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Abstract (149 words) 

 

Hedgehog (Hh) signaling is essential during development and in organ physiology. In 

the canonical pathway, Hh binding to Patched (PTCH) relieves the inhibition of 

Smoothened (SMO). Yet, PTCH may also perform SMO-independent functions. While 

the PTCH homolog PTC-3 is essential in C. elegans, worms lack SMO, providing an 

excellent model to probe non-canonical PTCH function. Here, we show that PTC-3 is 

a cholesterol transporter. ptc-3(RNAi) leads to accumulation of intracellular cholesterol 

and defects in ER structure and lipid droplet formation. These phenotypes were 

accompanied by a reduction in acyl chain (FA) length and desaturation. ptc-3(RNAi)-

induced lethality, fat storage and ER morphology defects were rescued by reducing 

dietary cholesterol. We provide evidence that cholesterol accumulation modulates the 

function of nuclear hormone receptors such as of the PPARa homolog NHR-49 and 

NHR-181, and affects FA composition. Our data uncover a novel role for PTCH in 

organelle structure maintenance and fat metabolism. 
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Introduction 
 

The Hedgehog (Hh) signaling pathway is crucial during animal development and has 

also demonstrated roles independent of development stages. The Hh receptor PTCH 

is among the most mutated tumor suppressors 1 and more specifically, PTCH1 

mutations are the cause of the Gorlin Syndrome 2. In the classical Hh signaling 

pathway, PTCH inhibits the plasma membrane G-protein coupled receptor (GPCR) 

smoothened (SMO). Upon Hh binding to PTCH, this inhibition is relieved, and SMO 

can activate a downstream signaling cascade. The mechanism by which PTCH 

inhibits SMO was enigmatic for a long time because PTCH represses SMO without 

direct contact 3. PTCH1 was shown to be able to transport cholesterol 4–6 which in turn 

will directly activate SMO7, a finding, which was supported by recent structural 

analyses 1,8–10. The structures suggest that Hh inhibits PTCH transporter function and 

hence plasma membrane cholesterol levels could increase. Such an increase of 

cholesterol might be sensed through the sterol sensing domain in SMO and thereby 

activate the GPCR. As PTCH may mainly function as a cholesterol transporter, it might 

also affect other signaling pathways. In fact, in recent years SMO-independent PTCH 

signaling has been reported 11–14. However, the mechanistic understanding of these 

non-canonical Hh signaling pathways remains largely unknown. 

Caenorhabditis elegans expresses two PTCH homologs, PTC-1 and PTC-3, 

which are essential for development and survival 15–17. While PTC-1 function appears 

to be mostly restricted to the germline, PTC-3 is expressed in somatic tissues 18–20. 

No clear SMO homolog is encoded in the genome. In addition, some of the other 

downstream targets of the canonical Hh signaling pathway are also missing. In fact, it 

was proposed that SMO and those components were specifically lost during evolution 

in nematodes 15,21–23. For example, SUFU is not conserved and the homolog of the 

transcription factor Gli, TRA-1, is involved in sex determination and gonad 

development in males and hermaphrodites 24. Therefore, C. elegans provides an 

excellent model to study non-canonical, SMO-independent Hh signaling pathways, in 

particular in somatic tissues. To dissect SMO-independent PTCH functions, we 

concentrated on PTC-3, which is expressed in somatic tissues, in particular in the 

hypodermis, glia and gut 20. We found that reduction of PTC-3 levels causes the 

accumulation of intracellular cholesterol and reduction in poly unsaturated fatty acids 
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(PUFAs). Moreover, the endoplasmic reticulum lost most of its reticulate tubular form 

and developed elaborate sheet structures in the intestine. This effect in turn strongly 

impaired lipid droplet biogenesis, resulting in the inability of the animal to store fat. 

Reduction of dietary cholesterol rescued fat storage defects, the ER morphology 

defects, and improved development and survival in ptc-3(RNAi) animals. Cholesterol 

levels influence nuclear hormone receptor activity such as of the PPARa homolog 

NHR-49, which is involved in the regulation of FA synthesis. Thus, our data 

demonstrate that PTCH also controls intracellular cholesterol levels in C. elegans. 

Moreover, we show that PTCH thereby impinges on FA metabolism, organellar 

structure and fat storage capacity.  
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Results 
 

PTC-3 has cell autonomous and non-autonomous functions and is required for 
lipid storage in the intestine. 
In order to understand the function of PTCH proteins in C. elegans, we decided first to 

revisit the phenotypes caused by the depletion of the somatically expressed PTC-3. 

Like its mammalian homolog, ptc-3 is essential for development. Consistently, it has 

been reported that ptc-3(RNAi) results in growth, molting and vulva morphogenesis 

defects 17,18. Given the essential role of PTCH in development, we started the 

knockdown by RNAi only at the L2 stage of development, allowing the worms to 

progress further in development and even some to reach adulthood. In addition to the 

previously reported phenotypes, we noticed that the ptc-3(RNAi) animals were much 

paler than their mock-treated counterparts (Fig. 1A). Pale worms are an indication for 

defects in fat storage. C. elegans has a much simpler body plan than humans and 

hence some C. elegans organs take over more functions. For example, the worm 

intestine has paracrine functions, and also serves also as the fat storage organ 25. 

Thus, in a simplified view, the C. elegans intestine represents the functional equivalent 

of the human intestine, adipose tissue and liver. To test whether PTC-3 was expressed 

in the gut as indicated by genome-wide expression analyses 20, we raised antibodies 

against PTC-3 (Fig. S1A). Those antibodies decorated the apical membrane of gut 

epithelial cells, while no plasma membrane signal was detected in oocytes, consistent 

with the notion that PTC-3 is present only in somatic tissues (Fig. 1B). This localization 

was confirmed with a GFP-tagged PTC-3 (Fig. S1B). 

To determine which phenotype is dependent on intestinal PTC-3, we performed 

a gut-specific knockdown of PTC-3 26. ptc-3(RNAigut) animals were still paler and 

thinner than mock-treated animals (Fig. 1C). Moreover, vulva morphogenesis defects 

were also observed upon the ptc-3(RNAigut) regime, indicating that PTC-3 has cell 

autonomous and non-autonomous functions.  

As outlined above, pale phenotypes are often associated with lipid storage 

defects in worms 25,27. Nile Red staining indeed showed a reduction in lipid content in 

ptc-3(RNAi) animals (Fig. 1D and E). Of note, this reduction was observed in the 

intestine, but not in the germline, in accordance with the absence of PTC-3 expression 

in oocytes. A drawback of Nile Red staining is that autofluorescence in the intestine  
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caused by lysosome-related organelles (LROs) is also potentially measured at the 

same time, which may confound the results. Therefore, we turned to Coherent anti-

Stokes Raman Scattering Microscopy (CARS), a dye-free method recognized for 

accurate in vivo lipid detection in worms 28. This analysis confirmed the Nile Red 

staining, and we observed an about 50% reduction in lipid content (Fig. 1F and G), 

indicating that we can use Nile Red for further analysis. The CARS signal did not 

overlap with the autofluorescence of LROs (Fig. S1C). We conclude that loss of PTC-

3 causes a reduction in fat storage in the intestine. 

 

PTC-3 is a cholesterol transporter 
Recent data suggested that mammalian PTCH1 acts as a cholesterol transporter 
1,5,6,8–10. To investigate, whether PTC-3 shares the function of PTCH1 as cholesterol 

transporter, we first expressed PTC-3 in Saccharomyces cerevisiae, which does not 

contain any cholesterol 29 and measured cholesterol efflux from cells using TopFluor 

cholesterol in pulse-chase experiment (Fig. 2A). PTC-3 expressing yeast cells 

exported cholesterol significantly faster out of the cell than control cells, similar to what 

has been observed for mammalian PTCH15. This efflux capacity was dependent on 

an active permease domain, since a mutation in the permease domain 18, ptc-3D697A, 

strongly reduced the cholesterol efflux. The ptc-3D697A mutation has been reported to 

cause larval lethality in worms 18, establishing that cholesterol efflux is the essential 

function of PTCH. Next, we repeated the pulse-chase experiment in worms. While in 

mock treated worms, TopFluor cholesterol was present mostly in the gut lumen, it was 

still strongly accumulated in the intestine in ptc-3(RNAi) worms after the washout, 

further demonstrating the role as cholesterol transporter (Fig. 2B). Finally, we 

measured sterol levels by mass spectrometry. Cholesterol levels were increased in 

ptc-3(RNAi) worms, while 7-dihydrocholesterol (7-DHC) and lophenol levels were 

decreased (Fig. 2C). 7-DHC and lophenol are downstream products of cholesterol in 

worms, indicating that cholesterol metabolism might also be affected by ptc-3(RNAi). 

Taken together our data strongly suggest that PTC-3, like PTCH1, is a cholesterol 

transporter at the plasma membrane. 
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Cholesterol accumulates predominantly in the apical membrane in the intestine 
of ptc-3(RNAi) animals 
Cholesterol accumulates in ptc-3(RNAi) worms because it cannot be pumped out of 

the cells. In addition, cholesterol is not efficiently metabolized into 7-DHC and lophenol 

under those conditions. We speculated where the excess of cholesterol would reside 

in the cell. First, we used filipin, which binds specifically to cholesterol. While we could 

barely detect any filipin staining in mock-treated animals, ptc-3(RNAi) worms showed 

a strong fluorescent signal in the apical membrane in the intestine and also some 

appreciable increase in intracellular fluorescence (Fig. 2D). To corroborate this finding, 

we next employed two versions of the domain 4 of perfringolysin fused to mCherry 

probe (D4-mCherry), YDA and YQDA, which have different sensitivities in the 

detection of cholesterol 30–32. We expressed the probes constitutively in the C. elegans 

intestine and analyzed their cellular distribution. Similar to the filipin staining, the 

mCherry signal increased in the plasma membrane for both probes in ptc-3(RNAi) 

animals compared to mock treated controls. (Fig. 2D and E). Thus, the strongest 

cholesterol accumulation is observed in the apical membrane in the intestine of ptc-

3(RNAi) animals. We envisage that cholesterol levels are also increased, albeit to a 

lesser extent, in intracellular membranes.  

 

Low dietary cholesterol rescues ptc-3(RNAi) phenotypes 
It is plausible that the cholesterol accumulation is the cause for the observed 

phenotypes in ptc-3(RNAi) animals. C. elegans is unable to synthesize cholesterol and 

must ingest it through the diet 33. In the lab, cholesterol is provided in the growth 

medium. Strikingly, when we omitted cholesterol from the growth medium, ptc-3(RNAi) 

worms developed much better, with 89% reaching adulthood (Fig. 3A and B). 

Moreover, the pale phenotype was strongly reduced, and lipid storage was improved 

(Fig. 3C and D). Thus, reducing cholesterol accumulation rescued developmental as 

well as fat storage defects in ptc-3(RNAi) worms. Since cholesterol conversion into 7-

DHC was also impaired, we asked whether increasing the levels of 7-DHC would 

likewise rescue the ptc-3(RNAi) phenotypes. However, addition of 7-DHC did not 

alleviate the ptc-3(RNAi) phenotype (Fig. S2). We conclude that most of the ptc-

3(RNAi) phenotypes are linked to the regulation of intracellular cholesterol levels. 

Moreover, the accumulation of cholesterol, and not the inability of the ptc-3(RNAi) 

animals to process cholesterol efficiently, appears to be detrimental for the organism. 
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Lipid droplet biogenesis and ER morphology are impaired upon ptc-3(RNAi)  
Cellular fat is mostly stored in lipid droplets, which originate from the endoplasmic 

reticulum (ER). In ptc-3(RNAi) animals, we observed defects in fat storage dependent 

on the intracellular cholesterol levels. Thus, we investigated whether the ER was 

affected by loss of PTC-3 function using intestinally expressed TRAM-GFP. We 

observed morphological alterations in the ER in ptc-3(RNAi) animals, which were, 

however, hard to interpret (Fig. S3). To gain a better understanding of the phenotype, 

we performed electron microscopy. Not unexpectedly, given the fat storage defect, 

lipid droplets were essentially absent in ptc-3(RNAi) intestines (Fig 4A). Even more 

strikingly, the ER had lost most of its reticulate structures and formed long lines. Such 

long lines in 2D are indicative of ER sheets in 3D 34. We used focused ion beam 

scanning electron microscopy (FIB-SEM) and machine learning algorithms to obtain 

information on the ER structure in 3D. Indeed, the reticulate, tubular structure of the 

ER was dramatically reduced in ptc-3(RNAi) when compared to mock; instead 

enormous ER-sheets and clusters were formed (Fig. 4B, Fig. S4, movies S1 and S2). 

Taken together, our data so far suggest that the cholesterol accumulation, due to the 

absence of PTC-3, impairs ER structure and thereby lipid droplet formation. If the 

cellular cholesterol levels were indeed the critical factor, then reducing dietary 

cholesterol in ptc-3(RNAi) animals should alleviate the ER phenotype. Indeed, ptc-

3(RNAi) animals raised on low cholesterol diet displayed reticulated ER and lipid 

droplets (Fig. 4A). Thus, cellular cholesterol levels strongly influence ER morphology 

and function. At this point we were unable to determine whether this effect is direct or 

indirect. Even though, most of the cholesterol accumulated in the apical plasma 

membrane in ptc-3(RNAi) animals, we cannot exclude, that there is also an 

accumulation of cholesterol in the ER. Unfortunately, filipin bleaches very fast, and the 

D4-mCherry sensors are present throughout the cell, so that we are only be able to 

detect very strong local accumulations. Still, the inability of the ER membrane to form 

lipid droplets and the sheet structure might be linked to the increased membrane 

bending rigidity.  

 
Fatty acid acyl chain length and desaturation is reduced in ptc-3(RNAi) animals  
To test this hypothesis, we first performed a simple experiment, in which we modulated 

the growth temperature. Membrane fluidity increases as a function of temperature, 

while membrane bending rigidity decreases. Consistent with our hypothesis, the 
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development and viability of ptc-3(RNAi) animals were improved at an elevated 

temperature (Fig. 5A and B).  

Another factor, which determines the stiffness or fluidity of membranes is the 

saturation of the acyl chains of lipids. Saturated acyl chains are considered to be 

relatively straight, allowing a high packing rate of lipids accompanied with the 

generation of an ordered phase and a reduction in fluidity. In contrast, desaturated 

fatty acids correlate with less dense packing, higher membrane fluidity and lower 

bending rigidity. Therefore, we performed lipidomics and determined the level of 

phospholipid acyl chain saturation upon ptc-3(RNAi). We did not observe any major 

difference in the headgroup composition of the most important lipid species (Fig. 5C). 

In contrast, we detected a reduction in polyunsaturated fatty acids (PUFAs) in ptc-

3(RNAi) worms as there was a marked decrease in acyl chain length and desaturation 

(Fig. 5D). This reduction in PUFAs is not due to a general reduction in lipids upon ptc-

3(RNAi) compared to mock treatment, but rather reflects a shift from PUFAs to more 

saturated, shorter FAs. This shift towards more saturated FAs supports our hypothesis 

that the cholesterol accumulation contributes, directly or indirectly, to the 

morphological changes of the ER membrane. 

 

NHR-49 and FAT-7 overexpression rescue ptc-3(RNAi) animals  
The reduction in PUFAs could potentially be due to inhibition or lower expression of 

fatty acid desaturases and elongases. A potential candidate to check this hypothesis 

is the desaturase FAT-7, which appeared to be down-regulated during heat adaptation 

to counteract the increase in membrane fluidity at high temperature 35. Overexpression 

of FAT-7 in the intestine resulted in better survival of ptc-3(RNAi) animals (Fig. 6A and 

B). The rescued animals were darker than their counterparts (Fig. 6A), suggesting that 

they were able to store fat. FAT-7 expression is regulated by the PPARa homolog 

NHR-49 36,37. Similar to what we had observed for FAT-7 overexpression, increasing 

intestinal NHR-49 levels improved survival of ptc-3(RNAi) animals (Fig. 6A and B). 

Rescue of survival due to NHR-49 overexpression was accompanied by restoration of 

fat storage (Fig. 6A-D), suggesting that NHR-49 is a major downstream effector of 

PTC-3.  NHR-49 partners with NHR-80, a homolog of mammalian HNF4, to regulate 

fatty acid desaturation 36. However, overexpression of NHR-80 did not rescue the ptc-
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3(RNAi) phenotype (Fig. 6A and B). Our data are consistent with the notion that NHR-

49 and FAT-7 are modulators of membrane bending rigidity. 

 

Loss of NHR-181 rescues the high cholesterol induced phenotypes in ptc-
3(RNAi) animals 
Nuclear hormone receptors often act context-dependent. Therefore, we wondered, 

whether other NHRs or the loss thereof may contribute to the ptc-3(RNAi) phenotype. 

NHR-8, the C. elegans ortholog of vertebrate liver X and vitamin D receptors, was also 

shown to influence cholesterol levels and fat content 38,39. Since nhr-8(RNAi) animals 

contained more fat 39, we speculated whether loss of NHR-8 could rescue the ptc-

3(RNAi) phenotype. However, we could not detect any rescue (Fig. S5A). This result 

may not have been so unexpected since nhr-8 mutants contain less unsaturated fatty 

acids 39. Overexpression of NHR-8 still did not alleviated ptc-3(RNAi) defects (Fig. 

S5B), indicating that NHR-8 and PTC-3 act independently. 

C. elegans expresses 278 nuclear hormone receptors. To identify possible 

NHRs important in a PTC-3-dependent pathway, we turned to genome-wide 

expression data during development. C. elegans goes through 4 larval stages before 

reaching adulthood (Fig. 6E). Each transition from one larval stage to the next is 

accompanied by the synthesis of a new, larger cuticula, in a process referred to as 

molting. Genome-wide RNAseq and Riboseq throughout C. elegans development 

revealed an oscillatory behavior of gene expression for many genes 40 (Fig. 6E). Given 

the general role of PTC-3 in development and the observed cuticle defects upon ptc-

3(RNAi), it was not surprising to find that PTC-3 expression also oscillated (Fig. 6F). 

However, NHR-49 expression remained constant during development (Fig. 6F). We 

then asked, which other NHRs would oscillate in a similar manner as PTC-3. Three 

NHRs emerged as possible candidates: NHR-41, NHR-168 and NHR-181 (Fig. 6G). 

We hypothesized that the expression levels of the NHRs should be responsive to 

cholesterol levels. Of the three, only expression levels of the HNF4 homolog NHR-181 

were upregulated in high cholesterol i.e. ptc-3(RNAi), and reduced under low 

cholesterol conditions (Fig. 6H). More importantly, knockdown of NHR-181 rescued 

the ptc-3(RNAi) induced lethality to a similar extent than overexpression of NHR-49, 

irrespective of the cholesterol present in the medium (Fig. 6B and I). Moreover, fat 

content was restored to a similar extent (Fig. 6J and K, compare J and C). Taken 
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together, our data imply that NHR-49 positively and NHR-181 negatively regulate 

membrane bending properties and fat storage in response to high cholesterol levels.  

 

Discussion 
We explored the role of the C. elegans PTCH homolog, PTC-3, in the absence of the 

classical functional hedgehog signaling pathway. The function of PTCH proteins is 

conserved from C. elegans to man because similar to what has been proposed for 

mammalian PTCH 1,6,41, PTC-3 is a cholesterol transporter, which exports cholesterol 

out of the cell. PTC-3 appears to be the major cholesterol transporter in the apical 

plasma membrane in the C. elegans intestine, since knock-down of PTC-3 resulted in 

strong intracellular cholesterol accumulation, most notably in the apical plasma 

membrane.  

As a consequence of the cholesterol accumulation, the balance of tubular and 

sheet-like ER was strongly skewed towards sheet structures (Fig. 7). Moreover, lipid 

droplet synthesis, which originates at the ER was greatly reduced. We propose that 

the ER membranes in ptc-3(RNAi) animals have an increased bending rigidity, which 

does not allow bulging out of lipid droplets. Whether triglycerides still accumulate 

within the lipid bilayer remains unclear because their detection in the ER membrane 

was not possible. However, we observed an increase in saturated and mono-

unsaturated fatty acid acyl chains (MUFAs) at the expense of polyunsaturated fatty 

acids (PUFAs) upon knockdown of PTC-3. This imbalance towards shorter and 

saturated acyl chains should also increase lipid packing and increase membrane 

bending rigidity. This effect would then be intensified by the accumulation of 

cholesterol in intracellular membranes, which would furthermore promote membrane 

stiffness.  

While the increase of membrane bending rigidity is probably sufficient to inhibit 

lipid droplet formation, vesicle formation at the ER and the Golgi apparatus may not 

be as strongly affected by cholesterol accumulation and the increase in MUFAs 

because we still observed stacked Golgi apparatus by electron microscopy (Fig S6). 

The difference between lipid droplet formation and vesicle budding is that the COPII 

coat can bend the entire lipid bilayer 42, while the triglycerides must deform the 

membrane from within and push the lipid bilayer apart, a process, which might be less 
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energetically favorable. The COPII coat can thus probably exert the force necessary 

to bend the ER membranes in the mutant. 

However, the cholesterol accumulation may not only have a structural role in 

stiffening of membranes, together with MUFAs and saturated fatty acid acyl chains. It 

was shown previously that cholesterol can act as a hormone in C. elegans 43–45. In 

support of this notion, we observed cuticular defects with intestine-specific knockdown 

on PTC-3, indicating that there are cell non-autonomous effects of ptc-3(RNAi). Given 

that PTC-3 is a cholesterol transporter, we speculate that the increased cholesterol 

levels are the causative of the cuticle defects. Moreover, cholesterol may also change 

the transcriptional program and reduce the expression of genes required for FA 

desaturation and elongation. In fact, overexpression of the PPARa homolog NHR-49 

rescued the ptc-3(RNAi)-induced fat storage and developmental arrest phenotype. In 

mammalian cells, PPARa requires PUFAs for activation 35,46. We hypothesize that 

reduced PUFA levels downregulate NHR-49 activity, which could be compensated by 

the overexpression of NHR-49. Alternatively, but not mutually exclusive, the 

interaction between NHR-49 and NHR-80, which are jointly controlling FA elongation 

and desaturation 36, would be disrupted by high cholesterol levels and NHR-49 would 

instead team up with NHR-181. This complex could then negatively regulate FAT and 

ELO gene expression when cholesterol levels increase in the cell. A circumstantial 

argument that put weight on this latter possibility is that both NHR-80 and NHR-181 

are homologs of mammalian HNF4 proteins. Thus, it is tempting to speculate that the 

exchange of one HNF4 like molecule for another would shift the activity of NHR-49 

from promoting elongation and desaturation to repressing these processes. 

Interestingly, a C-terminal truncation in Ptch1 in adult mice led to a reduction of white 

fat tissue and PPARg levels, suggesting that the SMO-independent pathway we 

uncovered might be conserved in mammals 47. 

NHR-49 and NHR-181 appear to be specific downstream effectors of PTC-3 

activity levels, as down regulating NHR-8 did not improve PTC-3-dependent 

phenotypes. Likewise, SREB, which is a major responder to alteration in cellular 

cholesterol levels and which has been shown to regulate the expression of fatty acid 

elongases and desaturases in mammalian cells 48. However, knockdown of PTC-3 did 

not affect the nuclear localization of the C. elegans SREB homolog SBP-1 (Fig. S5C). 

However, NHR-49 activity clearly is affected by increased cholesterol levels since 
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overexpression of its target and activator FAT-7 35 partially rescued ptc-3(RNAi) 

phenotypes.  

We used C. elegans to reveal potential ancestral functions of PTCH family 

proteins because it lacks smoothened and other canonical hedgehog signaling 

pathway components, which have been lost during evolution 22,23. In fact, it has been 

proposed that PTCH and related proteins such NPC1 and dispatched evolved 

separately from smoothened 49. PTCH belongs to the family of RND transporters, 

which are already present in bacteria. For most bacterial RNDs the substrates are 

unknown. However, the family most related to PTCH transports hopanoids, which are 

structural and functional analogs of sterols 49. Next to PTC-3, C. elegans encodes 

another PTCH protein PTC-1 and 18 PTCH-related proteins (PTRs), presumably all 

RND transporters. It is tempting to speculate that these PTCs and PTRs are 

transporting small molecules, presumably sterols, and thereby contributing to cellular 

homeostasis and potential intra- and intercellular communication.  

 Our data strongly implicate cellular cholesterol levels, membrane composition 

and nuclear hormone receptors such as PPARa and HNF4 in non-canonical Hh 

signaling pathways. They also provide a framework on how to distinguish between 

SMO-dependent and -independent functions in mammals. Our results might in 

particularly important for the understanding of diseases such as multiple myeloma in 

which canonical and non-canonical Hh signaling have been implicated 50,51. 
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Materials and methods 
General methods and strains 
C. elegans was cultured and maintained as described previously52 at 20°C unless it 

was specified different. RNAi was carried out using sequenced and confirmed clones 

from the Ahringer library, as mock nontargeting dsRNA from the Ahringer library clone 

Y95B8A_84.g was used 53. For low cholesterol conditions cholesterol was omitted and 

agar replaced by agarose. RNAi feeding experiments were performed for 3 days 

starting from L1 larvae. When adult ptc-3(RNAi) were needed worms were grown with 

RNAi mock bacteria until L2 stage and then transferred to ptc-3(RNAi) plates for 2 

days. For developmental and survival assays eggs from 1-day adult worms were 

hatched in M9 buffer (3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl, 1 ml 1 M MgSO4, H2O to 

1 l; sterilized by autoclaving) overnight without bleaching. L1s were transferred to RNAi 

plates and grown at 20°C. Survival and developmental stage were assessed after 72 

hr. For double RNAi experiments ptc-3(RNAi) was diluted 1:1 with the second RNAi 

or mock expressing bacteria. nhr-49(nr2041) [ges-1p::3xHA::nhr-49(cDNA)::unc-54 

3'UTR + myo-3p::mCherry::unc-54 3'UTR] and for gut specific RNAi kbIs7 [nhx-

2p::rde-1 + rol-6(su1006)] was used , sbp-1(ep79)  

[sbp-1::GFP::SBP-1; rol-6(su1006)],  were obtained from the Caenorhabditis Genetics 

Center (CGC). nhr-8(hd117) mutant and nhr-8::GFP over expressing strains were 

described previously 39. For the cholesterol sensor strains generation the PFO-derived 

D4 domain mutants YDA (D434W Y415A A463W) and YQDA (D434W Y415A A463W 

Q433W) fused to a mCherry N-terminal tag were cloned using the NEBuilder HiFi DNA 

Assembly Cloning Kit (NEB #E5520) and introduced into pBlueScriptII with a VHA-6 

promoter and tub terminator using the primers pvha6_fwd 

gacggtatcgataagcttgatatcggtatactatttattactcgatacttttg, pvha6_rev 

cacgcttgccattttttatgggttttggtagg, for the promoter amplification, for the sensor  

amplification D4H_fwd aaacccataaaaaatggcaagcgtgagcaag, D4H_rev 

ttttgcatttatcttaattgtaagtaatactagatccagggtataaag were used, and tubter_fwd 

acttacaattaagataaatgcaaaatcctttcaag, tubter_rev 

actagtggatcccccgggctgcaggtgagacttttttcttggc for tubulin terminator. The plasmid was 

microinjected at a concentration of 50 ng/μl into both arms of the syncytial gonads of 

N2 worms. SUR-5::GFP at 10 ng/μl concentration was co-injected as transformation 

marker and 40 ng/μl of lambda DNA as carrier was used. Animals containing the 
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cholesterol sensors were grown at 25°C and fed with OP50 RNAi-competent bacteria 
54. The ptc-3::gfp reporter pCH115.1 was constructed by inserting a gfp cassette into 

the same site within the ptc-3 locus as described in 18 in the fosmid WRM064cC06, 

following the recombineering protocol described in 55. The gfp cassette was PCR-

amplified by using pBALU1 vector and primers CH428 

gaaaaagagatttggcctactgcagtcgaggaaacccacaaatggcgactatgagtaaaggagaagaacttttca 

and CH429 

gccgaaaaactcgaacttacatttgaaacattgctcggcacactttgacttttgtatagttcatccatgcca, and the 

galK module was excised after its insertion to the fosmid. As co-injection marker 

pMF435: Ppgp-1::mCherry::unc-54 3’UTR was used 56. 

 

Microscopy 
Live worms were immobilized with 50 mM levamisole in M9 and mounted on a slide 

with 2% agarose. The worms were imaged with a Zeiss Axioplan 2 microscope 

equipped with a Zeiss Axio Cam MRm camera (Carl Zeiss, Aalen Oberkochen, 

Germany) and the objectives EC Plan-Neofluar 10x/0.3, EC Plan-Neofluar 20x/0.50, 

EC Plan-Neofluar 40/1.30. All images were adjusted to the same parameters with 

OMERO.web 5.3.4-ice36-b69. Images of D4H cholesterol sensors, Filipin III staining 

and TRAM::GFP were obtained on a Zeiss LSM 880 microscope with Airyscan with 

Plan-Apochromat 63x/1.4 Oil DIC M2. The fast mode was used, and images were 

processed using the Zen Black software. 

 

Coherent Anti-Stokes Raman Spectroscopy 
Worms were mounted on a slide with 2% agarose with 20 mM levamisol. A Leica TCS 

SP8 system with a CARS laser picoEmerald. The lasers were beam to 816.4 nm while 

keeping the Stokes beam constant at 1,064.6 nm. The scan speed was set to 400 Hz. 

A z-stack per worm was imaged along the intestine and 19 animals from 3 experiments 

were collected per condition. The number of lipid droplets in each stack was assessed 

with the Fiji plug-in Lipid Droplet Counter. The data was analyzed with a one tail 

ANOVA followed by Dunnett’s multiple comparisons test in Prism 7. 

 

TEM and FIB SEM 
For transmission electron microscopy (TEM) and focused-ion beam scanning electron 

microscopy (FIB-SEM), worms were frozen as follows. C. elegans animals were 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 23, 2019. ; https://doi.org/10.1101/816256doi: bioRxiv preprint 

https://doi.org/10.1101/816256
http://creativecommons.org/licenses/by-nd/4.0/


picked with a worm pick from agar plate and transferred to a droplet of M9 medium on 

a 100 µm cavity of a 3 mm aluminium specimen carrier (Engineering office M. 

Wohlwend GmbH, Sennwald, Switzerland). 5 - 10 worms were added to the droplet 

and the excess M9 medium was sucked off with dental filter tips. A flat aluminium 

specimen carrier was dipped in 1-hexadecene and added on top. Immediately, the 

specimen carrier sandwich was transferred to the middle plate of an HPM 100 high-

pressure freezer (Leica Microsystems, Vienna, Austria) and frozen immediately 

without using ethanol as synchronizing medium. 

Freeze-substitution was carried out in water-free acetone containing 1% OsO4 

for 8 hr at -90°C, 7 hr at -60°C, 5 hr at -30°C, 1 hr at 0°C, with transition gradients of 

30°C/hr, followed by 30 min incubation at RT. Samples were rinsed twice with acetone 

water-free, block-stained with 1% uranyl acetate in acetone (stock solution: 20% in 

MeOH) for 1 hr at 4°C, rinsed twice with water-free acetone and embedded in 

Epon/Araldite (Merck, Darmstadt, Germany): 66% in acetone overnight, 100% for 1 hr 

at RT and polymerized at 60°C for 20 hr. Ultrathin sections (50 nm) were post-stained 

with Reynolds lead citrate and imaged in a Talos 120 transmission electron 

microscope at 120 kV acceleration voltage equipped with a bottom mounted Ceta 

camera using the Maps software (Thermo Fisher Scientific, Eindhoven, The 

Netherlands). 

For Focused ion beam scanning electron tomography, a trimmed Epon/Araldite 

block containing a single C. elegans was mounted on a regular SEM stub using 

conductive carbon and coated with 10 nm of carbon by electron beam evaporation to 

render the sample conductive. Ion milling and image acquisition was performed 

simultaneously in an Auriga 40 Crossbeam system (Zeiss, Oberkochen, Germany) 

using the FIBICS Nanopatterning engine (Fibics Inc., Ottawa, Canada). A large trench 

was milled at a current of 16 nA and 30 kV, followed by fine milling at 240 pA and 30 

kV during image acquisition with an advance of 5 nm per image. Prior to starting the 

fine milling and imaging, a protective Platinum layer of approximately 300 nm was 

applied on top of the surface of the area of interest using the single gas injection 

system at the FIB-SEM. SEM images were acquired at 1.9 kV (30 µm aperture) using 

an in-lens energy selective backscattered electron detector (ESB) with a grid voltage 

of 550 V, and a dwell time of 1 μs and a line averaging of 130 lines. The pixel size was 

set to 5 nm and tilt-corrected to obtain isotropic voxels. The final image stack was 

registered and cropped to the area of interest using the Fiji image-processing package 
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[https://imagej.net/TrakEM2]. FIB-SEM images were processed with iLastik57 and 

pixel classification was done. The classifier was trained to separate different object 

classes, ER, cytoplasm and other organelles. The training was done individually for 

each dataset. A 3D reconstruction was later handled with IMARIS 9.2.  

 

Lipidomic analysis 
Worms were cultured in liquid media as described previously 58. Feeding bacteria were 

prepared by growing RNAi bacteria to an OD600 of 0.6 in LB-Amp medium and then 

inducing dsRNA expression with 1 mM IPTG for 24 hr. Bacteria were harvested, 

resuspended to OD600 400. Synchronized populations of worms were grown from L1 

larvae to L2 stage in mock bacteria and then transferred into RNAi bacteria until they 

reach early adulthood. Young adults were collected and washed once in ddH2O. 8,000 

young adults were used for glycerophospholipid and sphingolipid analysis while sterol 

analysis was done from 40,000 young adults. Pellets were frozen and stored at -80°C 

until extraction. Lysis was performed on a Cryolysis machine (Precellys 24, lysis & 

homogenization machine (Bertin Technologies)) at 4°C using 100 µl 1.4 mm zirconium 

oxide beads in 800 µl MS-H2O with three cycles of 45 sec bursts at 6,200 rpm followed 

by 45 sec interruptions. Lysates were eluted into glass tubes with lipid standards 

(glycerophospholipid and sphingolipid standards: di-lauryl phosphatidylcholine, di-

lauryl phosphatidylethanolamine, di-lauryl phosphatidylinositol, di-lauryl 

phosphatidylserine, tetra-lauryl cardiolipin, C17 ceramide, C12 sphingomyelin, C8 

glucosylceramide, all from Avanti Polar Lipids; sterol standard: ergosterol from Fluka) 

and beads were washed and eluted again with 200 µl MS-H2O. Lipids were extracted 

with chloroform and methanol according to Bligh and Dyer 59 following a published 

protocol 60. Briefly, 3.6 ml organic solvent (CHCl3/MeOH=1:2, v:v) were added to the 

1 ml aqueous lysate, mixed and centrifuged to clear extract from worm debris. Extracts 

were transferred to new glass tubes and phase separation was induced by addition of 

0.5 mL MS-H2O and 0.5 ml CHCl3. Samples were centrifuged, and the organic phase 

was collected. For sterol analysis total lipid extract was dried directly in a centrivap. 

To separate sterols from other lipids solid phase extraction on a Chromabond® SiOH 

column (Macherey-Nagel, Germany) was performed. Columns were washed two 

times with 1 ml CHCl3. Total lipid extract from 40,000 worms was resuspended in 250 

µl CHCl3 by vortexing and sonication. The extract was then applied to the column and 

eluted with two times 650 µl CHCl3. The flow-through and CHCl3 elutions were 
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combined, dried and used for sterol analysis by GC-MS. In the case of 

glycerophospholipid and sphingolipid analysis, total lipid extract was split in two and 

dried. One aliquot was used without further treatments for glycerophospholipid 

analysis and inorganic phosphate determination while the other underwent 

methylamine treatment and desalting via butanol extraction 61. 

Glycerophospholipid and sphingolipid analysis was performed following a worm 

adapted version of a previously published method 62. LC-MS or HPLC grade solvents 

were used and the samples were pipetted in a 96 well plate (final volume = 100 µl). 

Positive mode solvent: CHCl3/MeOH/H2O (2:7:1 v/v) + 5mM NH4Ac. Negative mode 

solvent: CHCl3/MeOH (1:2 v/v) + 5mM NH4Ac. The glycerophospholipid and 

sphingolipid aliquots were resuspended in 250 µl CHCl3/MeOH (1:1 v/v) and sonicated 

for 5 min. The glycerophospholipids were diluted 1:10 in negative and positive mode 

solvents and the sphingolipids were diluted 1:5 in positive mode solvent and infused 

onto the mass spectrometer. Tandem mass spectrometry for the identification and 

quantification of glycerophospholipid and sphingolipid molecular species was 

performed using multiple reaction monitoring (MRM) with a TSQ Vantage Triple Stage 

Quadrupole Mass Spectrometer (Thermo Fisher Scientific, Bremen, Germany) 

equipped with a robotic nanoflow ion source, Nanomate HD (Advion Biosciences, 

Ithaca, NY). The collision energy was optimized for each lipid class. Each biological 

replicate was read in two technical replicates each comprising three measurements 

for each transition. Lipid concentrations were calculated relative to the corresponding 

internal standards and then normalized to the total phosphate content of each total 

lipid extract. Sterol analysis was done as previously described 61. 

 

Nile Red Staining 
Nile Red staining was performed as described previously63. Worms were washed with 

1 ml M9 into a 1.5 ml siliconized microfuge tube. Worms were allowed to sink by gravity 

on ice and were washed with M9. Approximately 30 µl of M9 and worms at the bottom 

of the tube were left. 0.2 ml of 40% isopropanol was added and incubated for 3 min 

for fixation. The fixative was removed and 150 µl of Nile Red solution (6 µl of Nile Red 

0.5 mg/ml in acetone per 1 ml of 40% isopropanol) was added to the worms for 30 min 

at 20°C with gentle rocking in the dark. Worms were washed once with 1 ml M9 buffer 

and mounted on a 2% agarose pad for microscopy. Intensity analysis was performed 
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using Fiji with at least 11 worms per condition from 3 different experiments. The data 

was analyzed with a one tail ANOVA followed by Dunnett’s multiple comparisons test 

in Prism 7. 

 

TopFluor cholesterol staining 
The experiment was performed as described previously as 5. PTC-3 CDS was 

amplified with the primers ptc-3TEF_F 5’-

actagtggatcccccgggctgcaggATGAAGGTGCATTCGGAACAAC-3’ ptc-3TEF_R 5’-

gacggtatcgataagcttgatatcgTTACTTGTGCGCTGGCGATG-3’ from cDNA and cloned 

into the yeast plasmid p426TEF. A point mutation (D697A) was introduced with the 

Q5® Site-Directed Mutagenesis Kit (E0554S NEB). Yeasts were cultured to an OD600 

of 4, washed with cold water and resuspend to 10 OD600 in 50 mM HEPES buffer pH 

7.0. Yeasts were incubated protected from light with 5 µM TopFluor® Cholesterol 

(810255, Avanti Polar Lipids) for 2 hr at 20°C. They were washed once with cold 

ddH2O and resuspend with HEPES buffer, after 20 min the yeast were spun down, 

and the supernatant was measured with filters 485ex 520em on a plate reader 

(DTX880, Multimode Detector, Beckman Coulter). The efflux was normalized to the 

initial fluorescence of the yeast. Worms were washed off a plate with M9 buffer and 

put on a shaker in M9 buffer with 5 mM TopFluor® Cholesterol for 1 hr at 20°C. Worms 

were washed with M9 buffer once to remove the excess of Topfluor® Cholesterol and 

chase in M9 buffer was performed for 1 hr before imaging. 

 

Immunofluorescence and PTC-3 antibody. 
Immunofluorescence of C. elegans was performed as described previously 64, with 

slight modifications: Worms were blocked with PTB (1% BSA, 1x PBS, 0.1 % 

Tween20, 0.05 % NaN3,1 mM EDTA) and secondary antibody was diluted in PTB. 

Peptide antibodies against C. elegans PTC-3 were generated in rabbits by Eurogentec 

using peptides SASHSSDDESSPAHK and EVRRGPELPKENGLG. Serum was used 

in a 1:100 dilution and Alexa Fluor 488-goat anti-rabbit IgG (H+L) (Invitrogen; A-

11034) 1:5,000. Worms were washed 2x in M9 and mounted with fluorescence 

protecting media (ProLong™ Glass Antifade Mountant Invitrogen P36984). Worms 

were imaged on a Zeiss LSM 880 microscope as described in the Microscopy section. 
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Filipin staining  
Worms were fixed in Glyoxal solution (2.835 ml ddH2O, 0.789 ml EtOH, 0.313 ml 

glyoxal (40% stock solution from Sigma-Aldrich, #128465) 0.03 ml glacial acetic acid. 

pH 4.5) for 30 min on ice, and for another 30 min at RT, followed by 30 min of 

quenching in 100 mM NH4Cl at RT and O/N post quenching at 4°C 65. Worms were 

washed 2x 30 min with M9 and left in 50 µl of M9 in which 50 µl of Filipin III ready-

made solution (Sigma-Aldrich, SAE0087) was added for 1 hr in the dark at RT. Worms 

were washed 2x in M9 and mounted with fluorescence protecting media (ProLong™ 

Glass Antifade Mountant Invitrogen P36984). Worms were imaged on a Zeiss LSM 

880 microscope as described in the Microscopy section. 

 

Western Blot 
Worm Lysate from synchronous L3 worm cultures was prepared in Laemmli buffer 

with 6 M urea with glass beads in a FastPrep machine (MP Biomedicals, Irvine, CA) 

for 2x 30 sec. Samples were run on a 7.5% SDS-PAGE before transfer onto 

nitrocellulose membranes (Amersham Protran; 10600003). Membranes were blocked 

in TBS containing 5% milk for 1 hr at RT. First antibody incubation was done O/N at 

4°C and the secondary HRP-coupled antibodies goat anti-Mouse IgG (H+L) 

(ThermoFisher scientific; 31430; 1:10,000) or polyclonal HRP-conjugated goat-anti-

rabbit IgG (ThermoFisher scientific; 31460; 1:10,000) for 1 hr at RT. The blots were 

developed using WesternBright ECL HRP substrate (K-12045 Advansta) in a Fusion 

FX7 (Vilber Lourmat) image acquisition system. 

 

qRT-PCR 
RNA for qRT-PCR was extracted with TRIzol according to the manufacturer’s 

instructions from synchronous worms 26 hr after L1. The RNA was DNase digested 

and reverse transcribed using Maxima H Minus First Strand cDNA Synthesis Kit, with 

dsDNase (ThermoFischer Scientific). The resulting cDNA was diluted 1:10 for further 

analysis. The StepOne RT-PCR system combined with StepOne Software (Applied 

Biotechnologies) was used for analysis. The presented values are based on three 

biological replicates. Expression levels were normalized to cdc-42 Primer sequences: 

nhr41_F 5’- ACGTCGAGTCGTCCACATTT-3’, nhr41_R 5’-

TCAGATCTCCCGAGCTCAAT-3’, nhr181_F 5’-TGCGGAACAAAAAGCAGAGC-3’, 
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nhr181_R 5’-ATCTTTGTAGGTTACGTGACCC-3’, cdc42_F 5’-

CCTCTATCGTATCCACAG-3’, cdc42_R 5’-GGTCTTTGAGCAATGATG-3’, nhr168_F 

5’- GGGAAACTGGCACCAATGAAG-3’, nhr168_R 5’- 

GTTGCGAGAGGTCAGGCACCG-3’. The data was analyzed with a two-way ANOVA 

followed by uncorrected Fisher's LSD test in Prism 7. 
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Figure legends 

Figure 1. Loss of PTC-3 causes developmental and fat storage defects. (A) Light 

microscopy images of adult N2 worms grown from L2 larva on mock or ptc-3(RNAi) 

bacteria. ptc-3(RNAi) animals are smaller, paler and show cuticle defects. The arrow 

points to a cuticular defect. Scale bars upper panel 20 µm, lower panels 100 µm. (B) 

Immunofluorescence of isolated intestine and gonad from wild-type worms. Schematic 

representation of the intestine and the proximal gonad. PTC-3 is present at the 

intestinal apical membrane. Scale bar 10 µm. (C) PTC-3 has cell autonomous and 

non-cell autonomous functions. Light microscopy images of adult gut specific RNAi 

worms (RNAigut) grown from L1 larva on mock or ptc-3(RNAi) bacteria. ptc-3(RNAigut) 

animals show intestinal and vulval defects. Scale bars 100 µm. (D) Lipid content is 

reduced in ptc-3(RNAi) animals. Nile Red staining of mock and ptc-3(RNAi) treated 

worms. Scale bars 20 µm. (E) Quantification of Nile Red staining shown in (D). Error 

bars are SEM. *** p<0.0001. (F) CARS microscopy reveals reduction of lipid levels in 

live ptc-3(RNAi) animals. Scale bars 10 µm. The intestine is outlined by green dashed 

lines. Arrows point to the intestine. (G) Quantification of CARS signal. Error bars are 

SEM. *** p<0.0001. 

Figure 2. PTC-3 is a cholesterol transporter. (A) S. cerevisiae expressing PTC-3 or 

PTC-3D697A were incubated for 2 hr with 2.5 mM TopFluor® Cholesterol, washed, re-

suspended in cholesterol free buffer, and after 20 min, fluorescence intensity of the 

supernatant was measured. PTC-3 expression induced cholesterol efflux from yeast, 

which was abolished by the D697A mutation. Error bars are SD. *** p <0.0001 (B) N2 

worms fed with mock or ptc-3(RNAi) were incubated with 2.5 mM TopFluor® 

Cholesterol for 1 hr. After 1 hr chase, animals were imaged. Scale bar 10 µm. (C) 

Cholesterol accumulates in ptc-3(RNAi) animals. Quantification of sterols by MS. Error 

bars are SEM. *** p<0.0001. (D) Cholesterol identification by Filipin or mutagenized 

YDA or YQDA D4::mCherry cholesterol sensor in the worm gut in mock or ptc-3(RNAi) 

treated animals. ptc-3 (RNAi) induces membranal cholesterol accumulation in the 

intestinal apical membrane. Scale bars 10 µm. (E) Quantification of apical membrane 

enrichment over cytoplasm of the cholesterol sensors YDA or YQDA D4::mCherry. *** 

p<0.0001. 
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Figure 3. Low dietary cholesterol rescues ptc-3(RNAi) induced phenotypes. 
Worms feed from L1 larva under standard cholesterol conditions (5 mg/l) or low 

cholesterol conditions (no added cholesterol) for 3 days. (A) Representative light 

microscopy images of mock- or ptc-3(RNAi)-treated worms on low cholesterol plates 

Scale bars 20 µm. (B) Quantification of number of ptc-3(RNAi)-treated worms that 

reached adulthood in the absence of cholesterol in the growth medium. Error bars are 

SEM. *** p<0.0001. (C) Nile Red staining of lipid droplets in C. elegans mock- and ptc-

3(RNAi)-treated animals on normal or low cholesterol conditions. In low cholesterol 

conditions, lipid droplet levels are restored in ptc-3(RNAi) animals. Scale bars 20 µm. 

(D) Quantification of Nile Red staining of data shown in (C). The normal cholesterol 

data are the same as depicted in Fig. 1E.  

Figure 4. ptc-3(RNAi) reduces LD in the gut and induces changes in the ER 
structure. (A) Transmission electron microscopy (TEM) of mock and ptc-3(RNAi) 

treated animals reveal a reduction of reticulate ER structures and LD in ptc-3(RNAi) 

animals. This phenotype is rescued by omission of cholesterol in the medium. ER: 

Endoplasmic reticulum, LD: lipid droplet, M: mitochondria, G: Golgi. Scale bars 200 

nm. (B) Reconstitution of ER membranes from FIB-SEM images of mock and ptc-

3(RNAi) treated animals using machine learning. ptc-3(RNAi) induces sheet-like ER 

structures.  

 

Figure 5. ptc-3(RNAi) decreases phospholipid FA saturation and elongation. (A) 
Increasing the growth temperature from 20°C to 25°C improves the development of 

ptc-3(RNAi) animals. Representative bright field pictures of worms on growth plates. 
(B) Quantification of ptc-3(RNAi) survivors at both temperatures. Error bars are SEM. 

*p<0.05. (C) Lipidomics on mock or RNAi treated worms. ptc-3(RNAi) worms showed 

no difference in lipid head group distribution. Error bars are SEM. (D) Lipidomics 

revealed differences in lipid acyl chain composition upon ptc-3(RNAi). There is a shift 

from PUFAs to saturated FA and MUFAs. Error bars are SEM. 

 

Figure 6. PTC-3 influences NHR function in a cholesterol-dependent manner. (A) 

Overexpression of NHR-49 or FAT-7 partially rescues ptc-3(RNAi) defects. 

Representative DIC images of worms. Scale bars 100 µm. (B) Quantification of 

survival rate upon overexpression of FAT-7, NHR-49 or NHR-80 in ptc-3(RNAi) 
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animals. Error bars are SD. *** p<0.0001. (C) Over expression of NHR-49 partially 

restores fat accumulation in ptc-3(RNAi) animals. Nile Red staining. Scale bars 20 µm. 

(D) Quantification of data shown in (C). (E) Schematic representation of ribosomal 

footprints of mRNA during C. elegans larval development. Oscillatory changes in 

mRNA levels during developmental time. The timing, amplitude and whether a gene 

is oscillating is gene specific. (F) PTC-3, but not NHR-49 or NHR-80, expression 

oscillates during development. Data plotted from 40. (G) Ribosomal footprint 

oscillations of NHR-181, NHR-168 and NHR-41 are similar to PTC-3 (data from 40). 

(H) NHR-181 expression is modulated dependent on cholesterol levels. qRT-PCR 

analysis of NHR-41, NHR-168 and NHR-181 in the presence or absence of cholesterol 

in the growth medium. Error bars are SEM. ** p<0.001 * p<0.05. (I) Genetic interaction 

between PTC-3 and NHR-181. Knockdown of NHR-181 rescues ptc-3(RNAi) lethality. 

(J) nhr-181(RNAi) partially restores fat accumulation in ptc-3(RNAi) animals. Nile Red 

staining. Scale bars 20 µm. (K) Quantification of data shown in (J). 

 

Figure 7. Model of how PTC-3 and the loss thereof affects ER structure and LD 
formation. PTC-3 controls intracellular cholesterol levels directly by promoting its 

efflux. In the absence of PTC-3, cells accumulate cholesterol, which in turn directly 

influence membrane properties. In addition, cholesterol directly or indirectly affects 

NHRs, which subsequently leads to a reduction of acyl chain length and desaturation. 

This second effect enhances the changes in membrane properties and leads to 

changes in ER morphology and LD formation.  

 

Supplementary data 
 

Figure S1. PTC-3 expression pattern. (A) Antibodies against PTC-3 are specific. 

Immunoblot of lysates of mock or ptc-3 (RNAi) treated worms. (B) PTC-3 gut 

localization was confirmed with a GFP-tagged PTC-3. Arrows point to the apical 

intestinal membrane. Scale bars 10 µm (C) Mock and ptc-3(RNAi) treated animals 

were imaged with CARS microscopy. The signal did not overlap with the 

autofluorescence of LROs, validating the proper spectral separation of the filters, and 

that we can detect specifically lipid droplets. Scale bars 10 µm. 
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Figure S2. Neither 7-DHC nor DA rescued the ptc-3(RNAi) phenotype. 
Quantification of number of ptc-3(RNAi) treated worms that reached adulthood when 

fed from L1 larva under standard cholesterol conditions (5 mg/l), without cholesterol 

or if 7-DHC or DA was added for 3 days. Addition of 7-DHC or DA did not alleviate the 

ptc-3(RNAi) arrested phenotype over the no cholesterol control. Error bars are SEM. 

 

Figure S3. ER morphology appears to be altered upon ptc-3(RNAi). Light 

microscopy images of intestinally expressed TRAM-GFP. Images suggest 

morphological alterations in the ER in ptc-3(RNAi) animals. Scale bar 5 µm. 

 

Figure S4. FIB-SEM analysis of intestinal cell reveal sheet-like ER in ptc-3(RNAi) 
animals. (A) Workflow of FIB-SEM analysis. After TEM analysis a region of interest 

was chosen, SEM images were acquire followed by milling steps. A SEM Z-stack was 

generated, and identification of the ER was done by iLastik training. (B) 

Representative images showing automatic ER identification in green by iLastik after 

machine learning training sessions. Scale bars 200 nm. 

 

Figure S5. PTC-3 does not genetically interact with NHR-8 and does not affect 
SBP-1 localization. (A) nhr-8(hd117) animals were treated with ptc-3(RNAi) and 

survival was compared with nhr-8(hd117) NHR-8::GFP expressing animals. (B) NHR-

8 over-expressing animals were treated with ptc-3(RNAi) and survival was scored. (C) 

SBP-1::GFP localization was determined under different RNAi and cholesterol 

conditions. 

 

Figure S6. Golgi structure is not dramatically affected ptc-3(RNAi) animals. TEM 

images showing Golgi structure in Mock and ptc-3(RNAi) treated animals. No mayor 

disruption of the Golgi apparatus was observed. ER: Endoplasmic reticulum, M: 

mitochondria, G: Golgi 

 

Movies: 
Movie S1. Mock ER-3D reconstruction. In a FIB-SEM Z-stack ER was identified by 

iLastik training. ER structures showed a reticulated morphology. Scale bar 0.4 µm 
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Movie S2. ptc-3(RNAi) ER-3D reconstruction. In a FIB-SEM Z-stack ER was 

identified by iLastik training. Upon ptc-3(RNAi) ER-sheets were identified. Scale bar 

0.4 µm. 
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