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Abstract 

Measuring the physical size of the cell is valuable in understanding cell growth control. Current single-

cell volume measurement methods for mammalian cells are labor-intensive, inflexible, and can cause cell 

damage. We introduce CTRL: Cell Topography Reconstruction Learner, a label-free technique 

incorporating Deep Learning and Fluorescence Exclusion for reconstructing cell topography and 

estimating mammalian cell volume from DIC microscopy images alone. The method achieves 

quantitative accuracy, requires minimal sample preparation, and applies to extensive biological and 

experimental conditions. Using this method, we observe a noticeable reduction in cell size fluctuations 

during cell cycle, which is consistent with the presence of a cell size checkpoint. 

(https://GitHub.com/sxslabjhu/CTRL) 
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Main text 

Cell size plays a critical role during cell growth, division, and proliferation1–5. Abnormalities in 

cell size regulation and growth control are thought to promote disease development2,5–9. Accurately 

measuring single-cell size remains a challenge for mammalian cells due to their irregular shape. Existing 

techniques require specialized hardware, fluorescent labeling10,11 and/or cell suspension12–16. Fluorescent 

labeling or over-expression of a target marker can alter cell function. Cell suspension alters the cell shape 

and biochemical signaling from the extracellular matrix, and also potentially affecting cell size. None of 

these methods has been successfully applied to measure mammalian cell growth at the single-cell level. 

While sensitive and accurate methods have been developed to measure single-cell mass over time17, the 

relationship between cell size and mass is not always clear.  

An accurate and high throughput method of cell volume quantification is the Fluorescence 

Exclusion method (FXm), first proposed in 198314 and subsequently developed and refined by several 

groups18–20. Cells are seeded in a micro-fabricated chamber and a membrane-impermeable high molecular 

weight fluorescent dye (e.g. FITC-dextran) is injected into the microchamber (Fig. 1a). The cell excludes 

its volume in the microchamber, therefore the total fluorescence loss is proportional to the cell volume. 

The FXm method obtains the cell volume from a single epi-fluorescence image, and therefore is high 

throughput3,18–20. However, due to endocytosis3,20 that is common in many cell types, the dye eventually 

enters the cytoplasm, and therefore FXm generally cannot accurately report cell volume in time-lapse 

without careful controls. Fluorescent imaging also introduces photobleaching, which alters the signal 

during time-lapse measurements. Moreover, microfluidic fabrication is needed to perform the experiment 

and the confinement of the microchamber may alter cell physiological processes over long periods. These 

drawbacks limit the use and applicability of FXm for studying cell growth. 

Convolutional Neural Networks (CNN) have been applied to microscopy images for both 

phenotype classification21,22 and image segmentation23,24. CNNs trained on these tasks have proven to be 

accurate and predictive, and have demonstrated significant potential to generalize to a wide range of 

predictive tasks in biology. Here we present CTRL: Cell Topography Reconstruction Learner, a novel 

label-free technique that uses the U-Net Regression Network and the FXm for reconstructing cell 

topography and estimating single-cell volume from Differential Interference Contrast (DIC) microscopy 

images. The method requires a one-time training data set of FXm single-cell images and their 

corresponding DIC images. Once trained, the method can be used to predict single-cell volume to 

quantitative accuracy without microchambers and fluorescence labeling. The method allows for 

continuous single-cell volume measurements in multiple types of cell culture platforms without time limit. 
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The image translation CNN (UNet) was first proposed by Olaf et al.23. As Fig. S1 shows, the 

CNN takes in a digital image as the input and generates a corresponding digital image as the output. The 

progressive structure between the first and last layer is composed of not only traditional convolution, 

ReLU, and down-sampling layers, but also up-convolution and up-sampling layers, enabling the Network 

to “recover” a parallel output image for the given the input image (image-to-image translation). The 

application of U-Net in computational biology25 has mainly focused on image segmentation by 

performing pixel classification24. Here we modify the last layer in traditional U-Net structure and present 

a U-Net Network for pixel regression: U-Net Regression Network (U-NetR) (Fig. S1). As opposed to 

predicting a categorical label, U-NetR predicts a positive real number for each pixel. For data collection, 

we acquire DIC image data and the corresponding microchamber fluorescence image data from the FXm 

experiment (Fig. 1a). Images are taken immediately after the introduction of fluorescent dye, therefore the 

data excludes potential effects of endocytosis. Pre-processing of DIC images and microchamber 

fluorescence images and the intensity augmentation for DIC images (Fig. S2, S3) are detailed in Methods. 

For training data, the DIC image serves as the input and the fluorescence image serves as the output. U-

NetR aims to uncover the hidden relationship between the image pair during Network training. In other 

words, U-NetR learns to generate the cell height map (topography) from the DIC image, given hundreds 

to thousands of “image pairs”. The methodology is built upon the hypothesis that the intensity distribution 

over a DIC image contains information in the cell height map that is inexplicable to human eyes and 

unsolvable via traditional image processing algorithms. Previous attempts have been made to model the 

optics of the DIC microscope to recover the object 3D shape26. Here we use the U-Net to optimize this 

mapping without knowledge of microscopy details. 

We applied U-NetR training on HEK-293A cells (Fig. 1b), which showed a gradual decrease of 

training loss over 80,000 epochs. The validation and test results (Fig. 1c, Fig. S4) show that the prediction 

Mean Absolute Error (M.A.E.) remains less than 4% for validation data (same microchamber, the 

remaining 20% of the cells) and 6% for test data with 3 biological repeats (cells from a different 

microchamber in a separate experiment) and the absolute error of the population average is less than 3% 

for both cases. These results suggest that a trained CTRL model can adequately predict cell volume for 

unseen DIC image data. The predicted cell volume distributions are also quantitatively similar to the 

measured cell volume distribution from the FXm (Fig. 1c). The representative convolutional feature maps 

from the trained model are shown in Fig. S5. In particular, some of the feature maps show diffraction-

grating-like grids (Fig. S5a), suggesting that U-NetR is learning optics. Comparing to the traditional FXm 

method, this computational approach achieves significant savings in laboratory work, requiring no micro-

device fabrication and fluorescence imaging beyond the training data set. More importantly, it liberates 

cells from the confinement of microchambers and long-term incubation together with fluorescence dyes, 
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and therefore ensures normal cell growth and eliminates errors from dye endocytosis. To test the 

applicability and robustness of the method to different substrates used during DIC imaging, we tested 

varying cell culture seeding platforms from glass to polydimethylsiloxane (PDMS) substrates and report 

the predicted cell volume distribution (Fig. 1d). Even though the training data was taking from 

microchambers with glass substrates, no significant variation is found between the predicted volume 

distributions of the populations across different platforms. 

To further explore the applicability of the method, we investigated the effect of pharmacological 

inhibition on model generalization. Rapamycin, an mTOR pathway inhibitor, has been shown to decrease 

cell volume by ~15%4,20,27,28. We measured the cell volume data of rapamycin-treated (72hrs, 1nM) HEK-

293A cells from the FXm method and applied the CTRL model trained on untreated cells to the 

corresponding DIC images. Results show that the predicted cell volume distribution matches cell volume 

distribution from FXm experiments (Fig. 2a). Next we tested HEK-293A CRISPR knockout of the Hippo 

pathway protein YAP29,30, a nuclear transcription factor that regulates cell volume31 in an mTOR 

independent manner. The CTRL model (trained on WT cells) predictions are again in excellent agreement 

with FXm (Fig. 2b). It is also known that biomechanical environment of the cell such as the substrate 

stiffness affects cell volume19,32, and we found that the model trained on data from glass substrates (GPa) 

can predict cell volume on 3kPa PDMS substrates (Fig. 2d). 

We then sought to see if the model generalization persisted in situations where there is a dramatic 

change in cell shape.  Y-27632 is known to inhibit33,34 Rho kinase activity and cell contractility, and 

change the cell shape. We found that the model (trained on untreated cells) no longer can predict the 

volume during Y-27632 treatment (Fig. 2c) with M.A.E greater than 14%.  We then asked if a CTRL 

model trained on one cell type can generalize to a different cell type with a different cell shape. It was 

found that a CTRL model trained on data acquired for HEK-293A is able to predict larger average 

volume of HT1080 (fibrosarcoma cells) (Fig. 2e), but the M.A.E is too large to be quantitative at the 

individual level. However, a CTRL model trained on data from NIH-3T3 cells is able to predict cell 

volume accurately for NuFF cells (newborn foreskin fibroblast) (Fig. 2f), which is of the same cell type 

(fibroblast) as 3T3 and has a similar cell shape. These results (Fig.2a, b, c, d, e, f) suggest that the CTRL 

model generalizes well to biological perturbation of the same cell type, but fails when there is a dramatic 

cell shape change. It is reasonable to conjecture that pooling images from multiple cell types with 

different shape variations together as the training data will generate a general model (Fig. 2g). Indeed, a 

CTRL model trained on a combined data of HEK-293A, HT1080 and NIH-3T3 cells can predict MDA-

MB-231 cell volume accurately (Fig. S6). However, larger training data set also increases training time 

(Fig. S7) and a balance must be found between generalizability and computational time. Depending on 
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the U-NetR structure, hyperparameter selection, the data augmentation scheme, the volume of the training 

data and the GPU used, the typical training time for a CTRL model can vary from days to weeks. 

The proposed method is label-free (no fluorescent dye is needed) and liberates the cell from the 

microchamber. These advantages allow us to track single-cell volume in standard cell culture dishes for 

an indefinitely period with arbitrarily time resolution. The method allows us to quantify cell volumetric 

growth rates over multiple generations of daughter cells. In particular, to gain greater insight into cell size 

regulation, we sought to correlate the added cell volume with the birth volume of the cell over several 

generations. Here we used HT1080 cells instead of HEK-293A cells because the daughter cells readily 

separate from mother cells. A CTRL model was trained for HT1080 cells and the achieved accuracy is 

shown in Fig. S4. The HT1080 CTRL model prediction for a 9-hr time-lapse DIC movie is compared 

with the FXm volume measurement for the same cell (Fig. 3b). The model again demonstrates 

quantitative cell volume prediction even through cell division, including on the phenomena of mitotic 

swelling3. The prediction error over time (frames) for the entire population is shown in Fig. S8, showing 

that the CTRL model is quantitatively accurate for all cells tracked.  We then applied the CTRL model for 

a 50hr DIC movie of growing and dividing cells in a standard cell culture dish (Fig. 3a). The cell volume 

trajectory of a single-cell and one of the daughter cells from each of its three divisions (generations) are 

shown in Fig. 3a. In order to quantify cell volume before and after cell division, it is essential to include 

images of cells undergoing division in the training data. Note that due to dye endocytosis, the experiment 

in Fig. 3a is not possible with FXm experiments. Results of added cell volume during a cell cycle versus 

the cell volume at birth (Fig. 3c) show that HT1080 adopts a sizer-like growth mechanism. The time-lapse 

experiment also revealed the correlation between the cell cycle length (division time), volume growth rate 

and cell birth volume (Fig. S9). Moreover, the coefficient of variation, ������/���, is generally constant 

over the cell cycle, but shows a visible decrease at 25% cell cycle completion (Fig. 3e). This is indicative 

of a cell cycle checkpoint where size-control would reduce cell size fluctuations (Fig. 3d). The CTRL 

model is also useful for quantifying rapid cell volume changes such as during an osmotic shock (Fig. 3f). 

Here the cell volume is tracked every 30s, showing HT1080 cells can re-adjust their volumes after a 

hypotonic shock (50%) in 15-30min (single-cell trajectories are shown in Fig. S10). 

Understanding the mechanisms controlling cell size and cell growth is a fundamental goal in cell 

and tissue biology. So far, the lack of a label-free and easy-to-use techniques that can accurately measure 

cell volume has limited quantitative studies on factors influencing mammalian cell size and cell growth 

dynamics. The present methodology is quantitatively accurate in estimating both static and time-lapse 

single-cell size in standard cell culture conditions in a high throughput manner. The method requires a 

one-time data collection of training images using the FXm method, but subsequent volume predictions 
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can be done in standard cell culture dishes without labeling. The method can also be generalized to any 

cell type with enough input training data, perhaps from a global database. More generally, Artificial 

Intelligence methods can provide new insights and opportunities for image-based biological discovery 

while reducing experimental time and cost. 
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Figure legends 

Fig.1   Overview of CTRL model construction, validation, and application. (a) CTRL model overview. Cells 
are seeded into a micro-fabricated chamber for the Fluorescence Exclusion method (FXm). A membrane-
impermeable fluorescent dye (dextran) is injected into the chamber for dye exclusion measurement. A DIC 
microscopy image is acquired. A cell topography image is reconstructed from the fluorescent image simultaneously 
acquired for the same cell. Two such images form an image pair and serve as the input and the output in the 
Convolutional Neural Network: U-NetR (U-Net Regression Network). Training is performed with GPU to obtain a 
trained U-NetR based CTRL model. With the trained CTRL model, cell volume and topology can be computed and 
compared to training data as validation or test. (b) U-NetR model training profile. Training profile of U-NetR 
based on training data of 1512 images (9 augmentations for each cell) on HEK-293A cells is shown with training 
loss progression over 80,000 training epochs. Predicted cell topography progression over the training course is 
shown for a representative cell at 0.5k, 1.75k, and 3k epochs. Measured cell topography image (FXm data) for the 
cell is shown in the top-right corner. (c) CTRL model (HEK-293A) validation. Left: The trained CTRL model was 
applied on validation data (same microchamber, the other 20% of the cells); Right: The trained CTRL model was 
applied on test data (cells in a different microchamber). CTRL-predicted volume is compared to FXm measured cell 
volume for every single cell. Volume distributions are shown as histograms. No statistical significance is found 
between measured volume and predicted volume. Cell number and Mean Absolute Error (M.A.E.) for both the 
validation and test case are indicated in the top-right corner of each panel. (d) CTRL model application across 
different cell culture platforms. A CTRL model trained from microchamber data can be applied to DIC cell 
images acquired on a variety of glass and PDMS substrates, eliminating the need for repeated FXm experiment. The 
only input for the CTRL model is a DIC image. HEK-293A cells were seeded in a 14mm-dish, a 24-well plate, in a 
96-well plate, and a 1:10 PDMS membrane (2 biological repeats, each biological repeat contains 3 technical repeats). 
Single-cell DIC images were inputs for the trained CTRL model. Distributions of the predicted volume in each 
condition are plotted in histograms with the mean indicated by a dashed line. No statistical difference is found 
between the CTRL-predicted cell volume distribution and the measured volume distribution in any of the test 
conditions.  

Fig.2   CTRL model generalization. (a) Generalization to cells with mTOR pathway inhibition via rapamycin. 
HEK-293A cells were treated with 1nM rapamycin for 72 h before the FXm experiment. Cell volume was 
experimentally measured via the FXm and predicted by a CTRL model previously trained on data from untreated 
HEK-293A cells (Fig. 1c). No statistical difference is found between the measured volume and the predicted volume 
distributions. Cell volume distribution of control HEK-293A cells (training data) is plotted in gray as a reference. (b) 
Generalization to CRISPR knockout of YAP protein. YAP KO of HEK-293A was generated previously29,30. Cell 
volume was measured via the FXm and predicted by a CTRL model previously trained on data from WT HEK-
293A cells (Fig. 1c). No statistical difference is found between measured volume and predicted volume. Measured 
cell volume distribution of control HEK-293A cells (training data) is shown in gray as a reference. (c) 
Generalization to cells with ROCK inhibition via Y-27632 cannot be achieved. HEK-293A cells were treated 
with 100μM Y-27632 for 2 h before the FXm experiment. Cell volume was experimentally measured via the FXm 
and predicted by a CTRL model previously trained on data from untreated HEK-293A cells (Fig. 1c). Measured cell 
volume distribution of control HEK-293A cells (training data) is plotted in gray as a reference. (d) Generalization 
to PDMS substrate with different stiffness. 3T3 cells were seeded on a PDMS substrate with stiffness of 3kPa. 
Cell volume was experimentally measured via the FXm and predicted by a CTRL model previously trained on data 
from HEK-293A cells on regular glass substrates (Fig. 1c). No statistical difference is found between FXm-
measured volume and predicted volume. Measured cell volume distribution of 3T3 cells on regular glass substrate 
(training data) is plotted in gray as a reference. (e) Poor generalization to HT1080 cells with CTRL model 
trained on HEK-293A cells. U-NetR was trained on HEK-293A cells and tested on HT1080 cells. CTRL-predicted 
volume is compared to FXm-measured cell volume for every single cell. (f) Generalization to NuFF cells with 
CTRL model trained on NIH-3T3 cells. U-NetR was trained on NIH-3T3 cells and tested on NuFF cells. CTRL-
predicted volume is compared to FXm-measured cell volume for every single cell. (g) Illustration of the 
relationship between an integrated model and individual models. Individual CTRL models train on specific cell 
types may not generalize to other cell types with substantially different cell shapes, while an integrated model 
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pooling training data from all cell types is able to achieve generalization (see Fig. S6). The trade-off for the 
integrated model will be greater training time. *For (a)~(f), DIC images of a representative cell of each training 
population and each test population are displayed. 

Fig.3   Time-lapse cell volume tracking via CTRL. (a) Representative long-term cell volume trajectory. Cell 
volume from CTRL prediction of a single HT1080 cell is plotted over time (50 h) with 3 visible divisions. DIC 
images of the cell before and after division at several time points are shown. The growth rate within one cell cycle is 
displayed. A linear growth law is assumed. (b) Time-lapse single-cell volume validation. Cell volume of HT1080 
cells was quantified using CTRL model (solid) on DIC images and compared to experimental data from the FXm 
(dashed line) for the same cell. The time interval between adjacent frames is 20 min. (c) The relationship between 
added cell volume and cell volume at birth. From predicted HT1080 time-lapse cell volume trajectories, the added 
cell volume for one cell cycle and is plotted against the cell volume at birth. To ensure that each cell has completed a 
full cell cycle, cells with two consecutive visible divisions are analyzed. The dotted line indicates added cell volume 
equal to birth volume. Data is from 4 biological repeats (N=155). The data indicate that HT1080 is a sizer. (d) Cell 
size checkpoint. The presence of a cell size checkpoint is a potential mechanism for maintaining size homeostasis 
for the entire population. Cells progress to a new cell cycle phase, e.g. S entry, only when the physical size of the 
cell reaches a size threshold (checkpoint). If there is such a checkpoint, cell size variation at the checkpoint should 
decrease due to feedback control. (e) Cell volume coefficient of variation (CV) for the complete cell cycle. 
Individual single-cell volume was tracked for >70h. To ensure each cell has completed a full cell cycle, only cells 
with two consecutive visible divisions are analyzed. The cell cycle is divided into 39 increments (2.5% for each 
increment), and we analyzed the collected volumes of all cells at each increment of cell cycle completion. The mean 
(Fig. S9c) and the standard deviation (Fig. S9d) of the cell volume, and the coefficient of variation (CV = standard 
deviation / mean) are shown. A visible decrease of CV was found at 25% cell cycle completion, indicating the 
presence of cell size checkpoint for HT1080s. Error bars represent standard deviations of CV generated from 1000 
random sampling of 60 cells from available 155 cells. (f) Cell volume adaptation during osmotic shock. 50% 
hypotonic shock medium was added to HT1080 cells. DIC images were taken 60 min before the shock and 240 min 
after the shock with high time resolution (30 s). Averages cell volume over all single cells in 2 biological repeats 
(N=19) is shown in black line, and the standard deviation over all timepoints is supplied (gray interval). Single-cell 
volume trajectories are displayed in Fig. S10. 
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