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Abstract 

Despite growing interest in the mental life of individuals who cannot communicate verbally, objective 

and non-invasive tests of covert cognition are still sparse. In this study, we assessed the ability of 

neurotypical children to understand and follow task instructions by measuring neural responses 

through functional transcranial Doppler ultrasound (fTCD). We recorded blood flow velocity for the 

two brain hemispheres of twenty children (aged 9 to 12) while they performed either a language task 

or a visuospatial memory task, on identical visual stimuli. We extracted measures of neural 

lateralisation for the two tasks separately to investigate lateralisation, and we compared the left-

minus-right pattern of activation across tasks to assess task-following. At the group level, we found 

that neural responses were left-lateralised when children performed the language task, and not when 

they performed the visuospatial task. However, with statistically robust analyses and controlled 

paradigms, significant lateralisation in individual children was less frequent than expected from the 

literature. Nonetheless, the pattern of hemispheric activation for the two tasks allowed us to confirm 

task-following in the group of participants, as well as in over half of the individuals. This provides a 

promising avenue for a covert and inexpensive test of children’s ability to covertly follow task 

instructions and perform different mental tasks on identical stimuli. 
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1 Introduction 

Modern neuroscience is taking a growing interest in the mental life of individuals who may not be 

able to overtly display the extent of their cognitive abilities. In the case of vegetative patients, or 

minimally verbal autistic individuals 1 , for example, recent evidence has suggested intact 

consciousness and language comprehension, despite an absence of communicative behaviour (e.g., 

Cruse et al., 2011; Owen et al., 2006 for minimally-conscious patients, and Cantiani et al., 2016; 

DiStefano et al., 2019; Kedar, 2012 for minimally-verbal autistic individuals). In minimally verbal 

autism, in particular, it appears that cognitive abilities may be under-estimated by standard 

assessments, due to inability to comply with task-demands, lack of motivation, or demanding social 

constraints associated with the testing situations (Kasari et al., 2013). For this reason, it is crucial to 

develop a reliable test of covert cognitive abilities that does not rely on behavioural responses. In this 

study, we aimed to develop such a method, using a portable and easy-to-setup neuroimaging 

technology, and to validate the method with typically-developing children. We used the logic that if 

we could index task-following directly from neural signals, this could be used to assess language 

comprehension and other cognitive abilities.  

We took our inspiration from previous research that used functional neuroimaging to study cognitive 

abilities in non-communicative patients. In a seminal study, Owen et al. (2006) instructed a patient in 

vegetative state to perform one of two mental imagery tasks (imagining playing tennis or imagining 

walking around her house). The patient’s brain responses measured with magnetic resonance imaging 

(fMRI) were significantly different between the two conditions, suggesting that the patient was able to 

understand the instructions and wilfully follow the task commands. These results have been replicated 

and expanded in several studies requiring patients to follow different instructions, such as imagining 

moving their right versus left hand (Bekinschtein et al., 2011), counting versus listening to words 

(Monti et al., 2009), or naming pictures (Rodriguez Moreno, Schiff, Giacino, Kalmar, & Hirsch, 

2010). The logic of these studies indicates that task-following may be a useful index into the mental 

life of individuals who do not otherwise communicate.  

The high cost of MRI, the requirements to lie still in the scanner, and the noise associated with the 

scanning procedure make this method inaccessible to some populations such as young children and 

some autistic individuals. However, recently, research teams have begun to use functional transcranial 

                                                       
1 We use ‘identify-first’ language (‘autistic person’) rather than person-first language (‘person with autism’), 
because it is the preferred term of autistic activists (e.g. Sinclair, 2013) and many autistic people and their 
families (Kenny et al., 2016) and is less associated with stigma (Gernsbacher, 2017). 
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Doppler ultrasonography (fTCD) as a non-invasive and relatively inexpensive alternative to fMRI 

(Lohmann et al., 2006). Being relatively insensitive to movements, fTCD allows for testing a wider 

range of populations, including those with difficulties staying still such as children (Lohmann et al., 

2006) and infants (Kohler et al., 2015), and it has previously been used in populations where standard 

language assessments may not be suitable such as deaf children (Payne et al., 2019). It is also 

portable, allowing it to be used outside of the laboratory, and in larger populations. FTCD uses two 

probes placed on participants’ left and right temples to measure the blood flow velocity through the 

left and right middle cerebral arteries. It is inferred that faster blood flow to one hemisphere results 

from higher neural activity in that region. Thus, fTCD allows for an indirect measure of brain 

activation in the two hemispheres, and can be used to examine the lateralisation of neural responses 

associated with different cognitive processes.   

Our aim was to derive an implicit measure of language comprehension that could be used in non-

speaking populations such as minimally-verbal autistic children. We combined the logic of task-

following paradigms, in which evidence for wilful modulation of neural activity must reflect 

comprehension of verbal instructions, with the accessible technology of fTCD. In particular, we 

aimed to use fTCD to provide a measure of differential brain activation in response to different tasks. 

We employed two tasks that primarily elicit activity in the left and the right hemispheres respectively: 

a word generation task and a visuospatial memory task (Bishop et al., 2009; Groen et al., 2012; Rosch 

et al., 2012). During both tasks, participants were presented with a spatial array in which a single 

letter was presented in several locations. In the word generation task, participants were asked to 

silently generate as many words as possible starting with this letter. During the visuospatial memory 

task, participants were asked to study the location of letters and remember their location after the 

letters disappeared.  

We chose to compare lateralisation between two tasks, rather than using a single task, based on the 

observation that lateralisation of language and visual-spatial processing varies across individuals, but 

still tends to be complimentary (i.e., different for the two tasks) across individuals. For example, 

current estimates are that around 7.5% to 25% of the population have right hemisphere language and 

around 10% to 15% have bilateral representation of language functions, with the remaining 60% to 

80% having the typical left representation of language (Knecht et al., 2000; Lust et al., 2011; 

Whitehouse & Bishop, 2009). Similarly, visuospatial functions are not supported by the right 

hemisphere in every individual (Badcock, Nye, et al., 2012; Rosch et al., 2012). In their respective 

studies, Whitehouse and Bishop (2009) found that 25% of adults had either a bilateral or a left-

hemisphere dominance for visuospatial memory, while Groen et al. (2012) found this pattern in 29% 

of children. In addition, individual factors such as handedness may influence lateralisation in 

individuals (Groen et al., 2012). Thus, for our purpose of measuring task-following on an individual-

subject basis, it may be difficult to interpret the result from a single task. However, the major theories 
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of lateralisation do nonetheless converge on the idea that language and visuo-spatial functions are 

supported by separate hemispheres, to optimize cognitive performance (Cai et al., 2013; Heilman et 

al., 2000; Whitehouse & Bishop, 2009). For example, using fMRI, Cai et al. (2013) found 

complementary lateralisation of language and spatial attention for all but one of 29 participants. The 

origin of this distribution might be causal (Cai et al., 2013; Heilman et al., 2000), i.e., one function is 

lateralised to one hemisphere because the other is lateralised to the opposite hemisphere, or result 

from independent biases (Badzakova-Trajkov et al., 2016; Knecht et al., 2000; Whitehouse & Bishop, 

2009; Zago et al., 2016). These two major theories differ in their explanation of the origin of 

complementarity, but converge on the expectation that hemispheric complementarity exists in the 

majority of individuals. Thus, our study was based on the logic that if the two functions rely on 

different hemispheres in most individuals, it should be possible to observe differential task-related 

activity in individual children. In addition, the fact that the language task is inherently a productive 

task, while the visuo-spatial memory task is a receptive task is advantageous for our purpose of 

measuring differential lateralisation between tasks as the neural patterns associated with these tasks 

will likely unfold over different timeframes (Bishop et al., 2009; Groen et al., 2012). Moreover, 

directly comparing the two tasks allowed us to be sensitive both to differences in the lateralisation and 

to differences in the time course with which the lateralisation occurs. For example, if the two tasks are 

both lateralised to the left hemisphere for a particular individual, but the change in velocity happens 

more quickly for word generation, this would manifest in a measurable difference in the lateralisation 

between tasks at early time points, even if both tasks are ultimately lateralized to the same 

hemisphere. 

In developing our approach, we addressed two limitations that would otherwise prevent the clinical 

application of this method as a test of task-following. First, an issue in extant fTCD research is the 

heterogeneity in paradigms used to measure different cognitive processes. For instance, most 

researchers estimate language lateralisation using word generation paradigms that involve generating 

language after viewing a letter on a screen or a short animation (Badcock, Nye, et al., 2012; Rosch et 

al., 2012; Woodhead et al., 2018). On the other hand, most researchers estimate visuospatial 

lateralisation using paradigms with complex visual displays, such as finding rabbits hiding in different 

holes, or lines masked by complex visual dynamic masks (Groen et al., 2011; Rosch et al., 2012). As 

such, the difference in lateralisation between tasks may correspond to changes in the visual and 

auditory stimuli instead of differences in language and visuospatial processes. Thus, a secondary aim 

of the research was to report lateralisation effects for language and visuospatial tasks using identical 

visual stimuli.  

The second limitation concerned a statistical flaw in that the way that lateralisation indices (LIs) are 

commonly analysed, which systematically over-estimates laterality. Typically, LIs are calculated by 

finding the peak in the left-right blood flow velocity difference, then averaging the velocity values 
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over a time-window (usually 2 s) centred on that peak (e.g., Badcock, Nye, et al., 2012; Deppe, 

Knecht, Lohmann, & Ringelstein, 2004; Groen et al., 2011; Kohler et al., 2015; Woodhead et al., 

2018). This quantifies the maximum difference of the waveform, which can then be compared 

between tasks groups. However, because of the way it is derived (taking a maximum from a 

continuous waveform), it is statistically biased to compare this difference to zero, for example, to 

infer that the group or individuals have “significant” lateralisation. We show through simulation that 

this method, which is common practice in fTCD research, will tend to push individual LIs away from 

zero, inflating type I (false positive) error. This flaw, also known as ‘double dipping’, is well known 

in fMRI and electroencephalography research (Kilner, 2013; Kriegeskorte et al., 2009) and applies 

equally to fTCD data. We show through simulation that it can be avoided by omitting the peak 

selection (i.e., averaging over the entire a priori period of interest), yielding LIs that can legitimately 

be compared to zero to infer significance of lateralisation. We employ this statistically-robust 

approach for our analysis.  

We hypothesised that if children consistently performed the language and visuo-spatial memory tasks 

as instructed, we would observe distinct hemispheric patterns of activation between two mental tasks, 

both at the group level and in individual children. Using our controlled stimuli and statistically 

unbiased analyses, we found robust evidence that the two tasks relied on different brain processes, as 

expected, which was indicated by a difference in the pattern of hemispheric activation in the group. 

However, at the individual level our sensitivity was medium, with statistical evidence of task-

following detected in only 55% of children. This could reflect a tendency for some children to ignore 

task instructions, or reflect a relative insensitivity of the approach. The work provides a possible 

avenue for a covert and inexpensive assessment of task-following in children, but individual 

sensitivity would need to be improved for clinical application.  

 

2 Methods 

All presentation scripts, analysis scripts, and raw data are available at https://osf.io/xygjv/. 

2.1 Participants 

Twenty-two children were recruited using the Neuronauts database of the Australian Research 

Council Centre of Excellence in Cognition and its Disorders. All participants were native English 

speakers, and they received $20 for their participation. The data from two participants were excluded 

due to failing to record data (one participant) and computer crashing (one participant). The final set of 

data thus came from 20 participants (age range: 9 to 12 years old, M=10:7, SD=1:1, 10 male and 10 

female). Seventeen of the participants were right-handed, and three were left-handed, based upon 

parent reports. This study was approved by the Macquarie University Human Research Ethics 
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Committee (Reference number: 5201500074). Participants’ parents or guardians provided written 

consent and the children provided verbal consent. 

2.2 Apparatus 

We acquired blood flow velocity data using a Doppler ultrasonography device (Delica EMS-9UA, 

SMT medical technology GmbH&Co Wuerzburg, Germany), with probes held in place bilaterally 

over the left and right temporal windows via a headset. We adjusted the probes until we obtained a 

good signal of the blood flow through the left and right middle cerebral arteries. The experimental 

paradigm was presented using Psychtoolbox version 3 (Brainard, 1997; Kleiner et al., 2007) on 

Matlab, on a 27-inch monitor screen located at 80cm from the participants. Responses to the trials 

were given via a button box (Cedrus RB-830). 

2.3 Paradigm 

In order to engage children with the task, we presented the paradigm as a game in which the children 

collected treasure. A male and a female “pirate” gave auditory instructions and feedback on each trial. 

The pirates’ voices were recorded by actors who were native Australian English speakers. Male and 

female voices were included for diversity and were not related to the two tasks (both voices instructed 

both tasks with equal probability). Each participant completed 40, one-minute trials, switching tasks 

every 10 trials. They completed 20 trials of the word generation task (task 1), and 20 trials of the 

visuospatial memory task (task 2). The order of the task was counterbalanced across participants. 

Each trial started with a baseline period of 10 s, during which the participants fixated on a black cross 

in the centre of a white screen. Then either the male (first half of the experiment), or the female 

(second half of the experiment) pirate was presented on screen, and greeted the participant. The pirate 

asked the participant to get ready, and gave the instructions for the task. The instructions were “Think 

of words that begin with this letter” for task 1, and “Remember my treasure map” for task 2. Then a 

treasure map appeared, with 8 repetitions of a letter randomly distributed on the screen (see Figure 1). 

The characters were displayed in black, presented at a visual angle of approximately 1°. The treasure 

map remained visible for 5 s during which children silently generated words (task 1) or studied the 

position of the letters (task 2). A white screen was then displayed for 10 s, during which the children 

continued to generate words (task 1) or remembered the position of the letters (task 2). Finally the 

map reappeared with the letters either exactly at the same location as the first map (in half of the 

trials), or with one letter displaced from its original location. The pirate would then ask “Did you 

think of lots of words?” (task 1) or “Is this the same treasure map?” (task 2), and the children would 

answer “yes” or “no” by pressing either a right or left button on a button box in front of them. The 

position of the buttons was counterbalanced across participants. Contrary to most fTCD studies, we 

chose not to ask participants to overtly name the words that they generated, as we had designed the 

paradigm to eventually be used for non-speaking individuals. A 5 s animation was then presented, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 4, 2020. ; https://doi.org/10.1101/815910doi: bioRxiv preprint 

https://doi.org/10.1101/815910


6 
 

showing the treasure that the pirate collected during the trial, with the pirate giving encouraging 

auditory feedback (e.g., “You’re winning!”, “Blow me down, that was brilliant!”, “Pieces of eight, 

you’re doing great!”). Then the pirate’s voice would indicate that the child should take a break by 

saying e.g., “Time for a rest” and a short animation showed a relaxing situation in which the pirate 

was yawning or sailing away for the night. This was included to encourage participants to stop 

performing the tasks, with the intention of encouraging task-related activation to return to baseline. 

Finally, a blank white screen was presented for 10 s of normalisation, then the next trial began. Each 

trial featured a different letter, with all the letters of the Roman alphabet being presented once in each 

task, except for the letters K, Q, W, X, Y, and Z, which were not used as words starting with these 

letters are rare. The order of the letters was randomized for each participant. Each letter was seen once 

in a single task before being repeated in the other task. The order of the letters was reversed in the 

second task, for each participant. Thus, the paradigm was designed so that the two tasks consisted of 

identical visual stimuli and identical structure, and differed only in auditory instructions. Any 

difference in the hemispheric activation must therefore be attributed either to the subtly different 

auditory stimulation, or to the difference in the mental task. 
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Figure 1: Trial structure. After normalisation and baseline, a pirate was presented and introduced the task. Then a 
treasure map with letters appeared and children started generating words (language task) or remembering the 
location of the letters (visuospatial memory task). The map then disappeared, and reappeared with all letters at the 
same location, or with one letter that changed location. A reward screen then appeared, followed by an animation 
instructing children to relax. 
 

2.4 Data pre-processing 

We pre-processed the fTCD data using DOPOSCCI (Badcock et al., 2018; Badcock, Holt, et al., 

2012) with MATLAB version R2017B (Mathworks Inc., Sherborn, MA, USA). We first down 

sampled the raw data to 25Hz, then we removed the heart cycle by determining local peaks and using 

linear heart cycle correction based on previous work (Badcock, Nye, et al., 2012). To correct for 

overall differences in the strength of the signal from the right and left probe (e.g., due to a difference 

in the alignment of the probes), we normalised the signals to a mean of 100% on a trial-by-trial basis. 

We then created epochs, -15 to 40 s, relative to the onset of the first visual map display (see Figure 1). 

At this stage, we rejected epochs with extreme values (beyond ± 50% of the mean signal), 

corresponding to poor insonation or excessive head movement. Finally, we performed a baseline 

correction for each epoch by removing the averaged value of the signal from -15 to -10 s before 

stimulus onset.  

2.5 Lateralisation Index 

For comparison with previous literature, and to test for differences in lateralisation between two tasks 

using similar stimuli, we calculated lateralisation indices (LIs). Typical fTCD lateralisation research 

calculates LIs by finding the peak in the mean velocity difference between the two hemispheres 

within a POI, extracting data from a 2s time-window around this peak, averaging over the window, 

and comparing this value to zero. This approach provides a metric that can be compared between 

groups or conditions, but, because of the way it is derived, it should not be compared to chance at the 

individual or group level. This is because the time-window is selected to include the peak in the data, 

so even if there is no effect (random noise) the average value will tend to be different from zero. 

Given that there are many observations to choose from (the entire time course) selecting the time-

window in this way will increase false positive rate, an effect identified in other disciplines as “double 

dipping” (Abbott, 2009; Kilner, 2013; Kriegeskorte et al., 2009). This effect is mitigated by averaging 

over a large time window (2s), but, we argue, will not be completely removed. We first simulated the 

problem and a solution, and then applied the statistically robust approach to our empirical data. 

2.5.1 Simulation of statistically-robust method for determining LI 

To confirm our intuition that the typical approach (“peak selection” method) to LI derivation in the 

literature will increase false positives, we ran the analysis on simulated random data (no true signal). 

We compared the results to those from a statistically robust alternative approach in which there is no 
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data selection: signals are averaged over an entire, pre-defined, POI (“no selection” method). The 

simulation was as follows: for each hypothetical “individual”, we generated twenty noisy time-series 

(“trials”) of 200 time points (approximately the size of our language POI) by selecting a random 

number (“lateralisation”) between -20 and 20 at each time point (Figure 2A, grey lines). We then 

averaged each of these trials to create an “individual-subject” level mean (Figure 2A, solid black line). 

Proceeding as in the fTCD literature (“peak selection” method), we then found the peak in 

individual’s trial-averaged data and defined our POI as a 2 second (50 time points) time window 

centred on the peak. For the statistically robust “no selection” approach, we chose the entire time 

window as our POI (randomly sampling a subset of 50 values to make it comparable to the peak 

selection approach). For each method, we extracted the mean value across time in the POI for each of 

the 20 trials and considered their distribution. As we anticipated, the distribution of lateralisation over 

trials was shifted away zero for the peak method. This is illustrated for two “individuals” in Figure 2, 

one for whom the peak in the random noise was positive (Figure 2C) and one for whom it was 

negative (Figure 2G). As there is no true signal in the simulated data, these distributions should be 

centred on zero, as they are in the “no selection” method (Figure 2D and 2H).  
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Figure 2: Simulation of LI significance using the “peak selection” (purple) and “no selection” (orange) methods. 

We simulated 20 “trials” of 200 time-points by randomly selecting a number between -20 and 20 at each time 

point (A, grey lines). We then averaged these to give an “individual subject” trial-averaged time-series response 

(A, black line). We then either found the peak in this averaged time-series and selected a 50 time points time-

window around that peak (A, green area) to illustrate the peak selection approach, or randomly selected 50 time 

points to illustrate the no selection method. The resulting distribution of lateralisation for the 20 trials for an 

example individual is shown in the second row (C and D). Using the peak method, this distribution was shifted 

positively from zero (C), while using the average method it was centred on zero (D). An example of another 

simulated individual is shown in the third row. This individual shows a negative shift of lateralisation for the 

peak analysis (G), but data are again centered on zero for the average analysis (H). We generated 10,000 

simulations, and then computed the LI of each simulation by averaging the data during the selected time-

window, and plotted the distribution of these 10,000 LIs for method (K and L). Finally we compared each 

individual subject’s LI to zero in a two-tailed t-test and plotted the distribution of p-values across simulations (O 

and P). The peak analysis drastically increased the false-positive error rate (at α = .05, 500 simulations should 

fall below .05, O), while the average analysis did not (P). We further illustrate that this problem is likely to be 

exacerbated in actual fTCD data, by repeating the same procedure after temporally smoothing the data (right 

half of the Figure, B, E, F, I, J). In addition to increasing the false-positive error-rate, the bimodality in the 

distribution of LIs across the group is more visible (M). 

 

In fTCD research, the mean across these trials would be taken as the LI for an individual, and the 

distribution across trials could be compared to zero to test it for significance. To illustrate why this is 

problematic, we ran the above simulation 10,000 times, and calculated an LI for each of them. As can 

be seen in Figure 2, the distribution of LIs across the population tends to be broader (more extreme 

lateralisation in either direction) for the peak selection method (Figure 2K) compared to the no 

selection method (Figure 2L). Most critically, we computed a two-tailed t-test of the LI against zero 

(no information in the signal) for each simulation, equivalent to testing the significance of the LI in an 

individual. The distribution of p-values is shown in the final row of Figure 2. If the test were 

statistically robust, we would expect 500 of the 10,000 simulations (5%) to have a p-value of 0.05 or 

less. Instead, for the peak method, the distribution is skewed towards small p-values (Figure 2O). This 

demonstrates a statistical bias to reject the null hypothesis (find a p-value of <0.05) more than 5% of 

the time. The effect was again not present using the “no selection” approach (Figure 2P). Finally, to 

quantify the problem, we calculated the percentage of simulations for which the LI was significantly 

different from zero, at alpha = 5%, i.e., the false positive error rate.  The peak method yielded an 

inflated false positive error rate of 7.1%, while the average method yielded a false positive error rate 

of 5%.  

Note that this simulation most likely underestimates the problem in real fTCD data, because it will 

increase with smoothness in the timeseries data. To illustrate this, we performed the same procedure 
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on the same simulations after temporally-smoothing the individual-trial time-series (Figure 2, right 

half). As can be seen, the problem becomes much more extreme when data are smooth, yielding now 

false-positive detection rate of 11.9% for the peak selection method (Figure 2Q), while the false 

positive rate for the no selection method stays close to the chosen alpha level at 4.6% (Figure 2R). In 

this simulation the effect on the distribution of LIs across the group is even more apparent: since each 

individual’s peak is shifted away from zero, and this shift can be in either direction, the result is a 

bimodal distribution at the group level (Figure 2M). Similar results have been found in real fTCD data 

by Woodhead et al. (2018), who found a bimodal distribution of lateralisation when analysing their 

data using the peak selection method, but a normal distribution when using the no selection method.  

Note also that although we conceptualised the first level of our simulation as “trials” and the second 

level as “individuals” and tested the effect at the “individual-subject” level, the exact same result 

obtains if the first level were to be considered “individuals” and the peak selection and analyses were 

to be carried out at the “group” level. The statistical bias introduced for by the peak selection would 

then increase the false positive rate in the group level analysis.  

2.5.2 Treatment of empirical data 

For our empirical analysis, we calculated the LI using the statistically robust “no selection method”. 

For each task separately, we first averaged the signal from all the accepted epochs, for the right and 

the left probes. We then calculated the difference between the left and right signals over time. We 

defined a language POI as 4 to 14 s after the first map onset, in accordance with previous research that 

found the highest left-hemisphere activation during this POI for the word generation task (Bishop et 

al., 2009; Groen et al., 2011, 2012). We defined a visuospatial POI as 20 to 35 s after the first map 

onset based on previous findings of highest right-lateralisation during this time-window (Groen et al., 

2011, 2012; Rosch et al., 2012). For each task, we assessed the left-minus-right signal difference 

within the corresponding POI using a grand average within the POI and performing a one-sampled t-

test between this difference and zero. This was done at the group level (across participants) and at the 

individual level (across trials within participants). We additionally calculated Cohen’s d (effect size). 

At the request of reviewers, we also include a follow-up analysis using the statistically-biased “peak 

selection” method, selecting a 2s time window around the trial-averaged peak within each POI for 

each individual, to illustrate how this procedure would change the empirical result. 

2.6 Split-half reliability 

In addition to reporting the LIs for the group and individuals, we estimated the reliability of the LIs by 

calculating the split-half reliability for each task. This was done using Pearson’s correlation between 

the LI of each participant for the odd and the even trials, and was carried out for the statistically 

robust version of LI derivation only. We found good reliability for the word generation task (r = .58, p 

= .0068), and for the visuospatial memory task (r = .75, p < .001).  
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2.7 Hemispheric differences analyses 

Finally, to address our main question of whether we could measure differential patterns of 

hemispheric activation between the two tasks, we compared the left-minus-right difference in blood 

flow velocity between tasks. We performed a two-tailed paired-sample t-test for the average blood 

flow velocity within the language task period of interest (POI). This POI was chosen as it has showed 

the strongest lateralisation for language, and no lateralisation for visuospatial processing, in previous 

research (Badcock, Nye, et al., 2012; Groen et al., 2012; Whitehouse & Bishop, 2009), so we 

expected the lateralisation for the two tasks to be maximally different during this period. By only 

analysing the left-right difference once (in just the language POI), we avoid the need to correct for 

multiple comparisons thus maximising our statistical power. We performed this analysis at the group 

level, with a paired t-test across participants, and at the individual level, with a paired t-test across 

trials (pairing the letters in each condition) within participants. At the group level, with 20 

participants, we had .56 power to detect a medium effect size (Cohen’s d = .50), and .92 power to 

detect a large effect size (d = .80) for alpha = 5%. Similarly, at the individual level with 20 trials, we 

had .56 power to detect a medium effect size (d = .50), and .92 power to detect a large effect size (d = 

.80).  

3 Results 

We examined children’s hemispheric activation upon performing two mental tasks, word generation 

or visuospatial memory. For each task after every trial, participants had to press a button to indicate 

whether they could generate many words, and whether the visual display was modified, respectively.  

3.1 Behavioural responses 

Behavioural performance on the visuospatial memory task was high (mean accuracy = 88%, range = 

[70%, 100%]). The percentage of trials for which they reported having thought of many words was 

somewhat lower (M = 77%, range = [45%, 100%]), and may have varied with the child’s 

understanding of “many” and/or their tendency to report their own performance as good or bad. As 

this was not a robust measure of behaviour (it was included only to encourage children to stay on 

task) this score was not considered further.  

3.2 LI for each task: group level 

Group level results are shown in Figure 3. We first illustrate the time course of the left and right 

hemispheres blood flow velocity for each task (Figure 3A and 3B). We then subtracted the right from 

the left activation, for each task, within their respective POI (Figure 3C and 3D). We calculated the 

significance of the LI for both tasks by comparing the left-right activation to 0. The LI for the word 

generation task was positive (M = 1.78 cm/s, SD = 3.33, 95% confidence interval (CI) = [.66, 2.90], 

Figure 3A and 3C) and significantly different from 0 (t(19) = 3.33, p = 0.0035, Cohen’s d = .744) 
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indicating left lateralisation at the group level. The LI for the visuospatial memory task was negative 

(M = -0.62 cm/s, SD = 1.57, 95% CI = [-1.36, 0.11]], Figure 3B and32D) but was not significantly 

different from zero in the time window of interest (t(19) = -1.78, p = 0.0908, Cohen’s d = -.3983).  

 

Figure 3: Grand average blood flow velocity for the left (dotted blue line) and right (solid red line) channels (A, B), 
and the left-minus-right difference (C, D) over time for the word generation (A, C) and visuospatial memory (B, 
D) task. E shows the left-minus-right difference (i.e., same as middle panels) for the word generation task (orange 
line) and the visuospatial memory task (green line), and the difference of these differences (black line). Grey areas 
indicate the periods of interest. Black asterisks indicate significant effects (p < .05). 
 

3.3 LI for each task: individual level 

We then examined the significance of LIs in individuals by comparing left-right differences to 0 in the 

language POI (4 to 14 s) for the language task and the visuospatial POI (20 to 35 s) for the 

visuospatial memory task. At the individual level (Figure 5), language was significantly lateralised to 

the left hemisphere for 50% of children (10/20), and to the right hemisphere for 5% of children (1/20). 

Visuospatial memory was significantly lateralised to the right hemisphere for 20% of children (4/20), 

and to the left hemisphere for 10% of children (2/20). The remaining participants did not show 

evidence of significant lateralisation. In addition, we examined the association between lateralisation 

for language and visuospatial memory. Although 9 of the 20 participants fell into the quadrant where 
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they were numerically left lateralised for language and right lateralised for visuospatial memory, we 

found a significant correlation between the two functions (ρ = .48, p = 0.034). This indicated that 

participants with stronger left lateralisation for language also tend to have more leftwards 

lateralisation for visuospatial memory, and vice versa. 

 
Figure 5. Scatterplot of laterality indices (LIs) of each participant for the word generation (POI = 4 to 14 s) and the 
visuospatial memory tasks (POI = 20 to 35 s), with 95% confidence interval for each participant (across trials). 
Participants with confidence intervals (CIs) overlapping zero are not considered to be lateralised (grey errors bars). 
Participants with CIs strictly < 0 are right-lateralised (red error bars), and participants with CIs strictly > 0 are left-
lateralised (blue error bars). Left-handed participants are shown as black triangles. 
 

In addition, to check whether our approach to LI analysis made a difference to the lateralisation 

estimate from the empirical data, we ran a follow-up analysis using the statically biased peak selection 

method. Using this method, “significant” left lateralisation of language was still found in 50% of 

participants, but right lateralisation of visuospatial memory increased from 20% to 50% of 

participants. This confirms with that, indeed, peak selection can increase statistical bias towards 

reporting lateralisation. 
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3.4 LI difference between tasks: group level 

At the group level, blood flow velocity for word generation was significantly different from the 

visuospatial memory task for the POI analysed (the language POI, Figure 3D). The word generation 

task was significantly more left-lateralized than the visuospatial memory task (word generation minus 

visuospatial memory = 2.21 cm/s, t(19) =4.11, p<.001, Fig 3E). 

 

3.5 LI difference between tasks: individual level 

Finally, our main question was whether we could use our fTCD paradigm as an implicit measure of 

task-following in individual children. We assessed the sensitivity of detecting task-related 

hemispheric activation in individuals by comparing the left-minus-right differences between tasks. A 

significant effect of task was found in 55% (11/20) of our participants (see Figure 4), indicating clear 

evidence for task-following in just over half of individuals. In all the individuals with a significant 

difference between tasks, blood flow was more left-lateralised in the language task than in the 

visuospatial task.  

 

Figure 4. Individual participants pattern of activation (left-minus-right) for the word generation (dotted-orange line) 
and visuospatial memory (solid-green line) task, plotted ± standard error of the mean. Grey area indicates the 
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period of interest for our analyses. Black asterisks indicate a significant difference in the POI. Eleven participants 
showed a statistically significant difference between the two tasks.  
 

4 Discussion 

In this study we proposed a rigorous method for evaluating task-following in children based on the 

lateralisation of brain functions using functional transcranial Doppler ultrasound (fTCD). We 

designed a controlled, child-friendly paradigm in which children either silently generated words 

beginning with a particular letter (language task) or remembered the spatial location of letters on a 

screen (visuospatial task). We computed the left and right hemispheric blood flow velocity while 

children performed the tasks, and we inferred task-following from the difference in velocity between 

the two tasks. At the group level, we found significant evidence of task-following from the 

hemispheric activation, as seen by a significantly more leftward activation for the language task 

compared to the visuo-spatial memory task. This pattern was also found in 55% of individuals, 

indicating task-following in a subset of children. The null result in the remaining 45% of individuals 

is not directly interpretable and may reflect an absence of task-following, or a lack of sensitivity of 

our paradigm. In addition to these findings, we replicated previous literature in finding a significant 

left-lateralisation for the language task in children (Bishop et al., 2009; Groen et al., 2011, 2012). 

However, we did not observe the expected right-lateralisation for the visuospatial memory task, and 

we found less marked lateralisation of language and visuospatial memory in individuals, compared to 

what we expected from the literature.  

The main aim of this study was to design a paradigm that could be used to assess task-following 

abilities in non-verbal individuals. To this end, we computed the patterns of left-minus-right 

hemispheric activation in response to a language task and a visuo-spatial memory task. A consistent 

difference in the hemispheric blood flow velocity between tasks, irrespective of the direction of this 

difference, would indicate the involvement of different brain activity in response to the two 

instructions, and thus indicate preserved task-following. However, even though we found a robust 

statistical difference in the activation for the tasks at the group level, we could only observe a 

statistical difference in 55% of individual participants. The current study used 20 trials per condition, 

in line with previous fTCD research (Badcock, Nye, et al., 2012; Groen et al., 2011; Whitehouse & 

Bishop, 2009). However, with 20 trials, we had only .56 power to detect a medium effect size (d=.50), 

in the individual subject analysis, so we may have failed to detect differences in the remaining 

individual children due to insufficient numbers of trials. More trials could be added by repeating some 

letters, and/or using the left-out letters that typically don’t allow generation of many words (e.g., X), 

but would necessarily increase the length of the experimental session, which may be challenging for 

some children.  
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A limitation of our approach was that we did not directly assess whether children were generating 

words in the language condition (e.g., by asking them to report the words generated). Our choice 

reflects our goal to apply this paradigm to non-speaking populations, for whom we cannot readily 

verify compliance through speech or behaviour. However, it does leave open the possibility that some 

children were not sufficiently engaged in the task or did not perform the task, despite self-reporting 

that they did so. Additionally, even though children reported the task to be engaging, it involved a 

long baseline period during which they were asked to clear their mind and "think of nothing". This 

might not be trivial, particularly for children, and it is possible that some participants engaged in 

language-related processes during the baseline period. In addition since we presented the same 

linguistic stimuli (an array of letters) across the two conditions, it is possible that children performed 

some linguistic processing when they were not instructed to or vice versa. This potentially reduces the 

difference in the activation between the tasks, making our test relatively conservative. Nonetheless it 

was essential to have identical stimuli to remove the visual confound that could otherwise drive 

different responses even in children who did not understand or perform the task. We instead mitigated 

the concern that children would perform the wrong task by using a blocked design, varying the 

condition every 10 trials, and observed a high degree of accuracy on the visual-spatial task. In the 

future, researchers may consider asking neurotypical children to report the words they generated, to 

examine the contribution of task compliance to individual differences in lateralisation. However, a 

previous study on language generation in adults found no difference in lateralisation between overt 

and covert word generation (Gutierrez-Sigut et al., 2015), implying that overt word generation is not 

necessary for left-hemisphere activation. Despite these limitations, which prevent us from drawing 

any conclusions in children that do not show differential patterns of lateralisation, the positive results 

found in half of the participants is objective evidence for intact task-following in these children. For 

future clinical use, the limitations presented here need to be addressed in order to establish a paradigm 

that shows a higher sensitivity to detect effects in neurotypical children.  

In addition to our main interest in task-following, we also reported the lateralisation of each task 

separately, using statistically robust analyses to calculate LIs. As expected from the literature, we 

found significant left-lateralisation of language at the group level. However, at the individual level, 

the lateralisation was not as pronounced as expected. Only 50% (10/20) of children had significant 

left-lateralisation of language, and 25% (5/20) had significant right-lateralisation of visuospatial 

memory. This rate is lower than previously reported, i.e., around 70% of people being left-lateralised 

for language (e.g., Knecht et al., 2000; Lust, Geuze, Groothuis, & Bouma, 2011; Whitehouse & 

Bishop, 2009), and 70% of people being right-lateralised for visuospatial memory (e.g., Groen et al., 

2012; Whitehouse & Bishop, 2009). The numerically lower lateralisation found in our study may 

reflect the use of identical stimuli between tasks. It is possible that the identical stimuli tended to 

encourage children to perform the incorrect task (as above), and/or it is possible that part of the 
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differential lateralisation observed in previous work is driven by the confounding differences in visual 

stimuli. Our data confirm that there is at least some lateralisation of these processes even when visual 

stimuli are closely controlled.  

A separate explanation for our observation of relatively low lateralisation in individuals is that many 

previous analyses may have been statistically biased towards detecting lateralisation. Many fTCD 

studies derive LIs by defining a time-window around a peak in the left-minus-right blood flow 

velocity, and then analysing the data within this time-window (Deppe et al., 2004). As we showed 

with simulation (see Methods), this peak selection technique introduces a bias if these data are 

subsequently compared to zero at the individual or group level, to infer lateralisation (a technique 

known as double dipping). In particular, it increases type I error rate (probability of incorrectly 

rejecting the null hypothesis when it is true, i.e., false positives). It also artificially creates bimodality 

in the distribution of LIs in the population (Woodhead et al., 2018). In this study, we overcame this 

problem by computing the difference in the left-right blood flow velocity difference over an entire 

pre-defined POI (as introduced by Woodhead et al., 2018), which, as our simulations showed, brings 

the type I error back to the scientific standard of 5%. The peak selection method may still be suitable 

to compare lateralisation between tasks or between groups, but should not be used to test whether 

individual or group lateralisation is different from chance, because the multiple comparisons inherent 

in selecting the peak from continuous data have not been accounted for. Had we used the peak 

selection method in our study, we would have increased our rate of “significant” right-lateralisation 

for the visuo-spatial task from 20% to 50% of participants. However, this does not entirely account 

for the difference that we observe compared to previous literature, suggesting that at least some of the 

difference between our results and previous literature may be due to differences in the stimuli used or 

population examined. It is possible that the lateralisation of children age 9-12 is not as strong as 

previously suggested, although significant lateralisation was still present in some individuals even 

with statistically robust methods. Our sample size was small (n=20) and a larger study with 

appropriate statistics would be needed to give a reliable estimate of the population’s lateralisation.  

Upon analysing the association between the lateralisation for the two tasks in individuals, we found a 

significant positive correlation between language and visuospatial memory lateralisation. In other 

words, despite the group-level typical left lateralisation for language and right lateralisation for 

visuospatial memory, individuals who were more left lateralised for language were also more 

leftwards lateralised for visuospatial memory. This correlation is consistent with previous reports 

(Flöel et al., 2005; Whitehouse & Bishop, 2009). It can be taken as evidence against a causal view of 

hemispheric specialisation in which localisation of one function to one hemisphere causes localisation 

of the other function to the other hemisphere (e.g., language is left lateralised because visuospatial 

memory is right lateralised; Whitehouse & Bishop, 2009; Cai et al., 2013). However, the data are also 

not well explained by the dominant alternate view, in which hemispheric lateralisation of each 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 4, 2020. ; https://doi.org/10.1101/815910doi: bioRxiv preprint 

https://doi.org/10.1101/815910


18 
 

function is independent (Bryden et al., 1983), as this predicts no association in LI between tasks. 

Instead, our data suggest an association in which individuals who tend to rely more on their left 

hemisphere in one task, will also tend to rely more on this hemisphere in the other task. Further work 

is needed to understand the extent to which this reflects the tendency for participants to engage in 

some language processing in the visuo-spatial memory task and vice versa, particularly since it has 

also been observed in paradigms that use different materials between tasks (e.g., Flöel et al., 2005; 

Whitehouse & Bishop, 2009), and seems at odds with the prevailing view that lateralisation of these 

two tasks should be complimentary. 

 

5 Conclusion 

We measured brain activation in children using a portable and inexpensive neuroimaging device, 

fTCD. We analysed lateralisation of neural blood flow in response to a language task and a 

visuospatial memory task performed on identical visual stimuli. Two main findings emerge. First, we 

were able to observe task-following from the brain data of just over half the participants, making our 

results a promising basis for future clinical tests. By analysing the hemispheric activation pattern 

across the two tasks, statistically robust differences were observed in 55% of individual children. 

Second, our results indicate that the lateralisation of neurotypical children may not be as pronounced 

as previous research suggests. While previous fTCD research found left-lateralisation of language in 

about 70% of children, we were only able to see this pattern in 50% of our participants. Similarly, 

typical fTCD research found right-lateralisation of visuo-spatial memory in 70%, while we found this 

pattern in 20% of our participants. This was potentially due to controlled stimulus presentation, a 

tendency for children to perform some of the opposite task even when not instructed to, and/or less 

biased statistical assessment of lateralisation. Overall, our methods constitute a promising step 

towards the neural measurement of task-following abilities in children. These methods, however, need 

further development before they can be used as an assessment tool in special populations, possibly 

with more trials, an independent index of subject compliance, and refined paradigms to maximally 

differentiate between the two hemispheres. 
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