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Abstract  24 

Understanding speech in noise (SiN) is a complex task that recruits multiple cortical 25 

subsystems. There is a variance in individuals’ ability to understand SiN that cannot be 26 

explained by simple hearing profiles, which suggests that central factors may underlie the 27 

variance in SiN ability. Here, we elucidated a few cortical functions involved during a SiN task 28 

and their contributions to individual variance using both within- and across-subject approaches. 29 

Through our within-subject analysis of source-localized electroencephalography, we 30 

investigated how acoustic signal-to-noise ratio (SNR) alters cortical evoked responses to a 31 

target word across the speech recognition areas, finding stronger responses in left 32 

supramarginal gyrus (SMG, BA40 the dorsal lexicon area) with quieter noise. Through an 33 

individual differences approach, we found that listeners show different neural sensitivity to the 34 

background noise and target speech, reflected in the amplitude ratio of earlier auditory-cortical 35 

responses to speech and noise, named as an internal SNR. Listeners with better internal SNR 36 

showed better SiN performance. Further, we found that the post-speech time SMG activity 37 

explains a further amount of variance in SiN performance that is not accounted for by internal 38 

SNR. This result demonstrates that at least two cortical processes contribute to SiN 39 

performance independently: pre-target time processing to attenuate neural representation of 40 

background noise and post-target time processing to extract information from speech sounds. 41 
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1. Introduction 47 

Understanding speech in noise (SiN) is essential for communication in social settings. 48 

Young normal-hearing listeners are remarkably adept at this. Even in challenging SiN conditions 49 

where the speech and noise have the same intensity (i.e., 0 dB signal-to-noise ratio: SNR) and 50 

overlapped frequency components, they often recognize nearly 90% of sentences correctly 51 

(Ohlenforst et al., 2017). This suggests a surprising capacity of the auditory system to cope with 52 

noise. However, the ability to understand SiN degrades severely with increased background 53 

noise level (Ohlenforst et al., 2017), hearing loss (Harris and Swenson, 1990), and/or aging 54 

(Nabelek, 1988).  55 

Recent studies show that normal hearing listeners show large individual differences in 56 

SiN performance (Liberman et al., 2016). The premise of this study is that by linking this 57 

variable ability for SiN perception to variation in cortical activity, we may be able to understand 58 

the neural mechanisms by which humans accomplish this ability, and this may shape our 59 

understanding of how best to remediate hearing loss. 60 

Two broad neural mechanisms might give rise to better or worse SiN performance. First, 61 

listeners may vary in neural processing that separates the target auditory object from the 62 

mixture of sounds (i.e., similar to external selection processes in (Strauss and Francis, 2017). 63 

Auditory scene analysis (Bregman, 1999) processes, when occurring in parallel with auditory 64 

selective attention (Shinn-Cunningham, 2020), can inhibit the neural representation of 65 

competing sounds and enhance the neural response to attended input. This process has been 66 

conceptualized as a form of sensory gain control (Hillyard et al., 1998) or neural filtering 67 

(Obleser and Erb, 2020). Its effectiveness is often quantified as attentional modulation index 68 

(AMI), the amplitude ratio of evoked responses to background noise and target (Dai and Shinn-69 

Cunningham, 2016; O'Sullivan et al., 2019), or the degree of neural phase-locking to the 70 

attended speech (Etard and Reichenbach, 2019; Mesgarani and Chang, 2012; Viswanathan et 71 

al., 2019). A successful sensory gain control, indicated by a positive AMI, during a SiN task will 72 
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unmask the target speech from maskers, which will enhance the effective signal-to-noise ratio 73 

(SNR) in the central auditory pathway (e.g., the primary and secondary auditory cortices in the 74 

superior temporal plane: STP and the posterior superior temporal gyrus: STG).  75 

Second, listeners might vary in neural processes for the prompt extraction of information 76 

from a speech signal (i.e., similar to internal selection processes in (Strauss and Francis, 2017). 77 

An inherent challenge in recognizing speech (e.g., a spoken word) is the mapping between the 78 

incoming speech cues and higher level units like words and meaning while speech unfolds 79 

rapidly over time [for review, see Weber and Scharenborg (2012), Dahan and Magnuson 80 

(2006), and Davis (2016) with references therein]. In quiet listening conditions, average young 81 

normal-hearing listeners activate a range of lexical candidates immediately at the onset of the 82 

auditory stimulus (i.e., shown by works using eye-movements in the visual world paradigm: 83 

(Allopenna et al., 1998; Dahan and Gareth Gaskell, 2007; Magnuson et al., 2007). For example, 84 

after hearing the /ba/ at the onset of bakery, listeners will immediately consider a range of words 85 

like bacon, bathe, or base, at both phonological and semantic levels. However, such rapid 86 

lexical processing develops slowly in children (Rigler et al., 2015); continuous differences in 87 

lexical processing are linked to differences in language ability (McMurray et al., 2010); and they 88 

differ in listeners with hearing loss or deteriorated acoustic-cue encoding (McMurray et al., 89 

2019). These facts suggest that there can be individual differences in the prompt lexical 90 

processing even for clean speech signals. 91 

It is as yet unclear the degree to which variation in SiN performance is related to 92 

variation in both processes (particularly in combination).  93 

Assessing Individual Differences in Speech Unmasking. Individual differences in the 94 

speech unmasking pathway may arise from 1) the fidelity of encoding supra-threshold acoustic 95 

features and 2) cognitive control of the domain-general attentional network. Auditory scene 96 

analysis relies on the supra-threshold acoustic features that provide binding cues for auditory 97 

grouping (Darwin, 1997). These include the spectra (Lee et al., 2013), location (Frey et al., 98 
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2014; Goldberg et al., 2014), temporal coherence (Moore, 1990; Shamma et al., 2013; Teki et 99 

al., 2011), rhythm (Calderone et al., 2014; Golumbic et al., 2013; Herrmann et al., 2016; Obleser 100 

and Kayser, 2019), and timing (Lange, 2009) of the figure and ground. The fidelity of encoding 101 

such supra-threshold acoustic features may affect the separation of target speech from 102 

background noise. Supporting this idea, previous studies have correlated the fidelity of supra-103 

threshold acoustic cue coding to SiN understanding (Anderson and Kraus, 2010; Anderson et 104 

al., 2013; Holmes and Griffiths, 2019; Hornickel et al., 2009; Liberman et al., 2016; Parbery-105 

Clark et al., 2009; Song et al., 2011). 106 

Individual differences also exist in how strongly selective attention modulates cortical 107 

evoked responses to sounds (Choi et al., 2014). This suggests there may be a correlation 108 

between top-down selective attention efficacy and SiN performance. Indeed, (Strait and Kraus, 109 

2011) reported that reaction time during a selective attention task predicts SiN performance. 110 

Similarly, studies suggest that poor cognitive control of executive attentional network predicts 111 

auditory selective attention performance (Bressler et al., 2017; Dai et al., 2018), though this has 112 

not been extended to SiN. 113 

We can obtain a measure of the overall function of these bottom-up and top-down neural 114 

processing for speech unmasking by quantifying the amplitude ratio of early cortical auditory 115 

evoked responses to noise and target speech (similarly to the AMI concept). Here we use the 116 

N1/P2 event-related potential (ERP) components which occur with 100-300 ms latency. 117 

Previous studies showed that such ERP components are strongly modulated by selective 118 

attention but only when auditory objects are successfully segregated (Choi et al., 2013; Choi et 119 

al., 2014; Kong et al., 2015). Since those early cortical ERP components originate from multiple 120 

regions across Heschl’s gyrus (i.e., the primary auditory cortex) and its surrounding areas (e.g., 121 

posterior superior temporal gyrus) (C�eponien et al., 1998), an efficient and collective way of 122 

indexing the neural efficiency in speech unmasking is using a scalp electroencephalographical 123 

(EEG) potential at the vertex [e.g., “Cz” of the international 10-10 system for EEG electrode 124 
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montage: Koessler et al. (2009) within a limited time-window (e.g., 100-300 ms range after the 125 

stimulus onset]. 126 

Assessing Individual Differences in Mapping Speech to Words and Meaning. To 127 

assess individual differences related to the second neural mechanism – the downstream speech 128 

information processing – we must assess a larger range of cortical regions above the auditory 129 

brainstem and cortex. Current models of speech processing suggest two distinct cortical 130 

networks (i.e., dorsal and ventral stream) that are used in parallel (Gow, 2012; Hickok and 131 

Poeppel, 2007; Myers et al., 2009; Scott and Johnsrude, 2003). The ventral stream pathway 132 

including anterior superior temporal and middle temporal gyri (STG/MTG) integrates speech-133 

acoustic and semantic information progressively over time for the sound-to-meaning mapping 134 

(Davis and Johnsrude, 2003). The dorsal stream pathway comprising supramarginal gyrus 135 

(SMG, also known as tempo-parietal junction or TPJ) and pre- / post-central gyri mediates the 136 

mapping between sound and articulation (Rauschecker and Scott, 2009), while inferior frontal 137 

gyrus (IFG) interacts with both pathways for lexical decision-making processes (Gow, 2012).  138 

Studies have compared cortical responses in these areas to spoken words against 139 

acoustically-matching non-word sounds. These highlight the  SMG/TPJ, MTG, and IFG in the 140 

left hemisphere as three regions that tend to exhibit more activity for words than pseudo-words 141 

(Davis and Gaskell, 2009; Taylor et al., 2013). The dual lexicon model suggested by Gow 142 

(2012) confirms the importance of those three regions by referring to left SMG and MTG as 143 

dorsal and ventral lexicons that communicate with left IFG for lexical decision making. While 144 

both SMG and MTG exhibit explicitly lexical representations, they may take complementary 145 

roles consistent with the dual stream pathway model (Gow, 2012; Hickok and Poeppel, 2007). 146 

Thus, the type of task (e.g., whether subjects are asked to make a phonological or semantic 147 

judgment) may influence the relative dominance between SMG and MTG activities during 148 

speech recognition.  149 
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Supporting the idea of broad cortical regions contributing to individual differences in 150 

speech processing, fMRI studies showed that SNR changes alter the level of neural activities 151 

across frontal, central, and temporo-parietal regions (Du et al., 2016; Vaden et al., 2015; Wong 152 

et al., 2009; Zekveld et al., 2006), while Du et al. (2016) reported the correlation between 153 

activities in fronto-central regions and speech recognition performance. However, these 154 

correlations could reflect earlier variation in speech unmasking – if auditory/attentional 155 

unmasking mechanisms are less efficient, then they could lead to differences in how strongly 156 

later regions (IFG, SMG, etc.) must work to recognize words or complete the task. Thus, it is 157 

crucial to evaluate both mechanisms simultaneously to isolate a potential role for later 158 

processes. 159 

In addition to testing the loci of activities, it is also important to test the relative timing of 160 

activity in these pathways during speech processing. Functionally, studies using eye-161 

movements in the Visual World Paradigm (VWP) have extensively characterized the time 162 

course of word recognition in both quiet (Allopenna et al., 1998; Dahan and Gareth Gaskell, 163 

2007; Magnuson et al., 2007) and under challenging conditions such as noise or signal 164 

degradation (Ben-David et al., 2011; Brouwer and Bradlow, 2016; Huettig and Altmann, 2005; 165 

McMurray et al., 2017; McQueen and Huettig, 2012). Most VWP data show that, in quiet, the 166 

maximum lexical competition occurs at ~400 ms after the onset. These studies also report 167 

delayed processing under challenging conditions, but such delays do not exceed 250 ms even 168 

under the most severe degradation. This timing information can guide us when we interpret the 169 

functional implication of neural activity within certain regions; if the latency of neural activity is 170 

larger than ~400 ms, such activity may be less likely related to the online word recognition. 171 

However, the timing of cortical activity within each pathway and the way this may be 172 

moderated by challenging listening conditions are largely unknown. This is true both within 173 

isolated regions (e.g., SMG or MTG) and across activation of broader regions (e.g., frontal 174 

lobe). This is because most of the work on speech in noise perception has been conducted with 175 
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fMRI (Du et al., 2014, 2016; Wong et al., 2009; Wong et al., 2008) which has a poor temporal 176 

resolution. One study has examined evoked responses across speech processing regions using 177 

source localized EEG (Bidelman and Howell, 2016). This suggests an early response at roughly 178 

100 ms post-stimulus in IFG. However, this study used non-sense syllables that cannot reveal 179 

lexical processes.  180 

The present study. The central aim of this study is to investigate the simultaneous 181 

contributions of both speech unmasking and speech recognition processes to the individual 182 

differences in SiN understanding. Our main question is whether the early-stage speech 183 

unmasking and later-stage recognition processes independently predict SiN performance, or 184 

whether the latter variable is dependent on the former. We attempted to answer this question 185 

through the combination of within- and across-subject analyses using both sensor- and source-186 

space evoked responses in an EEG paradigm.  187 

Subjects performed a SiN noise task in which they heard isolated consonant-vowel-188 

consonant (CVC) English words and selected which of four orthographically presented words 189 

matched the auditory stimuli. Noise began 1 second before the speech. Two noise conditions 190 

were used: a low SNR (-3 dB) or hard condition, and high SNR (+3 dB) or easy condition. EEG 191 

was recorded from 64 electrodes while subjects performed this task, using both source- and 192 

sensor-space analyses to quantify cortical activity.  193 

Speech unmasking and speech recognition can be distinguished by the 1) timing and 2) 194 

regional differences of neural activities evoked by both noise and target speech. Thus, we used 195 

a trial structure comprised of clearly separated events (i.e., fixed onsets of background noise 196 

and target speech) while observing time-locked neural responses to such events with 197 

electroencephalography (EEG). The degree of speech unmasking was quantified as the 198 

amplitude ratio of evoked responses to the onsets of noise and target speech measured at a 199 

vertex scalp electrode (the key scalp location for evoked responses from early auditory 200 

processes), henceforth referred to as internal SNR. Although the concept of internal SNR is 201 
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similar to the attentional modulation index (Dai and Shinn-Cunningham, 2016; O'Sullivan et al., 202 

2019), we named the index rather phenomenologically to avoid limiting the mechanism 203 

underlying the index to selective attention.  204 

The effectiveness of later speech recognition processing was quantified by measuring 205 

the amplitude of evoked responses within target cortical regions. As we described, prior work 206 

has implicated a number of such regions. However, it is unclear which may be relevant for our 207 

specific task. Thus, we take a data-driven approach by first asking which post-auditory regions 208 

show greater activity in the higher SNR (easier) listening condition. This would be suggestive of 209 

a region that conducts downstream analyses once the target speech is unmasked. We looked 210 

into two regions-of-interest (ROIs): left SMG and IFG. As reviewed above, those regions 211 

activate more strongly for speech than pseudo-speech sounds; we did not consider MTG (the 212 

ventral lexicon) as our task was single CVC word identification (matched to an orthographic 213 

response). In this task, phonological discrimination (indicating the dorsal stream), rather than 214 

semantic processing, is essential.  215 

Having quantified the contributions of each pathway, we then conducted both timing and 216 

individual differences analyses to determine their relative contribution to SiN performance.   217 

 218 

2. Material and Methods 219 

2.1 Participants 220 

Twenty-six subjects between 19 and 31 years of age (mean = 22.42 years, SD = 2.97 221 

years; median = 21.5 years; 8 (31%) male) were recruited from a population of students at the 222 

University of Iowa. All subjects were native speakers of American English, with normal hearing 223 

thresholds no worse than 20 dB HL at any frequency, tested in octaves from 250 to 8000 Hz. 224 

Written informed consent was obtained, and all work has been carried out in accordance with 225 

the Code of Ethics of the World Medical Association (Declaration of Helsinki). All study 226 

procedures were reviewed and approved by the University of Iowa Institutional Review Board.  227 
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 228 

2.2 Task design and procedures 229 

We aimed to simultaneously measure SiN performance and cortical neural activity in a 230 

short (15 minute) experimental session. Sessions were kept short to avoid confounding 231 

individual differences in irrelevant psychological factors – fatigue, level or engagement –with 232 

individual differences in performance and processing.   233 

Each trial (Figure 1) began with the presentation of a fixation cross (‘+’) on the screen. 234 

Listeners were asked to fix their gaze on this throughout the trial to minimize eye-movement 235 

artifacts. Next, they heard the cue phrase “check the word.” This enabled listeners to predict the 236 

timing of next acoustic event (the noise onset). After a 700 ms of silence, the multi-talker babble 237 

noise began and continued for 2 seconds. One second after the noise onset, the target word 238 

was heard. Finally, 100 ms after the composite auditory stimulus (noise + word) offset, four 239 

written choices appeared on the screen. The response options differed either in the initial or the 240 

final consonant (e.g., for target word ban, options were than, van, ban, and pan; for target word 241 

hiss, options included hit, hip, hiss, hitch). Subjects pressed a button on a keypad to indicate 242 

their choice and no feedback was given. The next trial began 1 second after the button press.  243 

This trial structure was intended to minimize visual, pre-motor, and motor artifacts during 244 

the time of interest surrounding the auditory stimuli. The timing and intervals of auditory stimuli 245 

(i.e., cue phrase, noise, and target) were intended to derive well-distinct cortical evoked 246 

responses to the onsets of background noise and target word. 247 
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 248 

Figure 1. Trial and stimulus structure. Every trial starts with the cue phrase “check the word.” A target 249 
word starts 1 second after the noise onset. Four choices are given after the word ends; subjects select 250 
the correct answer with a keypad. No feedback is given. The noise level is manipulated to create high (+3 251 
dB) and low (-3 dB) SNR conditions. Subjects complete 50 trials for each condition. 252 
 253 

Since we were particularly interested in SMG and IFG regions that are involved in 254 

phonological and lexical processing (Gow, 2012; Hickok and Poeppel, 2007), we used naturally 255 

spoken words, rather than non-sense speech tokens used by prior EEG studies (Bidelman and 256 

Howell, 2016; Parbery-Clark et al., 2009). Target words consisted of hundred monosyllabic CVC 257 

words from the California Consonant Test (CCT) (Owens and Schubert, 1977), spoken by a 258 

male speaker with a General American accent.  259 

Target words were always presented at 65 dB SPL. In each trial, the RMS level of noise 260 

was chosen randomly between 68 and 62 dB SPL to yield either -3 or +3dB SNR (referred to as 261 

“low SNR” and “high SNR,” respectively). Fifty words were presented at each SNR. -3 dB SNR 262 

was chosen from pilot experiments to emulate a condition yielding a mid-point performance 263 

(~65% correct) in the possible accuracy range (i.e., 25 – 100%), at which listening effort and 264 

individual differences in performance may be maximized (Ohlenforst et al., 2017). Thus, the SiN 265 

performance at -3 dB SNR condition was used for the later correlational analysis in this study. 266 

+3 dB SNR was chosen to emulate a less noisy condition from which the downstream speech 267 

recognition process will be measured for the correlational analysis.  268 
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The task was implemented using the Psychtoolbox 3 package (Brainard, 1997; Pelli, 269 

1997) for Matlab (R2016b, The Mathworks). Participants were tested a sound-treated, 270 

electrically shielded booth with a single loudspeaker (model #LOFT40, JBL) positioned at a 0° 271 

azimuth angle at a distance of 1.2 m. A computer monitor was located 0.5m in front of the 272 

subject at eye level. The auditory stimuli were presented at the same levels for all subjects. 273 

  274 

2.3 EEG acquisition and preprocessing 275 

Scalp electrical activity (EEG) was recorded during the SiN task using the BioSemi 276 

ActiveTwo system at a 2048 Hz sampling rate. Sixty-four active electrodes were placed 277 

according to the international 10-20 configuration. Trigger signals were sent from Matlab 278 

(R2016b, The Mathworks) to the ActiView acquisition software (BioSemi). The recorded EEG 279 

data from each channel were bandpass filtered from 1 to 50 Hz using a 2048-point FIR filter. 280 

Epochs were extracted from -500 ms to 3 s relative to stimulus onset. After baseline correction 281 

using the average voltage between -200 and 0 ms, epochs were down-sampled to 256 Hz.  282 

Since we were interested in the speech-evoked responses from frontal brain regions, we 283 

opted for a non-modifying approach to eye blink rejection: Trials that were contaminated by an 284 

eye blink artifact were rejected based on the voltage value of the Fp1 electrode (bandpass 285 

filtered between 1 and 20 Hz). Rejection thresholds for eye blink artifacts were chosen 286 

individually for each subject, and separately for the noise and target word periods. After 287 

rejecting bad trials, averages for each electrode were calculated for the two conditions to extract 288 

evoked potentials. For analysis of speech-evoked responses, we repeated baseline correction 289 

using the average signal in the 300 ms preceding the word onset.  290 

 291 

2.4 Sensor-space analysis  292 

We performed traditional sensor-space ERP analysis to investigate the effect of acoustic 293 

SNR on AC representation of noise and speech, and its individual differences. The other 294 
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purpose of sensor-space analysis was to ensure the quality of data in the more familiar form 295 

before running source-space analyses.  296 

Cortical evoked responses time-locked to the target and noise were examined and 297 

compared between high- and low-SNR conditions. EEG data were bandpass filtered from 2 to 7 298 

Hz to capture auditory N1 and P2 components that fall into 3 – 5 Hz bands. Our first, analysis 299 

examined the N1 and P2 peak amplitude obtained from the frontal-central channels (C1, C2, 300 

FC1, FC2, FCz, Cz) and compared these measures between two SNR conditions. Both auditory 301 

N1 and P2 components were obtained at around 200 ms after the noise onset and at about 250 302 

ms after the target word onset. After comparing the amplitude of each auditory component, we 303 

also examined the ERP envelopes by applying the Hilbert transform to the bandpass-filtered 304 

ERPs and taking the absolute value to effectively represent overall magnitude of both N1 and 305 

P2 ERP components. Then, “internal SNR” was defined as the ratio of target word-evoked ERP 306 

envelope peaks to noise-evoked ERP envelope peaks magnitude in dB scale (Equation 1). We 307 

computed this index expecting to quantify a “neural” form of an individual’s speech unmasking 308 

ability. The internal SNR is different for each subject, and is separate from the fixed external, or 309 

acoustic, SNR (here, ±3 dB).  310 

 311 

(1) I������� 	
� � 20�����
������	�
��� ���������

�����	�
��� ���������
 312 

 313 

Mean activity levels were jackknifed prior to testing to assess the variance with clean 314 

ERP waveforms. In this approach, the relevant neural factors were computed for all subjects but 315 

one. This was repeated leaving out each subject in turn. The resulting statistics were adjusted 316 

for jackknifing to reflect the fact that each data point reflects N-1 subjects (Luck, 2014). 317 

 318 

2.5 Source analysis 319 
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 The source-space analysis was based on minimum norm estimation (Gramfort et al., 320 

2013; Gramfort et al., 2014) as a form of multiple sparse priors (Friston et al., 2008). After co-321 

registration of average electrode positions to the reconstructed average head model MRI, the 322 

forward solution (a linear operator that transforms source-space signals to sensor space) was 323 

computed using a single-compartment boundary-element model (Hämäläinen, 1989). The 324 

cortical current distribution was estimated assuming that the orientation of the source is 325 

perpendicular to the cortical mesh. Cross-channel EEG-noise covariance, computed for each 326 

subject, was used to calculate the inverse operators. A noise-normalization procedure was used 327 

to obtain dynamic statistical parametric maps (dSPMs) as z-scores (Dale et al., 2000). The 328 

inverse solution estimated the source-space time courses of event-related activity at each of 329 

10,242 cortical voxels per hemisphere. 330 

Following the whole-brain source estimation, we extracted representative source time 331 

courses from regions of interests (ROIs). In the present study, two predetermined ROIs were 332 

used: (1) left SMG, and (2) left pars opercularis and pars triangularis of IFG. Destrieux Atlas of 333 

cortical parcellation (Fischl et al., 2004) was used to predetermine ROIs anatomically. 334 

Since we did not have individual structural MRI head models, it was not ideal to take the 335 

summed activity (mean or median) for all the voxels within ROIs. This is because individual 336 

difference in functional and anatomical structure of the brain may result in spatial blurring since 337 

current densities across adjacent voxels can overlap each other. Instead, representative voxels 338 

were identified for each ROI, for each SNR condition. We used a combination of previously-339 

described methods to select voxels of interest that were used in fMRI studies (Tong et al., 340 

2016). The voxel selection was performed by a two-step process. First, we selected voxels that 341 

exhibit greater-than-median amplitude in either (high or low SNR condition) condition. Second, 342 

cross-correlation coefficients for ERP time courses across all remaining voxels in an ROI were 343 

calculated across time, and then the mean coefficient was calculated for each voxel. The most 344 

representative voxel was defined as having the maximum mean correlation coefficient, while 345 
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also being above threshold at two or more continuous timepoints based on voxel’s p-value, as 346 

determined using one-sample t-tests (Tong et al., 2016).  347 

For the downstream statistical analyses, temporal envelopes were extracted from the 348 

within-ROI source time courses. The source time course envelopes at different ROIs were 349 

based on slightly different frequency ranges: 2-7 Hz for SMG and 1-5 Hz for IFG. This was to 350 

reflect the differences between temporal and frontal lobes in their dominant neural oscillations 351 

which create evoked activities through phase coherence (Giraud and Poeppel, 2012). 352 

  353 

2.6 Statistical approaches  354 

Once the temporal envelope of the source time course from the most representative 355 

voxel was obtained for each SNR condition, mean activity levels were compared between the 356 

two SNR conditions using paired t-tests. Here, we also used a jackknifing approach, and test 357 

statistics were adjusted to account for the fact that each data-point represents N-1 participants. 358 

Finally, to identify timepoints that showed a significant difference between SNR conditions while 359 

addressing multiple comparison problem, the cluster-based permutation tests were conducted 360 

(Maris and Oostenveld, 2007). 361 

In order to identify predictors of SiN performance, sensor and source space indices of 362 

activity were used in correlation/regression analysis with SiN performance (accuracy) as the 363 

dependent variable, and the peak magnitudes of the ERP envelopes from ROIs, and internal 364 

SNR as the predictor variables. The peak magnitudes of the ERP envelopes were obtained over 365 

timepoints that showed a significant difference between high and low SNR conditions identified 366 

in the ROI-based source analysis described above. After calculating the correlation between 367 

SiN performance and these predictors, a joint contribution was tested using linear regression 368 

analysis to simultaneously examine bottom-up and compensatory related SiN performance to 369 

three factors. 370 

 371 
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3. Results 372 

 Our analysis started by examining the effect of SNR on task performance (accuracy and 373 

reaction time). This was intended to document that noise manipulation had the expected effect. 374 

Next, we examined the effect of SNR on both the magnitude and timing of neural activity. This 375 

was done first in the sensor-space, using the auditory N1/P2 components and other measures 376 

to examine primary auditory pathways. Next, this was done in the source-space to examine the 377 

compensatory role of IFG, to evaluate whether IFG effects were early enough to play a role in 378 

speech perception, and to test hypotheses about SMG. Finally, we turn to our primary analysis: 379 

a regression testing the unique contributions of each pathway to individual differences in SiN 380 

performance. Original raw and processed data of the present study are available at Mendeley 381 

Data (http://dx.doi.org/10.17632/jyvythkz5y.1). 382 

 383 

3.1 SiN performance 384 

There was a large variance in performance among participants. This was observed in 385 

both the high SNR condition (accuracy: mean = 80.64%, SD = 7.81%, median = 83.01%; 386 

reaction time:  mean = 1.53 s, SD = 0.32 s, median = 1.55 s) and the low SNR condition 387 

(accuracy: mean = 68.21%, SD = 8.92%, median = 70.37%; reaction time: mean = 1.70 s, SD = 388 

0.36 s, median = 1.69 s). There was a significant effect of SNR on both accuracy (t(25) = 6.99, p 389 

< 0.001, paired t-test) and reaction time (t(25) = -3.81, p < 0.001, paired t-test) (Figure 2A). 390 

Reaction time and accuracy were correlated in the high SNR condition (Figure 2B, r = -0.50, p 391 

= 0.009), but not in the low SNR condition (Figure 2C, r = -0.19, p = 0.34).  392 

As a whole, these results validate that the SNR manipulation was sufficient to create 393 

differences in speech perception. The negative correlation between the accuracy and reaction 394 
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time may demonstrate the redundancy between individual differences of accuracy and difficulty. 395 

 396 

Figure 2. Behavioral results. A. Summary of behavioral performance for the two conditions (+3 and -3 dB 397 
SNR). Boxes denote the 25th – 75th percentile range; the horizontal bars in the center denote the median; 398 
the ranges are indicated by vertical dashed lines. Solid lines connect points for the same subject in 399 
different conditions. B. Average accuracy as a function of reaction time in +3 dB SNR condition. C. 400 
Average accuracy and reaction time in -3 dB SNR condition. 401 
 402 
3.2 Auditory N1-P2 components in the sensor space 403 

 We next examined the N1 and P2 peak amplitude for both noise- and target word-404 

evoked responses. This was done to estimate the contribution of primary auditory pathways and 405 

the effect of noise. These measured were compared between high- and low-SNR conditions.  406 

We started with the noise-evoked responses (i.e., peak ERP components arising ~0.2 407 

seconds following the noise onset at 0 s). Here, both N1 (t(25) = -2.64, p = 0.014) and P2 408 

amplitudes (t(25) = -3.82, p < 0.001) were greater in the low SNR condition. In contrast, target-409 

word evoked responses (i.e., peak ERP components arising ~0.25 seconds following the target-410 

word onset at 1 s) showed the opposite pattern with stronger N1 (t(25) = 1.87, p = 0.073) and 411 

P2 amplitude (t(25) = 2.41, p = 0.023) in the high-SNR condition (Figure 3).  412 

We also examined the ERP envelopes in the time region of both the auditory N1 and P2.  413 

Again in the noise-evoked time region, we saw a greater response in the low SNR condition 414 

(t(25) = -3.95, p < 0.001).  However, also as in the N1/P2 analysis we saw larger word-evoked 415 

response in the high SNR condition (t(25) = 2.37, p = 0.026) (Figure 3). Then we calculated the 416 

internal SNR, the magnitude ratio of the noise and target-word related ERP envelopes, and saw 417 

a greater internal SNR in the high SNR condition (t(25) = 2.53, p = 0.018).    418 
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The topographical layout of these effects is shown in Figure 3 (top panels) at the time of 419 

the peak P2 (which showed a significant overall effect of noise level) for both noise- and word-420 

evoked response. T-values from paired t-tests on peak P2 amplitudes at all electrodes between 421 

SNR conditions were also represented in topographies. These show a broad-based effect that is 422 

roughly centered at frontal-central channels for both the noise onset and speech onset (though 423 

patterns for the speech evoked P2 were more distributed along the scalp). This justifies our use 424 

of frontal-central channels for sensor-space analyses. The significant difference in auditory ERP 425 

envelopes and in the N1/P2 components according to the noise level supports our use of the 426 

internal SNR as an index of individual ability to modulate representations of target speech 427 

relative to noise in the regression analysis.  428 

 429 

Figure 3. Sensor-level event-related potential (ERP) with the topographical layout and cortical maps. The 430 
time course of the auditory ERP and its envelope, with the standard error of the mean (±1 SEM) at the 431 
peak amplitude (red color: +3 dB SNR, blue color: -3 dB SNR). An asterisk shows a significant difference 432 
in the amplitude between +3 and -3 dB SNR conditions (paired t-test). Top panels show peak P2 433 
amplitudes of all electrodes in topographical layouts. The t-values from paired t-tests between two SNR 434 
conditions are also shown as topographies. 435 
 436 

3.3 The effect of SNR on cortical activity 437 

Next, we conducted parallel analyses in source space to assess cortical activity through 438 

speech processing regions. We converted sensor-space EEG signals to whole-brain source 439 
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time courses to localize the effects of SNR on evoked responses within targeted ROIs. Within 440 

left SMG, the cluster-based permutation test (Maris and Oostenveld, 2007) revealed that the 441 

high SNR condition evokes significantly greater activity than the low SNR condition from 270 to 442 

340 ms (p = 0.0020) (Figure 4A left). High-SNR peak amplitude is found at 309 ms. Such a 443 

significant SNR effect was not found in the left IFG. The maximum magnitude of the grand 444 

average low-SNR evoked response (dSPM) is at 770 ms (Figure 4B left). Source time courses 445 

in the right SMG and IFG are shown in Figure 4A and B (the right panels) for visual 446 

comparisons. 447 

Single time-point evoked-current estimates are shown for the peak SMG activity time 448 

(i.e., 309ms, Figure 4C) and IFG peak time (770ms, Figure 4D) on the whole left-hemisphere 449 

cortical surface. At 309ms, post-hoc paired t-tests on all the left-hemisphere voxels reveal an 450 

area near left SMG that shows greater evoked responses in the high SNR condition. This 451 

supports a significant role for SMG in SiN processing in this task. In contrast, at 770ms, no 452 

voxel was found within IFG that shows significant differences between high- vs. low-SNR 453 

conditions. This confirms our timecourse analyses of IFG, suggesting it does not play a large 454 

role and that the trend that was observed is not broadly seen across voxels. 455 

 456 
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Figure 4. Region-of-interest (ROI) based source analysis. A and B. The time course of the event-related 457 
potential (ERP) envelope, with the standard error of the mean (±1 SEM), obtained at representative 458 
voxels for two ROIs in the left hemisphere (“LH”): supramarginal gyrus (SMG), and the pars opercularis 459 
and triangularis of the inferior frontal gyrus (IFG), respectively, in each SNR condition (red color: +3 dB 460 
SNR, blue color: -3 dB SNR). The ERP envelope time courses in the corresponding regions in the right 461 
hemisphere (“RH”) are also shown for visual comparisons. Asterisks show the timing of a significant 462 
difference between +3 and -3 dB SNR conditions (cluster-based permutation test, p = 0.0020) at the left 463 
SMG. C and D. Whole-brain maps showing statistical contrasts (t-values obtained from post-hoc paired t-464 
tests between the two SNR conditions) of source activation at each voxel at the peak timepoint of the 465 
grand-average source time course of each ROI. 466 

 467 

To demonstrate the timing of SMG activity compared to the timing of phonological 468 

events, the webMAUS (Kisler et al., 2017) was used to identify the boundaries between the first 469 

and second, and the second and third phonemes in each of the 100 stimuli. A histogram of 470 

these acoustic time points is shown in Figure 5. This confirms that the peak of evoked 471 

activation in SMG (i.e., ~309 ms, denoted by a dashed vertical line) occurs within the time 472 

course of target words before the final phoneme is presented. 473 

 474 

Figure 5. Top and second panel show histograms of boundaries between phonemes of each stimulus. 475 
The third panel shows superimposed temporal envelopes extracted from waveforms of the 100 words. 476 
 477 

3.4 Individual differences in internal SNR predict SiN performance 478 
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 To address our primary research question, which was to evaluate the simultaneous 479 

contribution of speech unmasking and recognition processes to SiN performance, we conducted 480 

a linear regression analysis in which internal SNR and SMG activation were used as 481 

independent variables. SiN performance in low SNR condition, which showed larger variance 482 

(high SNR SD = 7.81%; low SNR: SD = 8.92%), was used as the dependent variable. We 483 

extracted the internal SNR from the low SNR and the SMG activity from the high SNR condition, 484 

as we expected that the internal SNR captures how well listeners unmask speech from the 485 

noisy background while the SMG activity reflects the processing of relatively clean speech 486 

signal. As expected, those two metrics extracted from different trials did not show a correlation 487 

(r = -0.04, p = 0.863, the left panel of Figure 6D). Both internal SNR (t(23) = 3.35, p = 0.003) 488 

and SMG activity (t(23) = 2.29, p = 0.031) were significant predictors of SiN performance 489 

(Figure 6A). The linear combination of those predictors accounted for a large proportion of the 490 

variance (r = 0.64, p = 0.00043, Figure 6B).  491 

Figure 6C and D show results from post-hoc correlational analyses. Internal SNR 492 

showed a significant correlation with accuracy, while SMG activation did not (despite its 493 

significant contribution to the model). There was no correlation between internal SNR and SMG 494 

activation, as described above. A semi-partial correlation between SMG activation and the 495 

residual of accuracy after regressing out internal SNR was significant, which confirmed that the 496 

SMG activation accounted for an extra amount of variance in SiN performance (the right panel 497 

of Figure 6D). This suggests that in order to identify the contribution of downstream recognition 498 

areas like SMG, models must account for the contribution of earlier upstream speech-499 

unmasking processes.  500 

To visualize the contribution of internal SNR to SiN performance, Figure 6E showed 501 

evoked response differences between good and poor performers (based on a median split on 502 

the low-SNR condition accuracy). This reveals dramatic differences in the magnitude of noise 503 

onset-related potentials: despite the same physical noise level for each group, good performers 504 
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exhibited less strong evoked response to noise onset, measured by the envelope peak 505 

magnitude within N1-P2 time range in the frontal-central channels (two-sample t-test t(24) = -506 

2.60, p = 0.016). In contrast, the word-evoked ERP envelope did not show a significant 507 

difference between the two groups (t(24) = 0.21, p = 0.84, two-sample t-test). This suggests that 508 

the neural mechanism underlying the internal SNR variance is the suppression of noise (rather 509 

than the enhancement of the target).  510 

 511 

 512 

Figure 6. Individual differences in speech-in-noise processing. A. Regression coefficients and their 513 
standard errors. B. A scatter plot showing the relationship between predicted and measured accuracy in -514 
3 dB SNR condition. C. Post-hoc correlation analyses: Raw correlations between each independent 515 
variable and the dependent variable. D. Left: Relationship between independent variables shows no 516 
correlation between internal SNR and evoked source current at the left supramarginal gyrus (SMG). 517 
Right: Semi-partial correlation between SMG evoked source current and the residual of accuracy after 518 
regressing out internal SNR. E. The time course of the auditory event-related potential and its envelope, 519 
with the standard error of the mean (±1 SEM) at the peak magnitude in -3 dB SNR condition (red color: 520 
good performers, blue color: poor performers). An asterisk shows a significant difference in the magnitude 521 
between two groups (two-sample t-test). 522 
 523 

4. Discussion 524 

We investigated neural correlates of SiN performance in young normal hearing adults. 525 

Previous correlational studies focused on the contributions of either acoustic encoding fidelity 526 

(Anderson and Kraus, 2010; Anderson et al., 2013; Holmes and Griffiths, 2019; Hornickel et al., 527 

2009; Liberman et al., 2016; Parbery-Clark et al., 2009; Song et al., 2011) or the degree of 528 
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speech/language network recruitment (Du et al., 2016) to the SiN performance. However, the 529 

relative importance of each process has remained unclear. We showed that 1) how well the 530 

listener suppresses background noise before hearing the target speech and 2) how strongly the 531 

listener recruits temporo-parietal network while the speech signal is received contribute to the 532 

SiN performance independently. Combining those two factors explained about 40% of the 533 

variance in SiN performance. 534 

Our results have both theoretical and clinical implications. Theoretically, our individual 535 

difference approach revealed at least two neural subsystems involve during SiN processing: 536 

sensory gain control and post-auditory speech recognition processing. Clinically, our results 537 

suggest that a relatively short (~15 minutes) SiN-EEG paradigm can assess crucial neural 538 

processes for SiN understanding.  539 

Internal SNR: A measure of pre-speech processing for speech unmasking. The first 540 

among the two crucial processes – how well the listener suppresses background noise – was 541 

indexed as “internal SNR,” the ratio of noise- to target word-evoked cortical responses. This 542 

process can be understood as pre-target cortical activity, appearing as an enhanced neural 543 

representation of the target sound (the speech) and suppressed neural representation of 544 

ignored stimuli (the noise).  545 

What is the source of variation in the internal SNR? Such responses could reflect 546 

auditory selective attention, which shows a similar pattern in previous studies (Hillyard et al., 547 

1973; Hillyard et al., 1998; Mesgarani and Chang, 2012). In the present study, good performers 548 

showed significantly weaker noise-evoked responses at frontal-central channels (around Cz), 549 

compared with poor performers, approximately 200 ms after the noise onset (Figure 6E). 550 

Decreased auditory responses to background noise in good performers are compatible with the 551 

presence of a sensory gain control mechanism (Hillyard et al., 1998) which may happen in 552 

multiple sub-regions in STP and posterior STG. The variation in the sensory gain control may 553 

originate from multiple factors. It may reflect the acuity of encoding spectro-temporal acoustic 554 
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cues from speech and noise, or grouping of such acoustic cues for auditory object formation 555 

(Moore, 1990; Shamma et al., 2013; Teki et al., 2011). How robustly the low-frequency neural 556 

oscillations (e.g., theta and delta) are phase-locked to the acoustic temporal structure of the 557 

stimuli (Etard and Reichenbach, 2019) may also contribute to the variation, as the neural phase-558 

locking relies on the encoding of acoustic cues (Ding et al., 2014) and the prediction of temporal 559 

structure in speech rhythm (Ding et al., 2016). Since our experiment provided fixed timing of 560 

noise and target word onsets, the neural phase-locking based on predicted timing (Arnal and 561 

Giraud, 2012) could occur and contribute to the internal SNR. The variation may also reflect 562 

endogenous mechanisms for active suppression of background sounds along with neural 563 

enhancement of foreground sounds (Shinn-Cunningham and Best, 2008). It was not our goal to 564 

disentangle the sources of variation in sensory gain control. Rather, we aimed to quantify the 565 

effectiveness of sensory gain control by our unique trial structure that enables clear distinction 566 

of evoked responses to noise and target speech, and to test how the internal SNR predicts later 567 

speech processes and behavioral accuracy. In this regard, we found a significant correlation 568 

between accuracy and the relative magnitude of word- and noise-evoked potentials.  569 

Evoked amplitude in SMG: the neural marker of effective and prompt lexical 570 

processing. While the computation of internal SNR was pre-specified, we had an open plan for 571 

extracting a representative neural factor to capture post-auditory speech recognition. To explore 572 

such neural markers, we added a 6-dB higher SNR condition and asked which region or regions 573 

showed increased activity within a reasonable (200 – 500ms) time range. We investigated two 574 

ROIs: left SMG and left IFG. As left SMG showed increased evoked response to target speech 575 

in the less noisy condition at ~300 ms after the target onset, the peak evoked amplitude in left 576 

SMG measured in the high SNR condition was used as the second independent variable in the 577 

regression analysis. 578 

Functional interpretation of SMG activity. Previous studies have suggested that 579 

spoken-word recognition occurs via a process of dynamic lexical competition as speech unfolds 580 
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over time. The VWP studies reported that, for many words, this competition maximizes around 581 

3-400 ms after word onset (Farris-Trimble and McMurray, 2013; Huettig and Altmann, 2005). In 582 

significantly challenging conditions (high noise), however, lexical processing can be delayed 583 

about 250 ms until most of the word has been heard (Farris-Trimble et al., 2014; McMurray et 584 

al., 2017), which may minimize competition. The latency of SMG activity that lied between the 585 

second and the third phonemes (see Figure 5) in the high SNR condition aligns well with the 586 

timing of lexical competition found from the VWP studies, which may suggest that the SMG 587 

activity makes a neural substrate of immediate lexical access (Farris-Trimble et al., 2014; 588 

McMurray et al., 2017), consistent with Gow (2012). This immediacy was observed when 589 

speech sounds were relatively clean (high SNR), and it does not appear in previous EEG 590 

studies using non-word synthesized phonemes (Bidelman and Dexter, 2015; Bidelman and 591 

Howell, 2016). 592 

After the contribution of speech unmasking (i.e., internal SNR) is regressed out, the 593 

SMG evoked amplitude in the cleaner condition predicted the residual of SiN performance (the 594 

right panel of Figure 6D). This indicates that changes in SMG activity may be an independent 595 

factor predicting speech recognition performance, rather than the outcome of pre-speech 596 

sensory gain control processing. 597 

Limitation of the current study. In the present paper, we exhibited evoked responses 598 

only. Although our results demonstrated how this simple and traditional EEG analysis 599 

successfully predicted SiN performance, future studies may pursue further understanding of SiN 600 

mechanisms by adopting extended analyses such as induced oscillation (e.g., Choi et al. 601 

(2020)) and connectivity analyses. 602 

Our correlational result is limited to young normal hearing listeners where variance does 603 

not come from hearing deterioration and aging. This study does not predict how much of the 604 

variance can be explained by the combination of internal SNR and SMG activity in the 605 
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population with larger age ranges. For example, Tune et al. (2020) reported that no correlation 606 

is found between neural factors and behavioral success in a large cohort of aged listeners. 607 

We chose -3 dB as the main SNR from which the dependent variable for the regression 608 

analysis was extracted. Although we claim that the -3 dB SNR provides the most representative 609 

condition where the individual difference in performance is maximized, we do not claim that our 610 

main findings can be generalized to other SNR conditions.  611 

Methodological advances and justifications for source time course analysis. Our 612 

approach to identifying a single voxel within an ROI deserves a particular discussion. 613 

Identification of the representative voxel of an ROI is a problem common to EEG source 614 

analysis, fMRI, and other functional brain imaging studies. Many relevant neuroimaging analysis 615 

approaches have been described, including univariate, multivariate, and machine learning; 616 

however, most of these are intended for the identification of regions of interest or functional 617 

connections from a whole-brain map. Drawbacks of this type of whole-brain analysis include the 618 

need for strict multiple comparisons correction and, therefore, decreased statistical power. 619 

Using strong a priori hypotheses to generate regions of interest allowed us to circumvent these 620 

issues, but still requires identification of representative voxels within our regions of interest. 621 

Favored approaches generally require identification of peak activity within an ROI (Tong et al., 622 

2016). However, to avoid the assumption that choosing peak activity implies, we opted instead 623 

to choose the voxel that has the maximum average correlation to every other voxel within the 624 

ROI. In the present study, we chose not to constrain the location of the voxel of interest within 625 

an ROI for each condition. Because our anatomic resolution is unlikely to be at the voxel level, 626 

we elected to choose a different representative voxel for each condition, unconstrained by the 627 

location of the representative voxel from other conditions. 628 

 629 

5. Conclusion 630 
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We found that better speech unmasking in good performers modulated the ratio of 631 

cortical evoked responses to the background noise and target sound, which effectively changed 632 

SNR internally, resulting in better performance. We also found that clean, intelligible speech 633 

elicits early processing at SMG, which explained an extra amount of variance in SiN 634 

performance. These findings may collectively form a neural substrate of individual differences in 635 

SiN understanding ability; the variance in SiN perception may be a matter of both primary 636 

processes that extract the signal from noise and later speech recognition processes to extract 637 

lexical information from speech signals promptly. 638 
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Figure Legends 884 

Figure 1. Trial and stimulus structure. Every trial starts with the cue phrase “check the word.” A 885 
target word starts 1 second after the noise onset. Four choices are given after the word ends; 886 
subjects select the correct answer with a keypad. No feedback is given. The noise level is 887 
manipulated to create high (+3 dB) and low (-3 dB) SNR conditions. Subjects complete 50 trials 888 
for each condition. 889 
 890 

Figure 2. Behavioral results. A. Summary of behavioral performance for the two conditions (+3 891 
and -3 dB SNR). Boxes denote the 25th – 75th percentile range; the horizontal bars in the center 892 
denote the median; the ranges are indicated by vertical dashed lines. Solid lines connect points 893 
for the same subject in different conditions. B. Average accuracy as a function of reaction time 894 
in +3 dB SNR condition. C. Average accuracy and reaction time in -3 dB SNR condition. 895 
 896 

Figure 3. Sensor-level event-related potential (ERP) with the topographical layout and cortical 897 
maps. The time course of the auditory ERP and its envelope, with the standard error of the 898 
mean (±1 SEM) at the peak amplitude (red color: +3 dB SNR, blue color: -3 dB SNR). An 899 
asterisk shows a significant difference in the amplitude between +3 and -3 dB SNR conditions 900 
(paired t-test). Top panels show peak P2 amplitudes of all electrodes in topographical layouts. 901 
The t-values from paired t-tests between two SNR conditions are also shown as topographies. 902 
 903 

Figure 4. Region-of-interest (ROI) based source analysis. A and B. The time course of the 904 
event-related potential (ERP) envelope, with the standard error of the mean (±1 SEM), obtained 905 
at representative voxels for two ROIs in the left hemisphere (“LH”): supramarginal gyrus (SMG), 906 
and the pars opercularis and triangularis of the inferior frontal gyrus (IFG), respectively, in each 907 
SNR condition (red color: +3 dB SNR, blue color: -3 dB SNR). The ERP envelope time courses 908 
in the corresponding regions in the right hemisphere (“RH”) are also shown for visual 909 
comparisons. Asterisks show the timing of a significant difference between +3 and -3 dB SNR 910 
conditions (cluster-based permutation test, p = 0.0020) at the left SMG. C and D. Whole-brain 911 
maps showing statistical contrasts (t-values obtained from post-hoc paired t-tests between the 912 
two SNR conditions) of source activation at each voxel at the peak timepoint of the grand-913 
average source time course of each ROI. 914 

 915 

Figure 5. Top and second panel show histograms of boundaries between phonemes of each 916 
stimulus. The third panel shows superimposed temporal envelopes extracted from waveforms of 917 
the 100 words. 918 
 919 

Figure 6. Individual differences in speech-in-noise processing. A. Regression coefficients and 920 
their standard errors. B. A scatter plot showing the relationship between predicted and 921 
measured accuracy in -3 dB SNR condition. C. Post-hoc correlation analyses: Raw correlations 922 
between each independent variable and the dependent variable. D. Left: Relationship between 923 
independent variables shows no correlation between internal SNR and evoked source current at 924 
the left supramarginal gyrus (SMG). Right: Semi-partial correlation between SMG evoked 925 
source current and the residual of accuracy after regressing out internal SNR. E. The time 926 
course of the auditory event-related potential and its envelope, with the standard error of the 927 
mean (±1 SEM) at the peak magnitude in -3 dB SNR condition (red color: good performers, blue 928 
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color: poor performers). An asterisk shows a significant difference in the magnitude between 929 
two groups (two-sample t-test). 930 
 931 
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