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ABSTRACT2

Single-cell transcriptomics is advancing discovery of the molecular determinants of cell identity,3
while spurring development of novel data analysis methods. Stochastic mathematical models4
of gene regulatory networks help unravel the dynamic, molecular mechanisms underlying cell-5
to-cell heterogeneity, and can thus aid interpretation of heterogeneous cell-states revealed by6
single-cell measurements. However, integrating stochastic gene network models with single cell7
data is challenging. Here, we present a method for analyzing single-cell gene-pair coexpression8
patterns, based on biophysical models of stochastic gene expression and interaction dynamics.9
We first developed a high-computational-throughput approach to stochastic modeling of gene-pair10
coexpression landscapes, based on numerical solution of gene network Master Equations. We11
then comprehensively catalogued coexpression patterns arising from tens of thousands of gene-12
gene interaction models with different biochemical kinetic parameters and regulatory interactions.13
From the computed landscapes, we obtain a low-dimensional “shape-space” describing distinct14
types of coexpression patterns. We applied the theoretical results to analysis of published single15
cell RNA sequencing data and uncovered complex dynamics of coexpression among gene pairs16
during embryonic development. Our approach provides a generalizable framework for inferring17
evolution of gene-gene interactions during critical cell-state transitions.18

Keywords: stochastic modeling, gene expression noise, gene regulatory networks, single-cell data, scRNA-seq19

1 INTRODUCTION

In recent years, single-cell-resolution measurements have revealed unprecedented levels of cell-to-cell20
heterogeneity within tissues. The discovery of this ever-present heterogeneity is driving a more nuanced21
view of cell phenotype, wherein cells exist along a continuum of cell-states, rather than conforming to22
discrete classifications. The comprehensive view of diverse cell states revealed by single cell measurements23
is also affording new opportunities to discover molecular regulators of cell phenotype and dynamics of24
lineage commitment (Trapnell et al. (2014); Olsson et al. (2016); Briggs et al. (2018)). For example, single25
cell transcriptomics have revealed the widespread nature of multilineage priming (MLP), a phenomenon26
wherein individual, multipotent cells exhibit “promiscuous” coexpression of genes associated with distinct27
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lineages prior to commitment (Nimmo et al. (2015)). In principle, mathematical modeling of gene regulatory28
network dynamics can provide a theoretical foundation for understanding cell heterogeneity and gene29
expression dynamics, by quantitatively linking molecular-level regulatory mechanisms with observed cell30
states. However, due to the molecular complexity of gene regulatory mechanisms, it remains challenging to31
integrate such models with single-cell data.32

Mathematical models of gene regulatory network dynamics can account for (and at least partially33
reproduce) observed cellular heterogeneity in two primary ways. First, gene network models are multi-34
stable dynamical systems, meaning a given network has the potential to reach multiple stable states of35
gene expression. These states arise from the dynamic interplay of activation, inhibition, feedback, and36
nonlinearity (Kauffman (1969); MacArthur et al. (2009); Huang (2012)). Second, some mathematical37
models inherently treat cellular noise. This noise, or stochasticity, is modeled in various ways depending38
on assumptions about the source (Peccoud and Ycart (1995); Arkin et al. (1998); Kepler and Elston39
(2001); Swain et al. (2002)). Discrete, stochastic models of gene regulation, which track discrete molecular40
entities, regulatory-protein binding kinetics, and binding states of promoters controlling gene activity, have41
formed the basis of biophysical theories of gene expression noise due to so-called intrinsic molecular noise42
(Peccoud and Ycart (1995); Thattai and van Oudenaarden (2001); Kepler and Elston (2001); Pedraza and43
Paulsson (2008)). Such stochastic gene-regulation mechanisms have also been incorporated into larger44
regulatory network models using the formalism of stochastic biochemical reaction networks, and have45
been utilized to explore how molecular fluctuations can cause heterogeneity within phenotype-states and46
promote stochastic transitions between phenotypes (Feng and Wang (2012); Sasai et al. (2013); Zhang and47
Wolynes (2014); Tse et al. (2015)).48

The quantitative landscape of cellular states is another concept that is increasingly utilized to describe49
cellular heterogeneity. Broadly, the cellular potential landscape (first conceptualized by Waddington50
(Waddington (2014); Wang et al. (2011); Huang (2012)) is a function in high-dimensional space (over51
many molecular observables, typically expression levels of different genes), that quantifies the stability52
of a given cell-state. In analogy to potential energy (gravitational, chemical, electric, etc.), cell states of53
higher potential are less stable than those of lower potential. The landscape concept inherently accounts for54
cellular heterogeneity, since it holds that a continuum of states is theoretically accessible to the cell, with55
low-potential states (in “valleys”) more likely to be observed than high-potential states. The landscape is a56
rigorously defined function derived from the dynamics of the underlying gene network model, according to57
some choice of mathematical formalism (Wang et al. (2011); Bhattacharya et al. (2011); Huang (2012);58
Zhou et al. (2016)). For stochastic gene network models that inherently treat noise, the landscape is directly59
obtained from the computed probability distribution over cell-states (Cao and Liang (2008); Micheelsen60
et al. (2010); Feng and Wang (2012); Tse et al. (2015)).61

Stochastic modeling of gene network dynamics has been employed in various forms for analysis of62
single cell measurements. For example, application of noisy dynamical systems theory has shed light on63
cell-state transitions (Mojtahedi et al. (2016); Jin et al. (2018)). Stochastic simulations of gene network64
dynamics have been used to benchmark tools for tasks such as network reconstruction (Schaffter et al.65
(2011); Dibaeinia and Sinha (2019)). However, we are not aware of any existing analysis methods that66
utilize discrete-molecule, stochastic models, which fully account for intrinsic gene expression noise and its67
impact on cell-state, to aid interpretation of noisy distributions recovered from single cell measurements.68
There exists an opportunity to link such biophysical, stochastic models, which reproduce intrinsic noise69
and cell heterogeneity in silico, to single cell datasets that characterize cell heterogeneity in vivo. In70
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particular, the landscape of heterogeneous cell-states computed from discrete stochastic models can be71
directly compared to single-cell measurements.72

In this work, we present a method for analyzing single-cell gene pair coexpression patterns that is73
founded on biophysical theory of stochastic gene networks. In our approach, the key object linking the74
models to the data is the gene-pair coexpression landscape, which is derived directly from the bivariate75
distribution of expression states, and which is computed from a stochastic model or extracted from76
single cell measurements. The rationale underlying the method is two-fold: (1) information on gene-gene77
interactions can be inferred from the distinctive characteristics of noise in single-cell data (i.e., from78
the “shape” of the landscape); (2) existing analysis techniques are relatively insensitive to landscape79
shape. We first comprehensively compute and classify the landscapes produced by a family of ∼40,00080
stochastic two-gene regulatory network models. We then use the model-derived classification to analyze81
published data from vertebrate development. In so doing, we uncover both expected and novel patterns82
of coexpression in development. While our analysis here is proof-of-principle, and limited to two-gene83
interactions, the conceptual framework could be expanded to include multi-body gene interactions in the84
future.85

2 METHODS

2.1 Discrete, Stochastic Models of Two-Gene Regulatory Networks86

We first developed a family of stochastic models of gene-gene interactions (see Fig. 1 for model87
schematic), which is based on previously published models (Feng and Wang (2012); Zhang and Wolynes88
(2014)). We label two genes X and Y . Each gene encodes a protein, which acts as a transcription factor89
(TF) that potentially regulates its own expression as well as that of the other gene. Each gene has a promoter90
(or more generally, regulatory regions of DNA) that can be bound by any combination of its own expressed91
protein and/or the other gene’s expressed protein. The promoter states are thus labeled as: X00 (neither92
transcription factor is bound to X’s promoter), X0x (X’s own protein is bound, resulting in auto-regulation93
of gene expression), Xy0 (Y’s protein is bound to X’s promoter, resulting in cross-regulation), Xyx (both94
proteins are bound to X’s promoter, resulting in combinatorial regulation). (The promoter states for gene95
Y are defined in a symmetric manner.) The regulatory effect of each promoter state (i.e., the effect of96
having none, one, or both proteins bound on the gene’s expression) is accounted by the transcription rate97
gij corresponding to each possible promoter state: e.g., when gene X’s promoter is unbound, it transcribes98
at rate gX00. Binding of Y ’s protein changes the transcription rate to gXy0, which may be lower, higher, or the99
same, depending on whether the effect of Y on X is assumed to be repressing, activating, or not impacting.100
(All other transcription rates for each promoter state and for gene Y are defined similarly.) The model101
involves three classes of reactions: mRNA synthesis, mRNA degradation, and promoter-state-change102
reactions. mRNA synthesis reactions are given by:103

Xij

gXij−−→ Xij + x

Yij

gYij−−→ Yij + y

(1)
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where x and y denote mRNA transcripts which will be translated into the transcription factors encoded by104
genes X and Y , respectively. mRNA degradation reactions are given by:105

x
k−−→ 0

y
k−−→ 0

(2)

Promoter-state-change reactions are given by, e.g.:106

X00

hy2/2−−−−⇀↽−−−
f

Xy0, (3)

which represents the change of promoter-state (and corresponding regulatory impact) on gene X when Y ’s107
transcription factor binds (forward reaction) or unbinds (reverse reaction). All other promoter-state-change108
reactions for X and Y are defined similarly. The changes of promoter state occur with forward rates hy2/2109
or hx2/2 (when the change of state occurs due to binding of transcription factor from gene Y or X , respec-110
tively) and f (when the change of state occurs due to an unbinding event). The model tracks copy numbers111
of individual mRNA molecules in the cell, to enable direct comparison with single cell transcriptomic112
data, but translation of mRNA into protein is not explicitly accounted for. Instead, transcription factor113
(protein) levels are assumed to be linearly proportional to mRNA, and this proportionality constant is114
subsumed into the binding rate h. The quadratic dependence of the forward binding rates on x or y arises115
from the assumption that homodimeric transcription factors regulate gene expression, which is a general116
and convenient way to include cooperativity in the model.117

We assign rate constants to intracellular processes that are in line with experimental estimates from118
vertebrates, where possible (see Table 1). (For full details of model reactions and parameter derivations, see119
Supplement). Rates of mRNA synthesis and degradation are relatively well characterized, though they vary120
considerably for different transcripts (Schwanhäusser et al. (2011)). Rates of promoter-state-change are121
less well-defined, since promoter-state-changes that ultimately impact gene expression may be attributed122
to a variety of molecular processes, including: (a) relatively fast processes of TF binding or unbinding123
from DNA (b) relatively slow chromatin remodeling processes that may be initiated or facilitated by TF124
binding, require multiple steps and cooperative interactions, and are generally poorly understood. In our125
models, to account for this range of possible mechanisms, we consider a wide range of parameter values126
h, f for promoter-state-changes. (The significance of these fast and slow regimes, termed the adiabatic and127
nonadiabatic regimes, respectively, to cell-state stability has been studied previously by stochastic modeling128
(Sasai and Wolynes (2003); Feng and Wang (2012); Sasai et al. (2013); Zhang and Wolynes (2014))). We129
here define the “fast” regime as determined by measured parameter values of protein binding/unbinding130
DNA (e.g., from Geertz et al. (2012)), occurring with timescales of minutes, seconds, or faster. We define131
the “slow” regime more broadly as any epigenetic/chromatin changes occurring on timescales of hours,132
days, or longer. For example, in mammalian cells, changes of chromatin state during cell-fate specification133
were estimated to be on the order of several days (Hathaway et al. (2012); Mariani et al. (2010)), while134
theoretical studies predicted timescales on the order of the cell cycle time (i.e., hours to days, Sasai et al.135
(2013)).136

We define two types of model systems. The Mutual Inhibition/Self-Activation (MISA) model encodes137
a common network motif that is understood to control a variety of cell fate decisions (Graf and Enver138
(2009); Huang (2013)) and has been extensively studied by mathematical modeling (Huang et al. (2007);139
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Rate Constant Symbol Units Value Comments/Source
mRNA synthesis (not repressed) ghi mRNA/hr 0.8 - 1.4∗ Schwanhäusser et al. (2011)
mRNA synthesis (repressed) glo mRNA/hr 0.001 see text
mRNA degradation k /hr 0.2‡ Schwanhäusser et al. (2011)
Promoter state change (unbinding) f

†
/hr (fast) 10 - 105 Geertz et al. (2012)

(slow) 10−6 - 10 see text
Promoter state change (binding) h

†
hr−1 mRNA−2 (fast) 10 - 500 Geertz et al. (2012)

(slow) 10−6 - 10 see text

Table 1. Rate Parameters used in gene regulatory network models. Parameter values are derived from
experimental measurements in vertebrates, where possible. See Methods text for details. *Measured rates
of mRNA synthesis varied, with a median of 2/hr Schwanhäusser et al. (2011)). We use lower values
(within experimental range) to roughly match observed counts in scRNA-seq data, which may be lower
than expected because of dropouts or other technical issues. ‡Corresponds to mRNA half-life of 3.5 hours,
which is well within experimentally measured values but shorter than the median value of 9 hours, assuming
that transcriptional regulators have shorter-than-average half-lives in the cell.

†
Promoter state change rates

f and k are reported in fast and slow regimes. Fast promoter state changes are assumed to occur due to
TF-DNA unbinding or binding events, with rate parameters chosen based on values reported in Geertz
et al. (2012) (see Supplement for details on parameter derivation and unit conversion). Slow promoter state
changes are thought to involve collective changes in epigenetic marks and rearrangement of chromatin.

Feng and Wang (2012); Chu et al. (2017)). In contrast, the Two-Gene Flex model flexibly encodes a140
variety of regulatory interactions, as described below.141

2.1.1 Mutual Inhibition/Self-Activation Model142

In all models, promoter activity is assumed to be either high (transcription rate ghi) or low (glo) (giving a143
relatively fast or slow rate of mRNA synthesis, respectively). To encode MISA regulatory logic, mRNA144
synthesis rates for each promoter state are {gX00, gX0x, gXy0, gXyx} = {glo, ghi, glo, glo}. Transcription rates for145

gene Y are defined symmetrically, {gY00, gY0y, gYx0, gYyx} = {glo, ghi, glo, glo}. The high rate corresponds to146
maximal activity, whereas the low rate is effectively off (but is non-zero to allow for some leakiness in the147
promoter). Thus, binding of the self-TF turns the gene on, but subsequent binding of the other TF turns148
the gene off. The relative strengths and kinetics of the activating (self-regulatory) and repressing (cross-149
regulatory) interactions are encoded in the rates of binding/unbinding of regulators. Autoregulatory binding150
and unbinding rates (symmetric on both genes) are denoted by ha and fa, respectively. Cross-regulatory151
rates are denoted by hr and fr. The model is thus fully specified by 7 parameters: {glo, ghi, k, ha, fa, hr, fr}.152
We computed landscapes for ∼22,000 unique parameter combinations for the MISA regulatory logic (see153
Table 1 for parameter value ranges). We studied only symmetric network motifs, but asymmetry between154
the genes is accounted for by allowing the “on” transcription rate ghi to be asymmetric between the two155
genes (in case of asymmetry in ghi, the model is specified by eight parameters).156

2.1.2 Two-Gene Flex Model157

The Two-Gene Flex model is identical to MISA in all ways except the regulatory logic. Instead of158
the transcription rates being {glo, ghi, glo, glo}, all 16 logical combinations of four promoter states and159
two activity-levels are included. Within these combinations, various behavior is encoded including self-160
activation, self-repression, mutual activation, mutual repression, no interaction (self- or cross-), and161
dual-effects (where a TF has a distinct effect whether bound alone or in combination with the other). Note162
that the MISA logic is contained within these 16 combinations. Note also that the promoter states for X163
and Y are always defined symmetrically, i.e., only symmetric motifs are included. We computed landscapes164
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for ∼34,000 unique parameter combinations for the Two-Gene Flex Model (including all network motif165
variants).

Figure 1. Schematic of the two-gene regulatory network model. The overall network motif is variable (see
Inset), encoding a symmetric combination of repression (flat arrow-head), activation (pointed arrow-head)
or no-impact (dashed line), mutually between the two genes labeled X and Y , and by each gene on itself
(see Methods for details). The stochastic reaction kinetic model includes rate constants for mRNA synthesis
(gij), mRNA degradation (k), and regulatory element state-changes due to transcription factor binding (h)
and unbinding (f ). Cooperative effects are included by the assumption that transcription factors bind as
homodimers.

166

2.2 Mathematical Framework: Chemical Master Equation167

2.2.1 Chemical Master Equation168

Stochastic dynamics for the above-described network motifs are modeled by a Chemical Master Equation169
(CME) (alternatively known as a discrete space, continuous time Markov Chain). The instantaneous state170
of the system is given by the vector n, which enumerates the mRNA copy numbers and promoter-states171
of both genes, i.e., n = [nx, ny, Xij , Yij ], where nx is the mRNA copy number for gene X , Xij is the172
promoter state for gene X , and so on. The CME gives the probability for the system to exist in a given173
state at a given time, p(n, t). The CME can be written in vector-matrix form as a linear system174

dp(n, t)

dt
= Kp(n, t) (4)

where K is the reaction rate-matrix. Each off-diagonal element Klm gives the rate of transitioning from175
state m to l (non-zero values correspond to allowed state transitions with rates according to reactions 1-3176
above), while the diagonal elements are the summed rates for exiting each state, Kll = −

∑
m 6=lKml.177

Transition rates are computed according to standard stochastic chemical kinetic rate laws (Gillespie (1977)).178
If both types of mRNA are assumed to exist in the cell in copy numbers that never exceed M − 1, then the179
total size of the enumerated space including all possible states is N =M ×M × 4× 4 (note that the total180
number of mRNA copy number states includes the state of 0 copies, thus nx, ny ∈ {0, 1, ...M − 1}).181

2.2.2 Computing Gene Pair Coexpression Landscapes182

The complete steady state probability to find a cell in state n is given by the vector π(n) = p(n, t→∞),183
which is obtained from Eq. 4 using eigenvalue routines in numpy and scipy (van der Walt et al. (2011))184
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(McKinney (2010)). Each individual model requires solution of an N -state system, where N is O(104)185
(e.g., assuming the probability to have mRNA exceed 25 is negligible, then N = 10, 816). Efficient186
computation of the landscapes over tens of thousands of model variants/parameter combinations was187
achieved using routines compiled with the numba library (Lam et al. (2015)) and parallelization using188
Python’s multiprocessing library to distribute the workload across the available cores.189

To mimic experimental scRNA-seq data, the probability is projected onto the mRNA subspace by190
summation over all promoter state combinations. We hereon define the gene pair coexpression landscape191
as the steady-state probability to find a cell with mRNA count numbers (nx, ny). More precisely, the192
probability landscape is the vector π with each element πi giving the steady-state probability for the cell to193
be found in state i with the combination of mRNA counts (nx, ny) from genes X and Y , and i ∈ 1, ...,M2.194
Alternatively, the quasipotential landscape is log-transformed, given by the vector φ where φi = −ln(πi).195

2.3 scRNA-seq Data Acquisition, and Landscape Estimation196

Experimental data is obtained from the published single cell RNA sequencing (scRNA-seq) measurements197
of Briggs et al. (2018). The dataset “Corrected combined.annotated counts.tsv” was used which provides198
the normalized transcriptome profiles for Xenopus tropicalis at single cell resolution for ten different stages199
of embryonic development, with labelled cell types and parent cell types. We analyzed 1380 gene pairs,200
which were identified as putative MLP pairs in Briggs et al. (2018), based on their estimated changes in201
coexpression over the course of development. Gene pairs were identified by their developmental stage202
and lineage branch point in which coexpression was maximal. Cell types from other stages were then203
included in the lineage if they were a parent (preceding in development) cell type or daughter (descendant204
later in development) cell type. After selecting the desired gene pair and cell/tissue/cluster type of interest,205
gene pair counts were combined and summed resulting in ten gene pair landscapes, one for each stage of206
development, in cells of the relevant lineage.207

To directly compare computed coexpression landscapes with experimental data, we extracted cell count208
matrices for each gene pair, and where necessary, truncated to mRNA count numbers ≤M − 1 (truncation209
eliminated less than 0.5% of cells in the data, across all gene pairs and cell stages). This produces an210
M ×M (including zeros) count matrix that serves as a sampled estimator of the steady-state distribution,211
π̃(n), of the same size as computed landscapes. In order to compute the sampled quasipotential landscape,212
we use φ̃(n) = −lnπ̃(n), after replacing the not-observed count-combinations with a low but non-zero213
estimate of these probabilities (since log of zero is undefined). We use a general estimate of 1E-6 for214
non-observed counts, both because it is in line with the predictions of the theoretical models for the low215
probability edges of the distributions, and because it is less than the lowest estimable probability (i.e.,216
observation of one cell in a given matrix position, given total cell counts on the order of 105, would217
correspond to an estimated probability of 1E-5).218

2.4 Dimensionality Reduction for Landscape Shape-space219

We apply Principal Component Analysis (PCA) to the theoretically computed landscapes over the model220
sets to achieve a reduced-dimension description of landscape shape. All PCA training and dimensionality221
reduction was performed using the decomposition module of the python package scikit learn. Each unique222
model is treated as a replicate and the steady-state probability πi (or alternatively, quasipotential φi) of223
each of the M ×M possible mRNA copy-number states (nx, ny) is treated as a feature.224

The principal components obtained from the model set were then used to fit the experimental data, where225
each landscape from each gene-pair/stage is a replicate.226
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2.5 Clustering of Developmental Landscape-Shape Trajectories227

By viewing the time-ordered coexpression landscapes of a given gene pair in PCA space, termed228
“landscape-shape trajectories”, one can gain insight into the genes’ roles in development. The trajectories229
were hierarchically clustered based on their geometric distance in PCA space. More specifically, the230
fcluster method in scikit-learn package was used in hierarchical clustering (McKinney (2010)), and the231
geometric distance between trajectories A and B were defined as the sum of the pair-wised Euclidean232
distance between two corresponding stages, i.e.233

||A−B||F =

√√√√ m∑
i=1

n∑
j=1

(Ai,j −Bi,j)2 (5)

where || · ||F is the Frobenius norm, A and B are two trajectories represented by m by n matrices, m is the234
number of developmental stages in single cell data, n is the number of PCA components used in clustering.235

3 RESULTS

3.1 Stochastic two-gene network models show a variety of coexpression landscape236
shapes, distinguishable by Principal Component Analysis237

Our modeling framework enabled efficient computation of coexpression landscapes resulting from238
discrete, stochastic gene network models. This in turn enabled us to compute landscapes for tens of239
thousands of parameter sets, encompassing both various relative strengths and kinetics of regulatory240
interactions, as well as different schemes of regulatory logic among the two genes (see Methods). This241
approach afforded a comprehensive view of theoretically predicted landscape shapes resulting from242
gene-gene interactions (within the assumptions of the current model system).243

We applied Principal Component Analysis to the computed probability landscapes for Two-Gene Flex,244
in order to find a low-dimensional description of their shapes (Fig2). The first two PCA components245
encompass 98% percent of total covariance, and all models fall within a triangular region of this 2D246
subspace. The vertices of the triangle correspond generally to landscapes with: (1) very low expression of247
both genes (i.e., transcript levels of X/Y are lo/lo, Fig2E), (2) high simultaneous expression of both genes248
(hi/hi, Fig2C), and (3) expression of only one gene at a time (hi/lo and lo/hi, Fig2A). Landscapes located249
away from the vertices are thus well-described by some linear combination of these three shapes, consistent250
with PCA, and supported by visual inspection. In all, the results reveal that two-gene interaction motifs can251
encode a wide variety of patterns of coexpression, including mixtures of all combinations of lo/lo, hi/hi252
and lo/hi, hi/lo phenotypes (e.g,. Fig2B). At the same time, this variety of shapes is well-described by a253
small number of principal components (which form a basis for what we term the “shape-space”), and we254
hereon use the magnitudes along these components as measures of landscape shape.255

3.2 Shape measures of coexpression landscapes distinguish different types of mutual256
gene-gene interactions257

We sought to understand how different regulatory motifs contributed to landscape shape. Projecting258
the landscapes arising from each network motif separately revealed distinctive patterns (i.e., occupying259
distinct, but overlapping, regions of the PCA triangle) (approximately 2,000 landscapes were computed260
for each network motif, i.e., ∼2,000 models that share the regulatory logic but have different kinetic261
parameters). We grouped all motifs according to their region of occupancy within the PCA triangle, and262
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Figure 2. Shape-space of simulated Two-Gene Flex coexpression landscapes analyzed by PCA. Co-
expression landscapes were computed for 34,097 unique two-gene stochastic network models with varying
regulatory interactions and kinetic rate parameters (see Model schematic in Fig. 1). (Top) All model
landscapes projected onto the first two principal components. Each dot corresponds to one model, colored
by the model’s Shannon Entropy. (Bottom) Representative quasipotential landscapes φ(n) (see Text) of
individual models from different regions of PCA component-space. Color of each discrete grid space
in {x, y} corresponds to computed probability (in log-scale) to find a single cell with the corresponding
numbers of {x, y} transcripts.

discovered logical consistency among the groups (see Fig. 3). For example, all motifs with some type of263
mutual activation were found to co-occupy a region of PCA shape space in the lower part of the triangle264
(3A). This result is consistent with the intuition that motifs with mutual activation cannot produce the265
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A B

C D

Figure 3. Coexpression landscapes computed from the Two-Gene Flex models show distinctive
shapes that depend on the regulatory logic of gene-gene interactions. The Two-Gene Flex model
encodes 16 logical combinations (24) of gene-gene interactions, corresponding to four possible promoter-
binding states and two possible levels of transcription activity (low and high). These 16 model variants
can be grouped into motif classes: (A) Models with mutual activation. (B) Models with mutual repression.
(C) No mutual gene-gene interactions. (D) “Incoherent” models, where the combinatorial-binding state
has the opposite behavior of both of the singly-bound states (see text). Within each motif class, different
kinetic parameters serve to modify the relative strength of interactions (i.e., different weights on the edges).
Each motif class occupies a distinct, but overlapping, region of the shape space (with the exception of the
Incoherent motif, which can reach all areas of the shape space).

apparent bistability seen in landscapes at the hi/lo-lo/hi vertex of the triangle. The other three motif266
groupings include motifs with some type of mutual repression, motifs with no inter-gene interactions, and267
incoherent motifs with dual-interactions (when the regulator bound by itself has the opposite effect of the268
regulator bound in combination with the other TF). Note that two of the sixteen logical combinations of269
promoter binding-states in the Two-Gene Flex models are not included here, since they effectively encode270
no gene-gene interactions (the “always on” or “always off” logic, {ghi, ghi, ghi, ghi} or {glo, glo, glo, glo}).271
Note that here we assess all kinetic parameter combinations associated to one regulatory motif; these272
parameters tune the strength of different interactions. As such, the analysis of 3 assumes fixed network273
topologies but variable weights on network edges, accounting for the overlap between different motifs.274
These results indicate that landscape shape can to some extent be used to distinguish regulatory interactions275
between pairs of genes, despite variable and/or unknown kinetics governing the interactions.276
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C D

Figure 4. Comparison of four standard metrics of gene-gene coexpression with landscape shape.
Metrics include: (A) Shannon Entropy. (B) Correlation Coefficient. (C) Mutual Information. (D) Coex-
pression Index (see text for details). Each metric was computed for each computed model landscape,
using the same set of 34,097 Two-Gene Flex models as in Figs. 2 and 3 . Contour plots show each metric
as a function of principal components 1 and 2, obtained by local averaging and interpolation over the
results from individual model landscapes. Taken together with Fig. 2, the results show how these metrics
correspond with landscape shape.

3.3 Commonly used pairwise metrics are relatively insensitive to coexpression277
landscape shape278

In order to analyze how previously-applied measures of gene-gene interactions align with landscape279
shape, we computed a set of metrics for each model landscape and visualized the resultant values projected280
onto the PCA subspace. We chose four metrics: Shannon Entropy, Pearson Correlation Coefficient, Mutual281
Information, and a Coexpression Index (see Fig. 4, note Shannon Entropy is visualized also in Figs. 2282
and 3). The first three of these are obtained directly from the computed bivariate probability distributions283
according to standard definitions; the Coexpression Index has been used previously (Briggs et al. (2018))284
and is given by the conditional probability to find cells with non-zero counts of both mRNA x and y285
(conditioned on the cells having non-zero counts of at least one of genes X or Y ). Here, for a given model286
j, we derive this metric from the probability landscape π over count-states i by:287

mj,Coex.Index =

∑
i∈nx>0∩ny>0 πi∑
i∈nx>0∪ny>0 πi

. (6)

We estimate the value of each metric as a function of landscape shape (that is, we estimate the function288
m(c1, c2), wherem is a given metric and (c1, c2) are the coordinate values in PCA components 1 and 2). For289
each of the four metrics, we estimate and visualize this function by local averaging and interpolation over290
the computed results for each individual model landscape. We found that each metric aligns in distinctive,291
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and generally intuitive, ways with the PCA landscape shape space. High or low values of each metric were292
to some extent localized to particular sub-regions of the triangle, and thus could be understood to be arising293
from landscapes of similar shape. However, numerous examples can also be found of models colocated (or294
nearly colocated) in the triangle but having different values of a given metric, so the functional dependence295
m(c1, c2) is noisy.296

For Shannon entropy, the highest values are generally seen near the hi/hi vertex of the triangle, while297
the lowest values are seen near the lo/lo vertex. This reflects the amount of disorder in the hi/hi state298
of expression, in which a broad range of count-values are possible for each gene, whereas in the in the299
lo/lo vertex, count values are always zero or near-zero. The noise in expression levels can be quantified300
more precisely for the subset of models in the “slow-binding” regime (h, f << g, k). In this parameter301
regime, cells show distinctive high (“hi”) and/or low(“lo”) expression states with mean counts ghi/k and302
glo/k, respectively, and the disorder in each expression state can be quantified as Poisson birth/death noise303
(Al-Radhawi et al. (2019)), such that variance scales linearly with the expression rate g. Sources of disorder304
contributing to higher values of Shannon entropy include both noisy expression within a given phenotype305
state and the ability for cells to exist in multiple different phenotype states (i.e., the breadth of a valley in306
the potential landscape, and the number of different valleys). Notably, in the parameter regimes studied307
here, the highest Shannon Entropy models are single-phenotype (hi/hi), indicating that the noise in this one308
state contributes more disorder than does noise from multiple phenotype-states. As such, models with two309
or more accessible states have intermediate values of Shannon entropy.310

A strongly negative correlation coefficient between the two genes is found near the lo/hi-hi/lo vertex311
of the triangle, which is occupied by models showing bistability (cells can express one gene or the other,312
but not both simultaneously) resulting from mutual repression in the network motif. Landscapes with313
high positive correlation tend to be those that combine expression in the hi/hi and lo/lo quadrants of the314
two dimensional subspace (see, e.g. 4B and 2D), resulting from mutual activation in the network motif.315
Mutual Information aligns somewhat with large absolute values of correlation coefficients, but cannot316
distinguish high positive from high negative correlation. Mutual Information values near zero co-localize317
with Correlation coefficients near zero. This arc-shaped region bisecting the triangle also overlaps with the318
models lacking interactions between the two genes (see Fig. 3C).319

The Coexpression Index shows the smoothest functional dependence on PCA components (c1, c2). Of320
note, the model-subspace of high coexpression is not fully overlapping with the subspace of high correlation321
coefficients. This reflects the fact that high simultaneous expression occurs in both genes in an uncorrelated322
manner, since the noise arises from aforementioned birth-death noise of mRNA transcription/degradation.323

None of the four metrics are by themselves able to fully differentiate between landscape shapes. For324
example, model landscapes with similarly high values of Mutual Information include both hi/lo-lo/hi325
landscapes from mutual repression motifs and hi/hi-lo/lo landscapes from mutual activation motifs. (see,326
e.g., Fig. 4A and B). Model landscapes with similar intermediate values of Coexpression Index also327
encompass a variety of landscape shapes, including some that arise from different network motifs (see,328
e.g., Fig. 4C and D). Taken together, these results show that these four single metrics are not reliable329
determinants of landscape shape. They furthermore show that a given value for commonly used measures,330
as obtained from experimental data, can potentially arise from a variety of regulatory scenarios.331
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Figure 5. Shape-space of simulated MISA coexpression landscapes analyzed by PCA. Coexpression
landscapes were computed for 22,718 unique two-gene stochastic network models with MISA logic and
varying kinetic rate parameters. Promoter-state change rates were restricted to the fast regime (see Table 1).
(Top) All model landscapes projected onto the first two principal components. Each dot corresponds to
one model, colored by the model’s Shannon Entropy. (Bottom) Representative quasipotential landscapes
φ(n) (see Text) of individual models from different regions of PCA component-space. Color of each
discrete grid space in {x, y} corresponds to computed probability (in log-scale) to find a single cell with
the corresponding numbers of {x, y} transcripts. (Analogous to Figure 2).
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3.4 Stochastic theory-based analysis of coexpression landscapes from single-cell332
experiments reveals distinct developmental “landscape shape” trajectories333

We applied the landscape shape analysis framework, developed above on the basis of theoretical models,334
to publicly available single cell RNA sequencing data in vertebrate development. We applied the analysis335
to putative MLP gene pairs in Xenopus tropicalis development (Briggs et al. (2018)). To carry out the336
analysis, we first analyzed the landscape shape-space for a restricted set of theoretical models, which encode337
only the MISA interaction motif. The MISA motif has been previously discovered to operate at critical338
cell-fate branch points (Graf and Enver (2009)) and has potential to enable both antagonistic expression339
and coexpression of genes in individual cells (depending on kinetic parameters), as is characteristic of340
MLP gene-pairs. We first generated a MISA-specific set of models for training the PCA shape analysis. In341
addition to restriction of the network motif, there were two other differences between the MISA-model342
training set (Fig.5) and the Two-gene Flex-model training set (Fig.2). For MISA, we utilized quasipotential343
landscapes, rather than probability landscapes, in order to increase sensitivity to rarer cell-states (i.e.,344
weaker landscape features). We furthermore restricted the kinetic parameters h, f to the fast (adiabatic)345
regime (see Table 1), in order to use the models to analyze time-resolved data. That is, the experiments346
measure embryos at different developmental stages, which are roughly 1-3 hours apart in time. We compare347
the steady-state landscapes from stochastic models to the experiment-derived landscapes at different348
timepoints by applying a quasi-steady-state assumption: we assume that the promoter-binding states (which349
govern gene activity) reach equilibrium faster than the progression of developmental stage, which is valid350
only in the adiabatic regime. Despite these modifications to the model training set, the projection of models351
onto the PCA subspace for MISA (Fig. 5) shows qualitative similarity to that of Two-gene Flex ((Fig. 2),352
including delineation of a subregion of a triangle (note that the triangle is inverted between the two figures,353
which is an arbitrary result of eigenvector sign invariance). However, antagonistic expression of the two354
genes is a stronger feature across models in the MISA training set, such that the hi/hi vertex of the triangle355
for MISA still shows considerable probability for cells to antagonistically express one gene or the other356
(Fig. 5F).357

We extracted two-gene coexpression quasipotential landscapes corresponding to distinct developmental358
stages from the dataset of Briggs, et al. We then projected the landscapes onto the PCA subspace, and359
thereby derived developmental trajectories through landscape shape-space. By way of illustration, we360
first present developmental trajectories for three representative gene pairs (Fig. 6). Gata5 and pax8 were361
identified (in Briggs, et al.) as being antagonistically expressed within the intermediate mesoderm lineage,362
in cardiac mesoderm and pronephric mesenchyme cell subtypes, respectively. In contrast, lhx1 and pax8363
were shown to co-express in cells of the pronephric mesenchyme. Finally, the gene pair sox2 and brachyury364
(t) has been identified as influencing the cell fate decision between the neural plate and the dorsal marginal365
zone (Wardle and Smith (2004)), and was identified as presenting MLP behavior, characterized by high366
coexpression at some stage of development, followed by antagonistic expression at a later stage (Briggs367
et al. (2018)). We found that these three gene pairs showed distinctive trajectories through PCA subspace.368
All of the genes showed low expression early in development (stage 8) and their landscapes were colocated369
near the lo/lo vertex in the model subspace. Their trajectories then diverged: gata5-pax8 travels along370
the bistable edge of the triangle, increasing expression of both genes over the course of development,371
but in largely non-overlapping subpopulations of cells. In contrast, lhx1-pax8 shows strong coexpression372
starting at stage 14, and continues thereafter to move toward increasing values of PCA component 2, which373
coincides with increasing coexpression. (lhx1-pax8 landscapes for some of the measured developmental374
stages fall slightly outside the area reached by MISA models in the training set, suggesting that the375
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Figure 6. Landscape-shape trajectories of three representative gene pairs from scRNA-seq mea-
surements in Xenopus tropicalis embryonic development. (Top) Developmental trajectories of three
different gene pairs, plotted in principal component-space. (Bottom) Coexpression quasipotential land-
scapes extracted from experimental measurements for the three gene pairs at different labeled stages of
embryonic development (white numbers indicate developmental stage). The experiment-derived landscapes
were trained on the principal components generated from the simulated MISA dataset of Fig. 5. Principal
component 1 corresponds to overall level of expression, while component 2 separates antagonistic vs
coexpression (see Fig.7). The landscape of gata5-pax8 (blue) shows increasing antagonistic expression,
consistent with movement along the lower left edge of the triangle in PCA shape-space. Sox2-t (red) shows
high coexpression at stage 10, followed by later antagonistic expression, corresponding to a partial loop
through PCA space, consistent with Multilineage Priming behavior. Lhx1-pax8 (orange) shows consistently
increasing coexpression, corresponding to a mostly steady increase in principal components 1 and 2. (Data
from Briggs et al. (2018)).
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interaction is likely not well described by a MISA motif). Finally, sox2-t shows a cyclic pattern in the376
shape subspace, where landscapes move towards hi/hi, and then back towards the antagonistic lo/hi-hi/lo377
region, landing in a similar area to gata5-pax8. Relating these landscape-shape dynamics to the stochastic378
MISA model parameters suggests that the gene-pairs undergo changes in the relative balance of mutual379
inhibition versus self-activation as development progresses (see Fig. S1).380

The experiment-derived developmental trajectories can be further understood by considering the features381
extracted by individual (by definition orthogonal) PCA components. Visualization of the first three PCA382
eigenvectors (Fig.7) reveals that the first component (69.3% of covariance across the training set) can be383
summarized as separating landscapes with more or less expression overall, regardless of whether expression384
occurs in individual genes or both simultaneously. By contrast, the second component (15.6% of covariance)385
separates landscapes with coexpression versus antagonistic expression. The third component (6.8% of386
covariance) distinguishes landscapes with asymmetry between the two genes (subsequent components that387
describe less of the covariance displayed more complex shapes, and are not shown here). Comparison388
of the PCA scores versus developmental stage (Fig.7, right) to the experiment-derived landscapes of389
Fig.6 confirms visually that the PCA components extract the above-described features. For example, all390
three gene pairs show varying degrees of asymmetry (imbalance in expression levels of the two genes).391
Gata5-pax8 shows generally increasing positive amplitude of asymmetry, corresponding to stronger pax8392
expression. At later stages, the other two gene-pairs show asymmetry in the other direction, corresponding393
to negative amplitude in component 3. Sox2-t exhibits a switch in asymmetry between stage 10 (t>sox2)394
and later stages (sox2>t).395

Developmental trajectories through the coexpression shape-space were compiled for 1380 gene pairs396
(putative MLP pairs in Xenopus tropicalis identified by Briggs et al. (2018)). By applying the developmental397
trajectory clustering procedure described in Methods, we found that the trajectories of multiple gene pairs398
across different lineages display conserved patterns of coexpression dynamics. Twenty-four clusters were399
identified (see Supplemental Figs. S2 and S3), four of which are shown in Fig. 8; these clusters are chosen400
as representative of the different types of dynamic patterns obtained. The clusters display a variety of401
behaviors. For example, the cluster of Fig. 8B shows behavior that is consistent with MLP, i.e., genes are402
first increasingly coexpressed in single cells, followed by a switch towards antagonistic expression, similar403
to the cycle in PCA space delineated by sox2-t in Fig.6. Surprisingly, we also observed clusters that show404
“inverted MLP” behavior (Fig.8A) where the genes initially turn on in non-overlapping subsets of cells (i.e.,405
increasing antagonism), but later show increasing coexpression in single cells. A number of the analyzed406
gene pairs showed generally antagonistic expression (Fig.8C), reminiscent of gata5-pax8. Others showed407
behavior consistent with the dynamics of MLP (i.e., first coexpression, later antagonistic expression), but408
with coexpression being only weakly detectable (Fig.8D). The gene pairs represented in these clusters409
include (but are not limited to) regulators of embryonic development including zic3, hoxc10, and neurog1.410
The full list of clusters and their associated gene pairs are listed in the Supplementary File 1.411

4 DISCUSSION

In this work, we comprehensively studied theoretically predicted single-cell gene-gene coexpression412
landscapes based on a class of stochastic gene regulation models, and applied the theory to analyze413
two-gene coexpression landscapes from single cell measurements. From a training set of tens of thousands414
of computed, theoretical landscapes, we identify Principal Components of landscape covariance that serve415
as simple “fingerprints” of landscape shape and reflect underlying gene-gene interaction dynamics. We416
then apply the theoretically-derived framework to scRNA-seq data from vertebrate development. In so417
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Figure 7. Principal components of landscape shape features. (Left Column) The reshaped PCA prin-
cipal axes in feature space which represent the maximum variance in the data, specifically which features
of the coexpression landscape that each component is accounting for. (Right Column) Magnitude or
positive/negative value shift in observed variance for the respective component for each gene pair, versus
developmental stage. Each component summarizes a landscape shape features: (Top Row) The overall
amount of gene expression, (Middle Row) Antagonistic Expression vs Coexpression of the two genes, and
(Bottom Row) degree of asymmetric expression between the two genes.

doing, we uncover distinctive and novel developmental trajectories of gene-gene coexpression. Specifically,418
our framework reveals a nuanced picture of multilineage priming, where the relative balance between419
expression of gene pairs simultaneously (in the same cells) versus antagonistically (in different cells)420
within a lineage shows complex dynamics during development, for example, revealing that simultaneous421
coexpression occurs either earlier or later than antagonism. Based on the results, we propose that the422
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A B

C D

Figure 8. Landscape shape trajectory clustering reveals conserved patterns of gene-pair coexpres-
sion dynamics during development. Four representative trajectory clusters showing distinct dynamics are
presented (full list of 24 clusters and associated gene pairs in Supplement). Gene pairs in cluster A display
behavior of an “inverted MLP”: first undergoing increasing antagonistic expression which then switches to
increasing coexpression around stage 13. Gene pairs in cluster B follow the typical MLP behavior, with
highest coexpression taking place around stage 10 followed by antagonistic expression at later stages.
Cluster C shows consistent antagonistic expression (negative component 2), with nonmonotonic overall
expression (a switch-back in component 1 around stage 12). D shows cyclic behavior similar to B, with
highest coexpression at stage 12, but overall expression and relative amount of coexpression is lower.

framework developed here can be generalized to other single cell datasets and stochastic network models423
to analyze the evolution of gene-gene regulatory interactions over the course of development.424

The theoretical framework applied here–discrete, stochastic reaction kinetic modeling–is well-suited to aid425
interpretation of single cell measurements: first, because it inherently captures cell population heterogeneity426
and second, because of the direct correspondence between the computed quantities (e.g., probability to find427
a given number of mRNAs in a cell) and experimentally-measured transcript counts in scRNA-seq. The428
theoretical models can partially reproduce true cell population heterogeneity, but also neglect many sources429
of noise, both biological and technical. We employ models that treat intrinsic noise but neglect sources of430
persistent cell-to-cell variability (i.e., extrinsic noise) (Swain et al. (2002)), which is known to contribute to431
noise in gene expression. For example, one source of extrinsic noise would be asynchronicity between432
cells, where individual cells might be at different stages of progression in development. Here, we opted to433
use a relatively simplistic model framework (i.e., no additional noise assumptions beyond intrinsic noise of434
biomolecular interactions, relatively few reactions describing molecular mechanisms of gene regulation,435
etc.) to minimize the number of model parameters while still enabling study of a variety of “rules” for436
gene regulatory logic. The framework presented here could be expanded in the future by integration of437
additional types of mechanistic assumptions and noise sources in the stochastic models.438

The models also neglect technical noise/measurement errors arising from experiments (Grün et al. (2014)).439
For example, scRNA-seq measurements face a well-known technical issue of drop-outs (Kharchenko et al.440
(2014)), which we have not included in our modeling. Future efforts may improve the presented modeling441
framework by inclusion of these additional sources of noise, or by additional data-processing steps for442
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imputation of missing datapoints (Gong et al. (2018)). However, such an approach would also present443
challenges by necessarily introducing additional assumptions about cell population heterogeneity, which is444
still not fully understood. Given the danger of false signals (Andrews and Hemberg (2019)), we opted here445
to utilize minimal data processing in comparing our theoretical results to a public dataset. We also note that446
the discrete stochastic modeling framework advanced in this work has potential to shed new light on the447
drop-outs issue: a relatively large proportion of “zeros” arises naturally from discrete stochastic models,448
depending on the regulatory interactions among genes, suggesting that perhaps biological variability plays a449
larger role in producing dropouts than has previously been supposed. Overall, despite the lack of additional450
biological/technical noise sources in our models, we note that our computed landscapes qualitatively451
reproduce the noise characteristics of the scRNA-seq measurements, in that they showed similarly broad452
distributions of coexpression. Thus we conclude that the simplistic models employed here are sufficient453
for the current application, which focused on characterization of coexpression landscape shape and its454
evolution in development, but we also foresee that incorporation of additional noise sources in the model455
might improve the practical utility of our proposed coexpression-shape-based analysis.456

We focused here on two-gene models and pairwise interactions, because (1) certain gene-pairs are known457
to play a critical role in development (Graf and Enver (2009)) (2) the edges (pairwise interactions) are458
the elemental units or building blocks of larger regulatory networks. However, the focus on pairwise459
interactions has potential drawbacks: it does not elucidate how gene-pair interactions are modified when460
embedded in a larger network. In the same vein, it does not differentiate between direct or indirect461
interactions between genes (e.g., by direct transcriptional regulation versus molecular intermediaries). In462
principle, the framework presented here could be expanded to treat “3-body” (or higher order) interactions463
among genes, though this presents several computational challenges. For example, solution of the CME464
becomes intractable already for 3-gene networks, such that advanced approximation methods (Zhang and465
Wolynes (2014)) or more costly simulations (Tse et al. (2018)) become necessary. Nevertheless, expansion466
of the approach to higher-order interactions is feasible, and recent work has revealed how such as approach467
might proceed, for example, by incorporating developments in multivariate information measures (Chan468
et al. (2017)).469
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