comput Struct Biotechnol J 15, 447-455 (2017). 447 

 448 
25. Bunge J, Woodard L, Bohning D, Foster JA, Connolly S, Allen HK. Estimating population diversity with CatchAll. 449 

Bioinformatics 28, 1045-1047 (2012). 450 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/815480doi: bioRxiv preprint 

https://doi.org/10.1101/815480


18 
  

 451 
26. Angly F, et al. PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities 452 

using metagenomic information. BMC Bioinformatics 6, 41 (2005). 453 

 454 
27. Wang NF, et al. Diversity and Composition of Bacterial Community in Soils and Lake Sediments from an Arctic 455 

Lake Area. Frontiers in microbiology 7, 1170-1170 (2016). 456 

 457 
28. Rusch DB, et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical 458 

Pacific. PLoS biology 5, e77 (2007). 459 

 460 
29. The Human Microbiome Project C, et al. Structure, function and diversity of the healthy human microbiome. 461 

Nature 486, 207 (2012). 462 

 463 
30. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The Human Microbiome Project. 464 

Nature 449, 804 (2007). 465 

 466 
31. Schneider WL, Roossinck MJ. Genetic Diversity in RNA Virus Quasispecies Is Controlled by Host-Virus 467 

Interactions. Journal of Virology 75, 6566 (2001). 468 

 469 
32. Gregori J, Perales C, Rodriguez-Frias F, Esteban JI, Quer J, Domingo E. Viral quasispecies complexity measures. 470 

Virology 493, 227-237 (2016). 471 

 472 
33. Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read simulator. Bioinformatics (Oxford, 473 

England) 28, 593-594 (2012). 474 

 475 
34. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res 9, 868-877 (1999). 476 

 477 
35. Chevreux B, et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP 478 

detection in sequenced ESTs. Genome Res 14, 1147-1159 (2004). 479 

 480 
36. Chevreux BW, T.; Suhai, S. Genome sequence assembly using trace signals and additional sequence information. 481 

German conference on bioinformatics 99, 45-56 (1999). 482 

 483 
37. Jackman SD, et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 27, 484 

768-777 (2017). 485 

 486 
38. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA – A Practical Iterative de Bruijn Graph De Novo Assembler. In: 487 

Research in Computational Molecular Biology (ed. Berger B). Springer Berlin Heidelberg (2010). 488 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/815480doi: bioRxiv preprint 

https://doi.org/10.1101/815480


19 
  

 489 
39. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. 490 

Genome Research 27, 824-834 (2017). 491 

 492 
40. Luo R, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. 493 

GigaScience 1, 18 (2012). 494 

 495 
41. Bankevich A, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J 496 

Comput Biol 19, 455-477 (2012). 497 

 498 
42. Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat 499 

Biotechnol 29, 644-652 (2011). 500 

 501 
43. Kearse M, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization 502 

and analysis of sequence data. Bioinformatics 28, 1647-1649 (2012). 503 

 504 
44. Phillippy AM. New advances in sequence assembly. Genome research 27, xi-xiii (2017). 505 

 506 
45. Olivarius S, Plessy C, Carninci P. High-throughput verification of transcriptional starting sites by Deep-RACE. 507 

BioTechniques 46, 130-132 (2009). 508 

 509 
46. Lagarde J, et al. Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput 510 

sequencing (RACE-Seq). Nature Communications 7, 12339 (2016). 511 

 512 

  513 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/815480doi: bioRxiv preprint 

https://doi.org/10.1101/815480


20 
  

Figures and legends 514 

 515 

 516 

  517 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/815480doi: bioRxiv preprint 

https://doi.org/10.1101/815480


21 
  

Figure 1. Trends and patterns of sequencing technology and assembly methods of viral entries in the 518 

GenBank database. (a) Cumulative frequency histogram of all viral entries in GenBank from Jan. 1, 1982 519 

through Dec. 31, 2017 (total=2,338,775 entries). (b) Count of all viral entries with at least one Sequencing 520 

Technology documented for the years 1982-2017. For panels (b) and (d), the “Other” category denotes entries 521 

with the Sequencing Technology field omitted or mis-assigned. (c) Relationship between viral entries listing 522 

one or two Sequencing Technologies during 1982–2017. The number inside the circle indicates viral entries 523 

with only one Sequencing Technology listed; the number adjacent to the line indicates entries combining two 524 

Sequencing Technologies. The thicker the connection line, the stronger the relationship. (d and e) Percentage 525 

ratio graph of all viral entries with Sequencing Technology documented for the years 2010–2017, with (d) and 526 

without (e) the Other category. The majority of entries in earlier years include omissions classified under the 527 

Other category, which is detailed in Supplement Table S1. (f) Percentage ratio graph of viral entries with 528 

length greater than 2000 nt that have been documented with one of the seven Sequencing Technologies for 529 

the years 2012–2017. The seven technologies includes Sanger (n=1) and NGS technologies (n=6). (g) 530 

Percentage ratio graph of viral entries with length greater than 2000 nt and that have been documented with 531 

one of the six NGS as the Sequencing Technology for the years 2012–2017. Compared to panel (f), Sanger is 532 

excluded in this graph. (h) Assembly method of viral entries greater than 2000 nt, showing percentage ratio 533 

graph of entries with at least one Assembly Method. For (h) and (i), the Other category describes assembly 534 

methods outside of the 18 most popular programs investigated. (i) Reclassification of panel (h) by the nature 535 

of the assembly methods. The programs can be grouped into de novo assembler, reference-mapping 536 

assembler, and software that can perform both.  537 

 538 
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 540 

 541 

 542 

Figure 2. Workflow diagram of the investigation of variant simulated NGS reads through de novo assembly.  543 

First, in step 1, an artificial reference genome and corresponding initial variant reads were created with 544 

varying constraints such as genome length, GC content, read length, and assemblers, according to the 545 

experiment types as detailed in Supplement Figure S1. In the second step, an artificial mutated variant 546 

genome was created. The process is repeated to generate 247 different mutated variants with controlled 547 

mutation parameters— starting with 1 mutation every 4 nucleotides (75% PID) and ending with a mutated 548 

variant with 1 mutation in every 250 nucleotides (99.6% PID). Mutated variant reads are also generated for 549 

each of the mutation parameters. In the third and fourth steps, the initial and mutated variants were then 550 

combined and used as input for de novo assembly for the three experiments, as detailed in Supplement Figure 551 

S1. 552 

 553 

 554 

 555 

 556 

 557 
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  559 

 560 

Figure 3. The number of contigs generated by different de novo assemblers using simulated data containing 561 

variants differed with a range of percentage identities (PID). Blue denotes de Bruijn graph assemblers (DBG); 562 

green denotes overlap-layout-consensus assemblers (OLC); orange denotes commercialized proprietary 563 

algorithms. Variant distinction, VD; variant interference, VI; variant singularity, VS. *For SOAPdenovo2, several 564 

data points returned zero contigs due to a well-documented segmentation fault error. (a) Schematic diagram 565 
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depicting concepts of the VD, VI, and VS, and their relationship to PID. (b) Comparison of output from 10 566 

different assemblers. The number of contigs produced by each de novo assemblers at different variant PID 567 

ranges (75%–99.6%) were shown. (c) Close-up of PID ranges where variant interference is the most 568 

apparent. The y-axis denotes the number of contigs. 569 

  570 
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 571 

 572 

Figure 4. The effect of genome length and read length on de novo assembly of simulated variants across a 573 

range of percentage identities (PID). (a & b) Comparison of genome lengths. Six different genome lengths 574 

were assembled and the final contig counts were tallied across varying PID thresholds (75%–99.6%). For the 575 

simulated genome lengths of 2Kb, 10kb, 100Kb, and 1Mb, the average of contig number at each PID was 576 

plotted. Panel (b) shows the close-up view where interference was the most prominent. For all six genome 577 

lengths and each of the 13 iterations, VI consistently occurred in the same range of PID (99.00%–99.24%). The 578 

assembly makes a transition from VD to VI at the threshold of 99.00%, and it makes a transition from VI to VS 579 

at the threshold of 99.24%. Also, the longer the genome length, the more contigs produced during VI. (c) The 580 

relationship between genome length and the total number of contigs produced. Data from panel (a) were 581 

plotted on a logarithmic scale. The total number of contigs produced is significantly dependent on the genome 582 

size (r2=0.967; p-value<0.0001). (d and e) The effect of read length in variant assembly with a genome size of 583 

100K. Simulated data with four different read lengths were created and assembled, and the final contig counts 584 

were tallied across varying PID thresholds (75%–99.6%). Panel (e) shows the close-up view where interference 585 
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was the most apparent. When longer read lengths were used, the variant interference PID range was much 586 

narrower than when shorter read lengths were used to build contigs. 587 

 588 

 589 

Figure 5. The effect of variant interference in a real dataset from a clinical sample containing enterovirus 590 

A71 (EV-A71) and its variants. Fastq reads were partitioned into four components: trimmed reads after 591 

quality control (T), major variant (M), minor variant (m), and background (B). These reads were then combined 592 

into four different experiments: T, M, Mm, and MB and assembled using SPAdes. The contig representation 593 

schematic showing the abundance and length of the generated contigs reveals the impact of variant 594 

interference on de novo assembly. The bar graphs show the UG50% metric and the length of the longest contig. 595 

UG50% is a percentage-based metric that estimates length of the unique, non-overlapping contigs as 596 

proportional to the length of the reference genome.17 Unlike N50, UG50% is suitable for comparisons across 597 

different platforms or samples/viruses. More clinical samples and viruses are analyzed similarly in Figure 6. 598 

 599 
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 601 

 602 

Figure 6. The effect of variant interference on the assembly of four clinical datasets using three assembly 603 

programs. Fastq reads were partitioned into four categories: total reads (T), major variant (M), minor variant 604 

(m), and background (B). These reads were then combined into four different categories: T, M, major and 605 

minor variants (Mm), and major variant and background (MB). Datasets were assembled using SPAdes, Cap3, 606 

and Geneious. The bar graphs show the UG50% metric and the length of the longest contig.  607 

 608 

Coxsackievirus B5, CV-B5; Enterovirus A71, EV-A71; Parechovirus A3 (Sample 1), PeV-A3 (S1); Parechovirus A3 609 

(Sample 2), PeV-A3 (S2). 610 

 611 
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Supplemental Information 613 

Analysis of viral GenBank records 614 

The advent of NGS fuels viral sequencing 615 

 616 

As of December 2017, GenBank’s non-redundant nucleotide database had grown to more than 2.3 617 

million virus sequences, with the annual number of new sequences deposited increasing by 270% between 618 

2007 and 2017 [Figure 1a and Supplement Table S1]. GenBank entries started incorporating information on 619 

the sequencing technology platform used in 2011. Through 2018, 144,712 viral entries (22%) had documented 620 

utilization of NGS sequencing technology, compared to 500,027 entries (77%) utilizing Sanger methods [Figure 621 

1b and Supplement Table S1]. Illumina was the most common NGS platform used for viral sequencing, with 622 

>2-fold the number of entries compared to the next most popular NGS platform (31,000 viral entries in 2017 623 

[Figure 1d & e]). Although NGS usage has risen tremendously, Sanger sequencing still contributed the majority 624 

of all viral sequences. This is likely because Sanger is still attractive for generating short viral sequences over 625 

genotyping windows or other informative regions. If only long sequences (≥2000 nt) are considered, NGS 626 

technologies surpassed Sanger as the dominant strategy for sequencing in 2017 [Figure 1f and Supplement 627 

Table S2].  628 

 629 

A total of 27,217 counts of sequencing technologies were listed for the 25,344 long viral GenBank 630 

entries in 2017, as some sequences were generated using two or more sequencing technologies. NGS 631 

technologies were listed in 53.8% (14,653/27,217) of entries, versus 46.2% of entries (12,564/27,217) for 632 

Sanger. Illumina was identified as the most dominant NGS technology, accounting for 12,615/14,653 entries 633 

(86.1%) [Figure 1g and Supplement Table S2].  634 

 635 

Multiple sequencing technologies may be used to generate viral sequence for one entry. The most 636 

common combination observed was 454 and Sanger (18,002 entries), likely due to the early emergence of the 637 

454 technology compared to other NGS platforms [Figure 1c and Supplement Table S3]. This is followed by 638 

Illumina and Sanger (3,475), Illumina and 454 (3,299), Illumina and Ion Torrent (2,600), and Illumina and 639 

PacBio (997). Interestingly, more recently released longer-read platforms like PacBio and Oxford Nanopore 640 
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tended to be paired with Illumina more frequently compared to traditional Sanger sequencing. A small 641 

number of studies even combined three or four different sequencing technologies (530 and 6 entries, 642 

respectively) [Supplement Table S4]. Some users employed a combined approach to circumvent the inherent 643 

flaws of one sequencing platform, particularly for genome finishing.44 For example, after NGS has been used to 644 

generate the majority of a RNA virus genome, RACE (Rapid amplification of cDNA ends) is typically performed 645 

with Sanger to obtain the 5’ or 3’ termini.45, 46 646 

 647 

De novo assembly plays a major role in analyzing long viral sequences 648 

 649 

We analyzed the assembly methods used for GenBank entries of long sequences (≥2000 nt) from 2012 to 2017 650 

when NGS usage become relevant [Figure 1h & i and Supplement Table S5]. The number of programs used to 651 

assemble viral sequences has steadily increased over time (a >2-fold increase from 2012-2017). With new 652 

sequencing technologies emerging and computational power continually improving, the development of new 653 

and better assembly programs always follows suite. The use of specifically-designed de novo assembly 654 

programs (ABySS, BWA, Canu, Cap3, IDBA, MIRA, Newbler, SOAPdenovo, SPAdes, Trinity, and Velvet) has 655 

increased from less than 1% of viral sequence entries in 2012, to 20% of all viral sequence entries in 2017. A 656 

similar increase was observed for reference-mapping software (i.e., Bowtie and Bowtie2), from 0.03% in 2012 657 

to 6.5% in 2017.  Multifunctional programs that offer both assembly options, including CLC Genomics 658 

Workbench (CLC), DNA Baser, DNASTAR, Geneious, and Sequencher, were by far the most popular option for 659 

the years 2013-2017. However, since these commercial software packages can perform both de novo and 660 

reference-mapping assembly, the exact sequence assembly strategy used for these records is unknown, and 661 

thus the contributions of both de novo assembly and reference recruitment are likely underestimated. 662 

 663 
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Supplement Figure S1. Workflow diagrams of simulated data from data creation through de novo assembly. 665 

(a) Comparison of assemblers. First, an artificial reference genome and corresponding initial variant reads 666 

were created with the following constraints: (1) reference genome length: 100K; (2) GC% of reference 667 

genome: 50%; (3) read length: 250 nt; and (4) coverage: 50X. Second, an artificial mutated variant genome and 668 

corresponding mutated variant reads were created 247 times, each with a differing pairwise percent identity 669 

ranging from 1 mutation every 4 nucleotides (75% PID) to 1 mutation in every 250 nucleotides (99.6% PID). 670 

The initial and mutated variants were then combined and used as input for 10 different de novo assemblers 671 

with varying underlying algorithms. A total of 2,470 assemblies were performed. (b) Comparison of genome 672 

length and GC%. First, 13 artificial reference genomes and corresponding initial variant reads were created for 673 

four different genome lengths (2Kb, 10Kb, 100Kb, and 1Mb), each specifying a different GC% ranging from 674 

20%–80%. In addition, two actual virus reference genomes from NCBI were included, NC_002058 and 675 

NC_002645, with genome lengths of 7,440 nt and 27,317 nt, respectively. Read lengths of 250 nt with a 676 

coverage of 50X were used for all genomes. Second, an artificial mutated variant genome and corresponding 677 

mutated variant reads were created 247 time, each with a differing pairwise percent identity ranging from 1 678 

mutation every 4 nucleotides (75% PID) to 1 mutation in every 250 nucleotides (99.6% PID). The initial and 679 

mutated variants were then combined for each and used as input for the SPAdes de novo assembler. A total of 680 

13,338 assemblies were performed. (c) Comparison of read length. First, an artificial reference genome and 681 

corresponding initial variant reads were created with the following constraints: (1) reference genome length: 682 

100K; (2) GC% of reference genome: 50%; (3) read lengths: 50 nt, 100 nt, 150 nt, or 250 nt; and (4) coverage: 683 

50X. Second, an artificial mutated variant genome and corresponding mutated variant reads were created, 684 

each with a differing pairwise percent identity ranging from 1 mutation every 4 nucleotides (75% PID) up to 1 685 

mutation in every 250 nucleotides (99.6% PID). The initial and mutated variants created for each of the four 686 

read lengths were then grouped by read length size and used as input for SPAdes de novo assembler. A total of 687 

538 assemblies were performed. 688 

 689 
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 691 

Supplement Figure S2. Analysis of the final contig assembly graphs for a clinical sample containing 692 

enterovirus A71 (EV-A71) variants using Bandage. Based on the four assemblies in Figure 5, Bandage was 693 

used to display the contig graphs from each SPAdes output. The visualizations for T, Mm, and MB show the 694 

effects of variant interference, while M shows the ideal assembly.   695 
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Year Total # of viral Total  Total Total # of entries with Sequencing Technology Breakd
entries in GenBank count† omitted at least one Seq. Tech. Sanger 454 Illumina IonTorrent Oxford N

2017 238367 243849 108021 135828 85194 15999 31279 2130 46
2016 235477 237569 107090 130479 102837 2971 22185 2111 119
2015 197440 211177 71148 140029 102440 15517 17625 3048
2014 158579 163092 66217 96875 81515 5452 7399 2345
2013 198540 202232 108365 93867 84527 5243 2474 758
2012 172850 173324 126821 46503 43509 1194 277 403
2011 181315 181319 176355 4964 5 4811 147
2010 131962 131962 131960 2 2   
2009 213549 213549 213549   
2008 109265 109265 109265   
2007 88996 88996 88996   
2006 94444 94444 94444   
2005 58245 58245 58245   
2004 53841 53842 53834 8 1 4 2
2003 38578 38578 38576 2 2   
2002 33412 33412 33412   
2001 28305 28305 28304 1 1   
2000 26871 26871 26871   
1999 17266 17266 17266   
1998 13840 13840 13840   
1997 12378 12378 12378   
1996 8988 8988 8987 1 1
1995 7475 7475 7475   
1994 5449 5449 5449   
1993 9185 9185 9184 1 1
1992 1754 1754 1754   
1991 725 725 725   
1990 364 364 363 1 1
1989 424 424 424   
1988 269 269 269   
1987 159 159 159   
1986 114 114 114   
1985 130 130 130   
1984 19 19 19   
1983 92 92 92   
1982 108 108 108     

TOTALS 2338775 2368770 1720209 648561 500032 51192 81391 10795 165
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Supplement Table S1. Total counts from NCBI’s GenBank non-redundant nucleotide database. 696 

† Total count is the combination of all sequencing technologies listed for each entry plus the 697 

total number of entries with sequencing technology omitted. This number is higher than the 698 

Total # of viral entries in GenBank because it accounts for all entries with multiple sequencing 699 

technologies listed.  700 

 701 

Sequencing Technology, Seq. Tech.; Oxford Nanopore, Oxford NP; Pacific Biosciences, PacBio 702 

  703 
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NGS Year 
Platforms 2017 2016 2015 2014 2013 2012 
454 1029 634 4987 1531 1642 376 
Sanger 12564 13571 20216 14294 13646 10847 
Illumina 12615 12629 4121 4414 1266 230 
PacBio 17 67 1 12 1 0 
IonTorrent 923 1342 1217 1131 408 171 
Oxford NP 46 119 0 0 0 0 
SOLiD 8 0 0 13 29 1 
Other 15 4 1 5 10 41 

TOTALS 27217 28366 30543 21400 17002 11666 
 704 

Supplement Table S2. Total count of sequencing technologies for sequences >2000 nt in the 705 

NCBI GenBank non-redundant nucleotide database for years 2012–2017.  706 

These numbers were found with the following search criteria: “viruses,” “genomic RNA/DNA,” 707 

“GenBank (No RefSeq),” length: 2000 to 2000000, release date: 1/1/201X to 12/31/201X, and 708 

“sequencing technology” in any field. 709 

 710 

Oxford Nanopore, Oxford NP; Pacific Biosciences, PacBio 711 

  712 
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Year Total # of entries with Total # of entries with Total # of entries with 
 two Seq. Techs. three Seq. Techs. four Seq. Techs. 

2017 5468 7   
2016 2008 42   
2015 13156 283 5 
2014 4457 28   
2013 3409 140 1 
2012 414 30   
2011 4   
2010     
2009     
2008     
2007     
2006     
2005     
2004 1   
2003     
2002     
2001     
2000     
1999     
1998     
1997     
1996     
1995     
1994     
1993     
1992     
1991     
1990     
1989     
1988     
1987     
1986     
1985     
1984     
1983     
1982     

TOTALS 28917 530 6 
 713 

Supplement Table S3. Total counts from NCBI’s GenBank non-redundant nucleotide database 714 

with multiple sequencing technologies listed per entry. Blank fields indicate absence of entries 715 

for the corresponding category.  716 

 717 

Sequencing Technologies, Seq. Techs. 718 

  719 
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454 Illumina IonTorrent PacBio SOLiD
454   3       IonTorrent 
454   2       PacBio 
454   452 21   1 Sanger 

Illumina 6   48 2 1 Sanger 
IonTorrent 

 720 

Supplement Table S4. Total counts from NCBI’s GenBank non-redundant nucleotide database 721 

of all entries with three and four sequencing technologies listed 722 

For example, there are a total of 6 entries in GenBank that have the following sequencing 723 

technologies listed: 454, Illumina, Ion Torrent, and Sanger for one sequence entry. 724 

 725 

Pacific Biosciences, PacBio 726 

  727 
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Assembly Year 
Methods 2017 2016 2015 2014 2013 2012 

ABySS 522 155 100 66 56 0 
Bowtie 40 868 33 527 5 4 
Bowtie2 1682 128 787 9 51 0 
BWA 671 294 281 440 148 1 
Canu 3 0 0 0 0 0 
Cap3 59 34 55 288 10 0 
CLC 3404 5139 1948 2186 1172 381 
DNA Baser 838 326 247 261 27 9 
DNASTAR 4030 3191 6897 3175 3101 530 
Geneious 3636 2633 4767 588 504 79 
IDBA 28 11 729 22 2 0 
MIRA 446 406 70 140 24 14 
Newbler 176 183 703 336 435 60 
Sequencher 3243 2154 2572 5727 7927 3462 
SOAPdenovo 258 67 105 24 9 1 
SPAdes 792 1632 89 266 0 0 
Trinity 2162 4576 301 509 4 0 
Velvet 161 107 338 341 144 32 
Other 4190 6220 5810 5437 3179 6950 

TOTALS 26341 28124 25832 20342 16798 11523 
 728 

 729 

Supplement Table S5. Total count of assembly programs used to generate sequences >2000 nt 730 

in the NCBI GenBank non-redundant nucleotide database. These numbers were found with 731 

the following search criteria: “viruses,” “genomic RNA/DNA,” “GenBank (No RefSeq),” length: 732 

2000 to 2000000, release date: 1/1/201X to 12/31/201X, and ‘”sequencing technology” in any 733 

field; the assembly method was then parsed out. 734 

  735 
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DBG OLC Proprietary Algorithm 
Program Version Program Version Program Version 

ABySS 2.0.2 Cap 3 CLC Genomic Workbench 11 
IDBA 1.1.3 Mira 4.0.2 Geneious  10.2.3 
MetaSPAdes 3.9.0 
SOAPdenovo2 r240 
SPAdes 3.9.0 
Trinity 2.1.1         

 736 

Supplement Table S6. The 10 de novo assemblers used for analysis of the simulated data, as 737 

categorized by their underlying assembly algorithms. de Bruijn graph, DBG; overlap-layout-738 

consensus, OLC.  739 

 740 
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