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Abstract
Motivation: The growing complexity of reaction-based models necessitates early detection and resolution 
of model errors. This paper addresses mass balance errors, discrepancies between the mass of reactants 
and products in reaction specifications. One approach to detection is atomic mass analysis, which uses 
meta-data to expose atomic formulas of chemical species. Atomic mass analysis isolates errors to 
individual reactions. However, this approach burdens modelers with expressing model meta-data and 
writing excessively detailed reactions that include implicit chemical species (e.g., water). Moreover, atomic 
mass analysis has the shortcoming of not being applicable to large molecules because of the limitations of 
current annotation techniques. The second approach, Linear Programming (LP) analysis, avoids using 
model meta-data by checking for a weaker condition, stoichiometric inconsistency. But this approach 
suffers from false negatives and has large isolation sets (the set of reactions implicated in the 
stoichiometric inconsistency).
Results: We propose alternatives to both approaches. Our alternative to atomic mass analysis is moiety 
analysis. Moiety analysis uses model meta-data in the form of moieties present in chemical species. Moiety 
analysis avoids excessively detailed reaction specifications, and can be used with large molecules. Our 
alternative to LP analysis is Graphical Analysis of Mass Equivalence Sets (GAMES). GAMES has a slightly 
higher false negative rate than LP analysis, but it provides much better error isolation. In our studies of the 
BioModels Repository, the average size of isolation sets for LP analysis is 55.5; for GAMES, it is 5.4. We 
have created open source codes for moiety analysis and GAMES.
Availability and Implementation: Our project is hosted at https://github.com/ModelEngineering/
SBMLLint, which contains examples, documentation, source code files, and build scripts used to create 
SBMLLint. Our source code is licensed under the MIT open source license.
Contact: jlheller@uw.edu
Supplementary information: None.

1 Introduction
Modeling is an essential part of science and engineering because of
its ability to demonstrate complex phenomena and predict outcomes.
In Systems Biology, many models are based on chemical reactions
that specify how reactants are transformed into products. Herein, a
reaction is specified by listing the chemical species (and their associated
stoichiometry) for the reactants and the products. Such specifications are

central to kinetic models (e.g., Resat et al. [2009]) and flux balance analysis
(e.g., Orth et al. [2010]).

The accuracy of reaction based models depends in large part on the
correct specification of the reactions. Verifying reaction specifications
has become quite challenging as reaction based models have grown
in complexity. For example, BioModels (Le Novère et al. [2006]),
a repository of literature-based physiologically and pharmaceutically
relevant mechanistic models in standard formats, especially the Systems 
Biology Markup Language (SBML) (see (Hucka [2013]), contains over 
600 curated models that range in size from tens to thousands of reactions. 

There are many similar public repositories of biological models such as
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MAMMOTh (Kazantsev et al. [2018]), CellML (Lloyd et al. [2008]),
and BiGG (King et al. [2016]). The correctness of models in such public
repositories is of particular concern since these repositories are often the
starting point for new modeling projects.

How can we address the correctness of reaction based models as models
grow in complexity? Our answer draws inspiration from approaches used
in software engineering (Hellerstein et al. [2019]). If we view reaction
based models as a kind of software, then the complexity of today’s reaction
based models is comparable to the complexity of computer software in
the early 1960s when programs were typically tens to a few thousand
statements. Today, open source software such as Linux and the Apache
Web Server have several million statements. This thousandfold increase
in complexity is in part due to the development of sophisticated tools that
automate error checking of software codes. One example is “linters" (e.g.,
Darwin [1988]) that check for errors such as a variable that is referenced
before it is assigned and identifying unreachable code (e.g., a statement
that follow a return statement). Both of these are examples of static
error checking that is done by examining source codes without requiring
them to be executed (Louridas [2006]).

Our goal is to develop linters that facilitate the development of complex
reaction based models. A starting point is checking for mass balance
errors. A mass balance error occurs if there is an incorrect specification of a
reaction so that the total mass of the chemical species in the reactants differs
from the total mass of the products. Checking for mass balance errors can
be done directly on the model source without running simulations or any
calculation of model outputs. Others have noted the importance of this
kind of error checking (e.g., Medley et al. [2016], Clark et al. [2012],
Rohr et al. [2010]).

We proceed with an example from (curated) BioModels. Considered is
the model
BIOMD0000000255, a model with 827 reactions. Fig. 1 displays 6 of
the model’s 827 reactions using the syntax of the Antimony modeling
language (Smith et al. [2009]). Reactions v537 and v601 are uni-uni
reactions in which there is a single reactant and a single product, and all
stoichiometries are one. For a uni-uni reaction to preserves mass balance,
the mass of the reactant must equal the mass of the product. Thus, assuming
mass balance, the masses of chemical species c160, c154, and c86 are
equal. However, reaction v13 implies that the mass of c154 is less than
that of c160 (since c10 must have a non-zero mass). Hence, a mass
balance error is present.

v8: c10 + c10 -> c11

v13: c10 + c154 -> c160

v208: c6 + c16 -> c10

v523: c6 -> c86

v537: c160 -> c86

v601: c154 -> c86

Fig. 1. Snippet of BIOMD0000000255 that contains a mass balance error. Reactions are
expressed using the syntax of the Antimony modeling language. Reactions are identified
by the label that precedes the colon.

The foregoing analysis is tractable for 6 reactions. It would have been
unmanageable for 827 reactions. This highlights the importance of error

isolation, finding a small subset of reactions within a model that cause a
mass balance error. While there has been substantial work on detecting
mass balance errors, we are aware of only one prior effort that bears on
error isolation, and this is done in a relatively indirect way.

Isolating mass balance errors is easy if error detection works at the
granularity of individual reactions. Indeed, it would seem that if we know
the chemical formula for each species in the reaction, then it should be
trivial to check mass balance by comparing the total atomic mass of the
reactants with the total atomic mass of the products. This approach is used
by the memote system (Lieven et al. [2018]). Knowledge of formulas
for chemical species is provided through model meta data, information
about the elements of the biochemical model. Most commonly, this is done
through annotations (e.g., Misirli et al. [2016], Neal et al. [2018]). We use
the term atomic mass analysis to refer to approaches that use atom-level
chemical formulas to detect mass balance errors.

There are two non-trivial challenges with atomic mass analysis. First,
biochemical equations are not always written to provide balance at the level
of atomic mass since many chemical species are assumed to be present in
relatively constant concentrations (Nelson and Cox [2004]). We refer to
such chemical species as implicits. For example, the hydrolysis of ATP is
often written as ATP → ADP. Here, inorganic phosphate is implicit and
so the equation does not account for one of the phosphate groups1 in the
reactants. A more precise specification would be ATP → ADP + Pi,
where Pi indicates a phosphate group. Still, this specification also fails
mass balance because it does not account for small differences in atomic
mass–the fact that the γ phosphate in ATP has a shared oxygen while
the inorganic phosphate in the products does not. This can be addressed
by including another implicit–water: ATP + H20 → ADP + Pi (with
appropriate accounting for the protons on the phosphate groups). Tools
such as memote require that reactions are specified so that all chemical
species are explicitly expressed in the reaction. Our experience is that such
a requirement is quite burdensome for many modelers. One way to avoid
this is to infer missing reactants (e.g., Swainston et al. [2011]), but this
has the potential of inferring bogus reactions.

A second challenge posed by working in units of atomic mass is a
limitation on what can be expressed in annotations. While annotations
of small molecules are readily available, this is not the case for large
molecules that are common in biochemistry. Examples include proteins,
carbohydrate polymers, DNA, and RNA. A core challenge here is that
large molecules can be in many chemical states (e.g., phosphorylation,
protenation, and acetylation), and the state of a molecule must be
considered in analyzing mass balance in units of atomic mass. Indeed,
models of biological signaling consist mostly of reactions that describe
changes in molecular states. Unfortunately, existing annotation systems
do not have effective ways to describe such state changes.

The underlying issue in the foregoing is that we are working in units
of atomic mass. It turns out that many mass balance errors can be detected
without knowledge of the atomic formulas of chemical species. This is
accomplished by detecting a slightly weaker condition–stoichiometric
inconsistency, inconsistency in the relationships between reactions in a
model. This approach is defined in terms of the stoichiometry matrix N,
a matrix whose i j-th entry is the moles of a chemical species i which is
produced by reaction j. This entry is negative if the reaction consumes
species i. A stoichiometric inconsistency is present if there is no vector of
positive masses v = {vi} such that NT v = 0.

The mass balance error in Fig. 1 is an example of a stoichiometric
inconsistency in that for all positive masses assigned to c154 and c160,
there is no positive mass that can be assigned to c10 that yields mass

1 In this analysis, it is important to distinguish a phosphate group, which
may be bound to one or more carbons, from an inorganic phosphate that
does not have a carbon bond.
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balance for reaction v13. Clearly, a stoichiometric inconsistency implies
a mass balance error. However, there are mass balance errors that do not
result in stoichiometric inconsistency. Although detecting stoichiometric
inconsistency is a weaker condition than detecting mass imbalance,
the former has great appeal because the detection of stoichiometric
inconsistency imposes no burden on the modeler.

One way to detect stoichiometric inconsistency is to formulate a linear
programming feasibility problem with the constraints NT v = 0 and v > 0
(Nikolaev et al. [2005], Gevorgyan et al. [2008]). We refer to this as LP
analysis. Several tools implement this approach (e.g., Swainston et al.
[2011], Schellenberger et al. [2011], Lund Steffensen et al. [2016]).

LP analysis does have some elements that relate to isolation of mass
balance errors. Gevorgyan et al. [2008] propose the use of minimal net
stoichiometries (the stoichiometries of chemical species implicated in a
stoichiometric inconsistency) and leakage modes (linear combinations
of reactions that result in stoichiometric inconsistencies). However, the
resulting technical approach relies on mixed integer linear programming.
This is computationally complex, and is only an indirect indication of the
stoichiometric inconsistencies in reactions (although it does seem helpful
for handling implicit molecules).

In summary, current approaches to detecting mass balance errors either
use atomic mass analysis or LP analysis. Below we list issues with these
approaches.

1. I1: Model meta-data. Atomic mass analysis requires that modelers
annotate chemical species to provide atomic mass information.

2. I2: Excessive detail. Atomic mass analysis burdens modeler by
requiring that reactions include implicit chemical species (e.g.,
protons, water, phosphate groups) so that mass balance can be
calculated in units of atomic mass.

3. I3: No large molecules. Atomic mass analysis cannot address
reactions with large molecules such as proteins, DNA, and RNA
because of limitations of current annotation techniques (which do
not address molecular states of large molecules).

4. I4: Poor isolation. LP analysis provides no practical way to isolate
stoichiometric inconsistencies to individual reactions.

5. I5: False negatives. LP analysis detects stoichiometric inconsistencies
and cannot detect all mass balance errors.

Issue I1 is inherent in any approach that requires model meta-
data, and I5 is inherent to any approach that focuses on stoichiometric
inconsistencies. This paper proposes alternatives to mass balance analysis
and LP analysis so as to address issues I2-I4.

We propose moiety analysis2 as an alternative to atomic mass analysis.
Moiety analysis calculates mass in units of chemical groups or moieties
instead of atomic mass. Because moieties can be defined in a flexible
way that encompasses many chemically similar groupings of atoms, we
avoid I2 and I3. Our alternative to LP analysis is Graphical Analysis
of Mass Equivalence Sets (GAMES). By using a combination of a
graphical analysis and linear algebra, GAMES dramatically improves
the identification of error causing reaction specifications (I4), although
GAMES does have a slightly higher rate of false negatives than LP analysis.
We have created open source implementations of moiety analysis and
GAMES.

The remainder of this paper is organized as follows. Section 2 discusses
moiety analysis and GAMES, and Section 3 evaluates these approaches
using BioModels. Section 4 discusses the results and directions for future
work.

2 We use the term “moiety" as a generic reference to a chemical group.

2 Materials and methods
Our work is in part motivated by a need to improve on the error isolation
provided by LP analysis. That is, once a mass balance error is detected,
we want to find a small subset of reactions that caused the error. We refer
to this subset as the isolation set for the mass balance error.

The isolation set provides a way to quantify the quality of error
isolation. One metric is the cardinality of the isolation set, or the isolation
set size (ISS). Ideally, ISS is 1, which means that a single reaction has
been identified as the cause of a mass balance error. In this case, we only
need to examine the reactants and products of a single reaction (along with
their stoichiometries). Atomic mass analysis produces an ISS of 1. As ISS
increases, so does the difficulty of the analysis, because the relationships
between chemical species shared by reactions become more complicated.
For this reason, ISS quantifies the cognitive complexity for the resolution
of mass balance errors.

We consider a second measure that normalizes ISS. This measure takes
into account the fact that a model focuses on a part of a larger system. As
such, there are often boundary reactions that create or destroy mass that
transit the interface between what is modeled and what is not modeled.

The normalized isolation set size (nISS) is ISS divided by the number
of non-boundary reactions. Clearly, nISS ranges from zero to one. nISS
quantifies the effectiveness of an error isolation algorithm by indicating
the fraction of the total number of reactions (less boundaries) that need to
be considered.

This section describes two new approaches to isolating mass balance
errors. Section 2.1 introduces moiety analysis, and Section 2.2 details
Graphical Analysis of Mass Equivalence Sets (GAMES).

2.1 Moiety Analysis

Moiety analysis is an alternative to atomic mass analysis. Both require
model meta-data, and so place a burden on the modeler to expose
information. However, moiety analysis avoids issues with excessively
detailed reactions (I2) and dealing with large molecules (I3).

Moiety analysis checks for mass balance in units of moieties instead
of atomic mass. A moiety is one or more groupings of atoms that are
chemically similar. For example, the three phosphate groups in ATP

along with inorganic phosphate are similar chemically, although they have
slightly different atomic formulas; so, we refer to all four as belonging
to the phosphate moiety. In moiety analysis, the meaning of “chemically
similar" is ultimately decided by the modeler, although there are well
established guidelines in organic and biochemistry.

Moiety analysis examines the moiety structure of chemical species to
ensure that there are equal counts of moieties in the reactants and products;
implicit molecules are ignored in this analysis. To illustrate, consider the
reaction ATP → ADP + Pi. Assume that there are two moieties: A is
an adenosine moiety, and Pi is a phosphate moiety. We see that there is
one A in both the reactants and the products, and there are three Pis in
both the reactants and the products. So, moiety analysis detects no mass
balance error.

Moiety analysis requires model meta-data that reveals the moiety
counts of chemical species. This meta-data could be exposed through
annotations. However, current annotation systems do not provide moiety
information. Herein, we rely on a naming convention for chemical species
to expose moiety structures.

Besides exposing moiety structures, we want a naming convention that
is compatible with the SBML community standard (Hucka [2013]). This
has two implications: (1) moiety names must follow the same rules as
names of SBML chemical species, and (2) the only special character that
can be used as a separator is an underscore ("_").

Our naming convention uses single and double underscores as
separators. This is best communicated by an example. Consider the
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moiety names A and Pi. Then the chemical species ATP is written as
either A__Pi__Pi__Pi or A_Pi_Pi_Pi. Because it is common to
have multiple instances of a moiety in a chemical species, we provide
an alternative representation that includes a repetition count: A__Pi_3,
where "_3" indicates that the phosphate is repeated three times, and a single
underscore is used to separate the repetition count from the moiety name.
When repetition counts are used in chemical species, then only a double
underscore can be used to separate moieties.

The occurrence count of a moiety in reactants (or products) is the
total count of the occurrences of the moiety in the chemical species of
the reactants (or products) weighted by its stoichiometry. To illustrate,
consider the first reaction of the Urea Cycle (Jackson [1986]) that has
the reactants ammonia, bicarbonate, and two ATP molecules. We use the
corresponding species names Am, Bi, and A__Pi_3. So, the reactant
expression is Am + Bi + 2 A__Pi_3. The occurrence count of the
moiety A is 2 because of the stoichiometry of ATP in the reactants. The
occurrence count for Pi is 6 because there are three inorganic phosphates
for each ATP.

We note in passing that, the atomic mass analysis is not sufficiently
flexible to incorporate implicits as is done in moiety analysis. This is
because such fine grain units do not allow for identification of chemical
groups. One possible solution is to develop an algorithm that parses atomic
structures for “implicit chemical groups" so that they could be removed
from the analysis. However, there are subtleties in doing so since parsing
must account for variants of chemical groups.

The flexibility provided by working in units of moieties has
considerable benefits. In Section 1, we saw that analyzing ATP →
ADP + Pi using atomic mass analysis requires the inclusion of the
implicit water molecule in the reaction specification. Moiety analysis does
not require the inclusion of such implicits, and so modelers can avoid
unnecessarily detailed reaction specifications. Indeed, if Pi is specified
as being implicit, the reaction can be further simplified to A__Pi_3 →
A__Pi_2 . Last, moiety analysis can be applied to large molecules since
it is easy to represent changes in chemical state as changes in moiety
structure. For example, if a protein is represented by the moiety Prot,
then its phosphorylation is readily represented as Prot_Pi. This means
that we can easily check mass balance in the phosphorylation reaction
Prot + A__Pi_3→ Prot_Pi + A__Pi_2.

In summary, moiety analysis always produces an isolation set size
(ISS) of one if there is a mass balance error. One caveat, however, is that
moiety analysis imposes a burden on the modeler to expose model meta-
data that reveals the moiety structure of chemical species. In our approach,
this meta-data is exposed through a naming convention. This seems to be
a modest burden since the particulars of the names are at the discretion of
the modeler.

2.2 Graphical Analysis of Mass Equivalent Sets (GAMES)

We can achieve excellent error isolation by requiring model meta-data (e.g.,
atomic mass analysis and moiety analysis). However, requiring meta-data
imposes a burden on the modeler, and this requirement creates a barrier
to analyzing existing models that have no meta-data. These concerns
motivate analyzing models for stoichiometric inconsistencies, a slightly
weaker condition than mass balance. Unfortunately, the existing approach
to detecting stoichiometric inconsistencies, LP analysis (Nikolaev et al.
[2005] and Gevorgyan et al. [2008]), has very poor error isolation in that
all non-boundary reactions are in the isolation set.

Here, we introduce the Graphical Analysis of Mass Equivalence
Sets (GAMES) algorithm for detecting stoichiometric inconsistencies.
GAMES is designed to facilitate error isolation. Indeed, in our studies
of BioModels, the average ISS of GAMES is less than 10% of the ISS of
LP analysis.

Fig. 2. Steps in the bGAMES algorithm. The figure illustrates the data structures used in
each step of bGAMES for the reactions in Fig.1. A mass balance error is detected if there
is a loop in the graph since this implies a contradiction that some chemical species has a
mass less than its own mass.

The GAMES algorithm consists of three parts, as discussed in the next
subsections. Section 2.2.1 describes the core algorithm, which we call basic
GAMES or bGAMES. Section 2.2.2 describes xGAMES, which extends
the ability of GAMES to detect mass balance errors by transforming the
reaction network using linear algebra. Section 2.2.3 describes the GAMES
approach to computing isolation sets.

2.2.1 Detection With Basic GAMES (bGAMES)
bGAMES can be viewed as a kind of “inference engine" that attempts
to construct inferences that contradict the assumption that all chemical
species have positive mass. The inference steps rely on mass equality and
inequality relationships implied by model reactions. If bGAMES infers
that a chemical species does not have a positive mass, then the isolation
set consists of the reactions used in the inference.

bGAMES uses insights such as those employed in the analysis of Fig. 1
to construct equality and inequality relationships between the masses of
chemical species. For example in Fig. 1, v537: c160 → c86 implies
that the mass of c160 must be the same as the mass of c86. This is an
example of a uni-uni reaction, a reaction with one reactant and one product
that have the same stoichiometries. A uni-uni reaction implies that the mass
of the reactant equals the mass of the product.

The equality relationships implied by uni-uni reactions allow
bGAMES to construct groupings of chemical species that have the same
mass. We refer to such a grouping as a Mass Equivalent Set (MEQ). In
Fig. 1, reaction v537 infers a MEQ that consists of the species c160
and c86, which we denote by {c86=c160}. MEQs are expanded by
transitivity. To illustrate, Fig. 1 also contains the MEQ {c154=c86}

(implied by v601), and so by transitivity we have {c86=c154=c160}.
Incorporating v523 as well results in {c6=c86=c154=c160}. To
account for all species in Fig. 1, we also have three singleton MEQs:
{c10}, {c16} and {c11}.
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bGAMES also infers mass inequalities. For example, two mass
inequalities can be inferred from the reaction v13: c10 + c154 →
c160: (a) the mass of c160 is greater than the mass of c10 and (b) c160
is greater than c154. v13 is an example of a multi-uni reaction, in which
the reactants (or products) consist of two or more chemical species and
there is a single chemical species as the product (or reactant).

The bGAMES inference engine uses uni-uni and multi-uni reactions
to construct a directed graph that is then analyzed to detect stoichiometric
inconsistencies. We refer to this as the MEQGraph since the nodes of
the graph are MEQs. If (X ,Y ) is an arc in the MEQGraph, then the mass
of MEQ X is less than the mass of MEQ Y . MEQs are constructed from
the transitive closure of uni-uni reactions, and arcs are constructed from
multi-uni reactions. Specifically, suppose there is a reaction a + b →
c, with a in MEQ X , b in MEQ Y , and c in MEQ Z. Then, the MEQGraph
has the arcs (X ,Z) and (Y,Z).

Fig. 2 summarizes the bGAMES algorithm. bGAMES detects a
stoichiometric inconsistency by finding a cycle in the MEQGraph. This is
because a cycle implies a logical contradiction, that all MEQs in the cycle
have a mass less than their own mass. It is straightforward for bGAMES
to handle implicit chemical species. We simply add a pre-step that deletes
implicits from reactions.

bGAMES does not detect all stoichiometric inconsistencies. This is
because bGAMES does not analyze multi-multi reactions, reactions with
more than one chemical species for both reactants and products. It turns
out that despite this limitation, bGAMES still detects 75% of the models
with stoichiometric inconsistencies that are detected by LP analysis in the
BioModels repository. In large part, this is because many models contain
few if any multi-multi reactions. For example, BIOMD0000000255 has
827 reactions, and no multi-multi reaction.

2.2.2 Detection With Extended GAMES (xGAMES)
This section describes xGAMES, an extention of the bGAMES inference
engine to detect and isolate stoichiometric inconsistencies that are not
detected by bGAMES. The central idea of xGAMES is to perform certain
transformations of reactions.

We illustrate this using BioModels BIOMD0000000167. (See
Fig. 3.) Consider the following two reactions, R2: Pstat_nuc →
stat_nuc and R4: 2 Pstat_nuc→ PstatDimer_nuc. If these
reactions are mass balanced, then the mass of 3 Pstat_nuc must
equal the sum of the masses of stat_nuc and PstatDimer_nuc. Put
differently, we have mass balance for the hypothesized reactionR2+R4: 3
Pstat_nuc→ stat_nuc + PstatDimer_nuc. We do not claim
that this reaction is chemically feasible. Instead, we refer to this as a
pseudo reaction. Even though it is not necessarily a real reaction, this
pseudo reaction should be mass balanced. When mass balance holds, we
use the term mass balanced pseudo reaction.

Thus far, we consider just the summation of two reactions. We can
generalize this. If a collection of reactions {Ri} is mass balanced, then
any linear combination of these reactions will be a mass balanced pseudo
reaction.

The idea of reaction transformations is related to LP analysis. Recall
that LP analysis detects a stoichiometric inconsistency if there is no positive
vector of masses v such that NT v = 0, where N is the stoichiometry matrix
(columns are reactions and rows are species). Such a v cannot be found
if either: (a) the dimension of the column (species) null space of NT is
0; or (b) the column null space does not intersect the subspace where v is
positive. xGAMES uses matrix decomposition to test for these conditions
and do error isolation by reporting the reactions that result in a mass balance
error.

xGAMES works with a new stoichiometry matrix (N) whose
rows are MEQs instead of chemical species. Doing so allows us to

R1: 2 Pstat_sol -> PstatDimer_sol

R2: Pstat_nuc -> stat_nuc

R3: stat_sol -> Pstat_sol + species_test

R4: 2 Pstat_nuc -> PstatDimer_nuc

R5: PstatDimer_sol -> PstatDimer_nuc

R6: stat_sol -> stat_nuc

Fig. 3. Reactions in BIOMD0000000167. The reaction names are changed to simplify the
description. The complete model has two instances of R6 with different kinetics.

eliminate uni-uni reactions since this information is already encoded
in the MEQs. This is illustrated in Tab. 1. The columns are the
pseduo reactions PR3, PR1, and PR4 that correspond to the original
reactions R3, R1, and R4. For example PR1: 2{Pstat_sol} →
{PstatDimer_sol=PsatDimer_nuc}. Note that every column
contains at least one negative value and at least one positive value. This is
because every reaction has at least one reactant and at least one product.

Next, xGAMES transforms N into reduced column echelon form using
standard techniques from linear algebra such as LU decomposition (Horn
and Johnson [1985]). We denote this transformed matrix by NR = {nR

i j}.
Tab. 2 displays NR for our running example. We can see that the leading
entry in each column is one and nR

i j = 0 for j > i, as required by reduced
column echelon form. Also, as with Tab. 1, the columns of Tab. 2 are
pseduo reactions. Specifically, the columns of NR are linear combinations
of the columns of N. For example, PR3′ = PR3+ 1

2PR1−
1
2PR4.

xGAMES detects a mass balance error using the following decision
criteria:

• Detection Criteria (DC): A mass balance error is present if there is
a linear combination of columns of N whose non-zero values all have
the same sign.

We note in passing that DC relates to the concept of a leakage mode in
Gevorgyan et al. [2008], which is a linear combination of reactions that
results in an empty set of reactants or products.

DC detects mass balance errors by identifying reactions for which
mass is either created or destroyed. A column of the stoichiometry matrix
in which all non-zero values are positive describes a reaction that has
products and no reactants. That is, mass is created. Analogously, a column
in which all non-zero values are negative describes a reaction that has
reactants and no products, and so mass is destroyed.

xGAMES detects a stoichiometric inconsistency by inferring a logical
contradiction. The inference engine starts by assuming that the original
reactions are mass balanced. From the foregoing, we know that linear
combinations of mass balanced reactions result in a mass balanced pseudo
reactions. So, if some linear combination of reactions in the model results
in DC being satisfied, then we know that the original set of reactions is not
mass balanced.

Fig. 4 depicts the steps in the xGAMES algorithm. It stops when a mass
balance error is detected. This is because it is computationally expensive
to report all mass balance errors, and likely very confusing to the modeler
as well since one incorrect reaction specification may cause multiple mass
balance errors.

xGAMES occasionally fails to detect a
stoichiometric inconsistency when one exists; that is, xGAMES can
produce more false negatives than LP analysis. To understand why, recall
that a stoichiometric inconsistency is present if (1) there is no vector of
masses v such that NT v = 0 (where N is the stoichiometry matrix) such
that (2) v > 0. LP analysis checks precisely for these two conditions. The
xGAMES decision criteria DC detects violations of condition (1) if NT has
a trivial null space. However, DC only approximates detection of violations
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MEQ PR3 PR1 PR4

{species_test} 1 0 0
{Pstat_sol} 1 -2 0
{PstatDimer_sol=PstatDimer_nuc} 0 1 1
{Pstat_nuc=stat_nuc=stat_sol} -1 0 -2

Table 1. Stoichiometry matrix for pseudo reactions. Rows are MEQs. Columns
are pseudo reactions that are numbered corresponding to the reactions in Fig. 3.
Cells are the stoichiometry of a MEQ in the products minus the stoichiometry
of the MEQ in the reactions. Uni-uni reactions are not included since they are
used to construct the MEQs.

MEQ PR3′ PR1′ PR4

{species_test} 1 0 0
{Pstat_sol} 0 1 0
{PstatDimer_sol=PstatDimer_nuc} 0 0 1
{Pstat_nuc=stat_nuc=stat_sol} 0 -1 -2

Table 2. Reduced column echelon form for the running example. The prime
symbol indicates a reaction formed by linear combinations of these in Tab. 1.

to condition (2). Specifically, DC looks for columns where the non-zero
values have the same sign. This is a necessary but not a sufficient condition
for detecting violations of v > 0.

Despite this limitation, our experience with applying xGAMES to
BioModels has been excellent–the xGAMES false negative rate with
respect to LP analysis is under 5%.

2.2.3 Computing GAMES Isolation Sets
This section describes how GAMES calculates isolation sets, the set of
reactions that relate to a stoichiometric inconsistency. The approach taken
depends on whether the mass balance error is detected by bGAMES or
xGAMES.

If a mass balance error is detected by bGAMES, then there is a cycle in
the MEQGraph. The isolation set consists of the reactions that are either:
(a) multi-uni reactions that construct an arc in the cycle or (b) uni-uni
reactions that construct a MEQ in the cycle. For example, in Fig. 2, there
is a cycle with arcs labelled with reactions v13 and v208; the MEQs are
{c10} and {c6=c86=c154=c160}. The latter MEQ is constructed
from the uni-uni reactions v523, v537, and v601. Thus, the isolation
set is {v13, v208, v523, v537, v601}.

A different kind of calculation is required to determine the isolation
set for an error detected by xGAMES. Recall that the xGAMES detection
criteria (DC) is that there is a column in the stoichiometry matrix such that
all non-zero values are of the same sign (i.e., mass has either been created
or lost). The isolation set is the reactions in the linear combinations that
result in such a column.

How do we recover these reactions? In Step 2, the stoichiometry matrix
is constructed from the MEQ substituted pseudo reactions. So, the isolation
set for a column that satisfies DC is the original reaction for the same
column plus the uni-uni reactions for the MEQs in the pseudo reaction.

The matrix in Step 3 is the reduced column echelon form of the
stoichiometry matrix in Step 2. The analysis here is more involved.
Let N be the stoichiometry matrix constructed in Step 2. We use LU
decomposition (Horn and Johnson [1985]) to factor NT into PLU , where P
is a permutation matrix and L, U are lower and upper triangular matrices,
respectively. With rare exception L is invertible. (The exceptions have
been related to numerical issues similar to those encountered with LP
analysis.) So, U = L−1P−1NT , and UT = NP(L−1)T . The columns of
P(L−1)T reveal the linear combinations of reactions of N that result in
the columns echelon form. This is readily extended to reduced column

Fig. 4. Steps in the xGAMES algorithm. The algorithm stops when the first error is
encountered using the decision criteria (DC).

echelon form by elementary matrix operations so that we have a matrix
that informs us of the linear combinations of columns of N that are used
to construct the reduced column echelon matrix R. The isolation set is the
set of reactions that correspond to the columns in this linear combination
that have non-zero multipliers.

3 Results
This section evaluates moiety analysis and GAMES in the context of the
curated SBML models in the BioModels repository. For moiety analysis,
the focus is on the ease with which existing models can be transformed
to use the moiety analysis naming convention. For GAMES, we address
runtimes, false negatives compared with LP analysis, and the size of
isolation sets. Our evaluations are done using SBMLLint.

The evaluations done in this section make use of the 651 curated SBML
models in BioModels. We focus on curated models because of the human
effort expended to validate their correct operation. These models address
a wide range of biological processes, including metabolism, signaling,
and motility. We have applied LP analysis to the 651 curated models, and
found that approximate 20% of the models have at least one stoichiometric
inconsistency. While this does not necessarily mean that the models are
in error in terms of the studies for which they were designed, it does raise
concerns for researchers considering reuse of these models for new studies.

Tab. 3 displays statistics for the types of reactions of these models.
We see that multi-multi reactions are relatively uncommon, accounting
for about 10% of all models. If more multi-multi reactions were present,
it is likely that bGAMES would have a higher rate of false negatives since
bGAMES does not consider multi-multi reactions.

3.1 SBMLLint

We have created an open source implementation of moiety analysis
and GAMES algorithm, which is available in the github repository
https://github.com/ModelEngineering/SBMLLint. The term “lint”
in the name comes from software engineering, and refers to tools that do
static error checking. Unlike systems such as memote that do static error
checking as part of a bigger system, SBMLLint operates as a stand-alone
package that can be used in isolation. SBMLLint takes as input an SBML
XML file or a model in the user-friendly antimony modeling language
(Smith et al. [2009]). SBMLLint can be run at the command line or in
a python environment, such as a Jupyter Notebook (Pérez and Granger
[2007]).
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Measure Uni-Uni Multi-Uni Multi-Multi Boundary Total

Count 12.1±1.8 13.8±2.1 4.9±1.0 5.8±0.5 36.7±3.6
Fraction 0.36 0.25 0.10 0.29 1.00

Table 3. Average number (± standard error) of reactions by type in the 651
curated reactions from BioModels. Count is the average number of each reaction
type, and Fraction is the average fraction of each reaction type across models.

Algorithm Total sec per Model sec Detections False Negatives

LP analysis 66.9 0.10 143 reference
bGAMES 123.2 0.19 109 23.8%
xGAMES 220.5 0.34 136 4.9%

Table 4. Comparison of three approaches to detect mass balance errors for 651
curated models in BioModels. The first two data columns report the time to
run the algorithms for all models and per model, respectively. Detections is the
number of models found to have a stoichiometric inconsistency. False negatives
are reported with respect to LP analysis.

3.2 Evaluation of Moiety Analysis

We have found that a non-trivial fraction (15%-20%) of the curated models
in BioModels use names of chemical species that are nearly compliant with
the moiety analysis naming convention. Consider the model in Fig. 3 that
has the species names Pstat_sol, PstatDimer_sol, stat_sol,
Pstat_nuc, PstatDimer_nuc. These names can be deconstructed
into string expressions so that the names are structured as follows: (a)
"Pi" or "" followed by (b) stat followed by (c) Dimer or "" followed
by (d) _sol or _nuc. In essence, the model in Fig. 3 uses a different
naming convention from the one we propose, but species names still have
a moiety structure (although sol and nuc seem to refer to compartments,
not chemical constituents). There are many similar situations in the 651
curated models.

The supplemental material details two case studies of converting
existing models in BioModels to using moiety analysis.

3.3 Evaluation of GAMES

This section provides insights into the effectiveness of the GAMES
algorithm. The supplemental material details two case studies of GAMES
analysis done on models in BioModels.

To provide broader insights into GAMES, we conducted an analysis
of the 651 curated models, applying both LP analysis and GAMES to
these models. Tab. 4 displays the results, including separate statistics
for bGAMES and xGAMES. We see that both bGAMES and xGAMES
have a longer runtime than LP analysis. Further optimization of the
GAMES code will likely reduce the time for a GAMES analysis. That
said, these optimizations may be unnecessary, at least with current
model complexities, since the average time per model is a few hundred
milliseconds, which is quite acceptable for use in an interactive tool.

Next, we study the error isolation. We consider two measures. The
first is isolation set size (ISS), the number of reactions associated with the
detection of a stoichiometric inconsistency. Ideally, ISS is 1 so that error
isolation points to a single reaction that causes the mass balance error.
As the ISS grows, so does the difficulty of error remediation. A second
measure of interest is the normalized size of the isolation set (nISS). nISS
is ISS divided by the number of non-boundary reactions, a quantification
of the extent to which the algorithm simplifies error isolation.

Tab. 5 displays ISS and nISS for LP, bGAMES, and xGAMES. We
see that the LP analysis results in an average ISS of 55.5 reactions. It is
doubtful that the underlying cause of a stoichiometric inconsistency can

Algorithm ISS nISS

LP analysis 55.5 100.0%
bGAMES 3.8 7.6%
xGAMES 5.4 8.3%

Table 5. Isolation effectiveness for LP, bGAMES, and xGAMES. bGAMES and
xGAMES reduce the size of isolation sets by a factor of more than 10 compared
with LP analysis.

be determined with an ISS of 55.5, and so remediation would be nearly
impossible. In contrast, ISS for bGAMES is approximately 4 and for
xGAMES it is a bit more than 5.

In summary, LP analysis provides excellent detection of stoichiometric
inconsistencies, but very poor error isolation. Indeed, in our analysis
of BioModels, the modeler would have to manually review an average
of 55 reactions to resolve a stoichiometric inconsistency. In contrast,
GAMES produces an isolation set of approximately 5 reactions instead of
55 (although GAMES has a a modest 4% rate of false negatives compared
with LP analysis). The execution time to run GAMES is longer than that
for LP analysis, but the code is still being optimized. And, even with the
unoptimized codes, GAMES typically has sub-second execution times for
BioModels.

4 Discussion
The growing complexity of reaction-based models makes it challenging
to detect and resolve model errors such as mass balance errors in reaction
specifications.

Issue Atomic mass LP Moiety GAMES
addressed analysis analysis analysis

I1: Require meta-data
I2: Excessive detail
I3: No large molecules
I4: Poor isolation
I5: False negatives

Table 6. Comparison of approaches to mass balance errors. An "x" indicates
that the issue is not addressed; a check indicates that the issue is addressed.

Tab. 6 summarizes how approaches to detecting mass balance errors
fare relative to issues I1-I5. Most fundamentally, there is a divide between
approaches that require model meta-data and those that do not. Providing
model meta-model places a burden on the modeler to expose the meta-data
(I1). However, by exposing meta-data, false negatives can be avoided (I5).
Requiring atomic mass meta-data, as in atomic mass analysis, imposes
additional burdens: excessively detailed reaction specifications (I2) and an
inability to analyze reactions with large molecules (I3). Moiety analysis
avoids I2 and I3 by using a different kind of meta-data – the moiety
composition of chemical species.

Techniques that do not require model meta-data do not check for mass
balance errors per se; rather, they detect stoichiometric inconsistencies.
This is a weaker condition than the mass balance, thus the presence of
false negatives (I5) is inherent in these approaches. Beyond this, a major
shortcoming of existing approaches to stoichiometric inconsistencies is the
absence of effective techniques for problem isolation (I4). In our studies
of BioModels, LP analysis has an average isolation set size (ISS) of 55.5
reactions. Such a large isolation set makes problem resolution extremely
difficult. In contrast, GAMES has an average ISS of 5.4 reactions. The
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rate of false negatives for GAMES is slightly higher than for LP analysis
because GAMES has a weaker test for stoichiometric inconsistency. This
situation can be addressed by using LP analysis for error detection, and
GAMES for error isolation.

Our interest in static error checking of reaction-based models naturally
leads to considerations of charge balance. This can be approached using
annotations (e.g., memote). Doing so has the same concerns as with
mass balance – demanding excessively detailed reaction specifications
(e.g., no “stray" protons), the burden of requiring model meta-data,
and the limitations on what can be annotated. An alternative is to use
moiety analysis. Specifically, if moieties are defined so that all atomic
variants have the same charge, then moiety balance implies charge balance.
Unfortunately, we know of no counterpart to stoichiometric inconsistency
for charge balance because there is no constraint on charges akin to the
constraint that all chemical species have a positive mass.

We are pursuing a number of directions for future work. For moiety
analysis, we are exploring how the structure of names can be used to
expose model meta-data other than the moieties of a chemical species,
such as compartments and molecular states (e.g., misfolded proteins). For
GAMES, we are investigating ways to reduce both runtimes and the rate
of false negatives relative to LP analysis. More broadly, we are interested
in providing modelers with insights into preferred practices or “model
patterns,” which we might be able to infer from analyzing many models.
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