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Abstract	
	
While	resistance	mutations	are	often	implicated	in	the	failure	of	cancer	therapy,	lack	
of	response	also	occurs	without	such	mutants.		In	bladder	cancer	mouse	xenografts,	
repeated	chemotherapy	cycles	have	resulted	in	cancer	stem	cell	(CSC)	enrichment,	
and	consequent	loss	of	therapy	response	due	to	the	reduced	susceptibility	of	CSCs	to	
drugs.	A	particular	feedback	loop	present	in	the	xenografts	has	been	shown	to	pro-
mote	CSC	enrichment	in	this	system.	Yet,	many	other	regulatory	loops	might	also	be	
operational	and	might	promote	CSC	enrichment.	Their	identification	is	central	to	
improving	therapy	response.	Here,	we	perform	a	comprehensive	mathematical	
analysis	to	define	what	types	of	regulatory	feedback	loops	can	and	cannot	contrib-
ute	to	CSC	enrichment,	providing	guidance	to	the	experimental	identification	of	
feedback	molecules.	We	derive	a	formula	that	reveals	whether	or	not	the	cell	popu-
lation	experiences	CSC	enrichment	over	time,	based	on	the	properties	of	the	feed-
back.	We	find	that	negative	feedback	on	the	CSC	division	rate	or	positive	feedback	
on	differentiated	cell	death	rate	can	lead	to	CSC	enrichment.	Further,	the	feedback	
mediators	that	achieve	CSC	enrichment	can	be	secreted	by	either	CSCs	or	by	more	
differentiated	cells.	The	extent	of	enrichment	is	determined	by	the	CSC	death	rate,	
the	CSC	self-renewal	probability,	and	by	feedback	strength.	Defining	these	general	
characteristics	of	feedback	loops	can	guide	the	experimental	screening	for	and	iden-
tification	of	feedback	mediators	that	can	promote	CSC	enrichment	in	bladder	cancer	
and	potentially	other	tumors.	This	can	help	understand	and	overcome	the	phenom-
enon	of	CSC-based	therapy	resistance.			
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Introduction 
 
 
 
Tumor stem cells are thought to be important for the initiation and maintenance 

of cancers. In addition, it is becoming clear that tumor stem cells can also con-

tribute to a reduced response to treatments, especially if the fraction of the stem 

cells in the tumor is high [1]. Cancer stem cells (CSCs) are intrinsically less re-

sponsive to drug treatment [2-4] due to protective properties they share with 

normal stem cells, including higher expression of drug-efflux pumps [1], better 

DNA-repair capacity [5], and enhanced protection against reactive oxygen spe-

cies [6]. High CSC fractions can therefore give rise to poor a response to therapy 

even in the absence of resistance-inducing mutations.  

 

 CSC-based resistance falls in the more general category of non-genetic 

drug resistance. There is strong evidence that tumors contain non-genetic, herit-

able variation, and that this contributes to clonal evolutionary processes [7]. The 

importance of the interplay between genetic and non-genetic heterogeneity for 

clonal evolutionary processes has been demonstrated with mathematical models, 

especially in the context of therapeutic interventions [8,9]. 

 

The importance of stem cell-based resistance in vivo has been estab-

lished in patient-derived bladder cancer mouse xenografts [10]. In clinically real-

istic chemotherapy regimes, it has been demonstrated that stem cell fractions 

increased during successive treatment cycles, and that this increase in the stem 
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cell fractions correlated with a reduced response to chemotherapy during the 

next therapy cycle. Experiments identified a positive feedback loop that operates 

within the tumor as an important component of stem cell enrichment during the 

treatment phase [10]. Chemotherapy-induced death of more differentiated cells 

resulted in a wound healing type response that is mediated by PGE2 and that 

resulted in the activation and proliferation of CSCs during treatment. A mathe-

matical model of these treatment dynamics confirmed that this wound-healing 

response could contribute to the amplification of the CSC population during 

chemotherapy [11]. At the same time, however, the model showed that this CSC 

enrichment was not maintained following cessation of therapy. Instead, CSC 

fractions were predicted to return to pre-treatment levels after treatment cessa-

tion. In other words, the positive feedback wound-healing response alone could 

not account for a pronounced reduction in the response to chemotherapy during 

the next cycle following an off-therapy phase. This situation changed when we 

added negative feedback from differentiated cells onto the division rate of stem 

cells in the mathematical model [11].  We found that in this case, the enriched 

stem cell fractions were predicted to be maintained in the long term during the 

off-treatment phase. The model with the negative feedback loop could thus re-

produce the experimentally observed result that CSC enrichment during a round 

of chemotherapy could reduce the response to a subsequent chemotherapy cy-

cle.  
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The notion that regulatory feedback loops originating from healthy tissue 

remain partially active in tumors is not well-established, nor is the notion that they 

determine the disease course or the response to therapy. The PGE2-based 

wound healing response in bladder cancer xeografts is the best experimental 

support for these ideas. Negative feedback loops have so far not been implicated 

in a similar way, but there is clear evidence that negative feedback regulation 

likely plays and important role in healthy tissue dynamics, e.g., in the olfactory 

epithelium, where GDF11 and Activin βB negatively regulate self-renewal rates in 

progenitor and stem cells [12,13]. Some of this negative feedback regulation 

could thus very well continue to be operational to a certain extent in tumors, and 

indeed the analysis of tumor growth data has found patterns that are difficult to 

account for in the absence of negative feedback regulation [14,15].   

  

While our previous modeling showed that one particular negative feedback 

loop could lead to sustained CSC enrichment following chemotherapy of bladder 

cancer xenografts, many other regulatory feedback loops can potentially be pre-

sent within the tumor. Some of these might also be able to contribute to sus-

tained CSC enrichment and to a loss of therapy response, while others might not 

contribute to this phenomenon. A targeted experimental search for feedback fac-

tors that promote loss of treatment responses in bladder cancer requires us to 

know which types of feedback mechanisms intrinsic to the cell population can in 

principle promote sustained CSC enrichment. The aim of this paper is to identify 
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such candidate feedback loops, based on the analysis of mathematical models, 

thus providing a theoretical basis for the experimental identification of relevant, 

specific feedback molecules.   

 

 We focus on two basic scenarios. First, we assume that partial breakage 

of feedback regulation results in temporary cell growth towards a new equilibri-

um, characterized by an overall larger number of cells. This could correspond to 

a single step in step-wise tumor progression. We investigate the conditions re-

quired for the stem cell fraction to be larger at the new compared to the old equi-

librium. In particular we study how remaining feedback loops determine the stem 

cell fraction. Second, we consider unbounded tumor growth and investigate how 

different feedback mechanisms that remain in a growing tumor cell population 

can determine whether or not CSC enrichment occurs during growth. Much of 

this work is done using ordinary differential equations. In the context of unbound-

ed tumor growth, the effect of spatial growth patterns on stem cell enrichment is 

explored using a stochastic agent-based model and an analytical approximation.   

 

The present study provides a solid theoretical basis for implicating the 

presence of feedback regulatory loops as a determinant of responses to cancer 

therapy. This adds to the mathematical literature quantifying the role of feedback 

regulation for tissue and tumor dynamics [11,13,15-24], and builds upon the wid-

er mathematical literature concerned with the dynamics of hierarchically struc-

tured cell populations, e.g. [25-31] and stem cell fractions [32]. Two major ap-
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proaches can be mentioned as most relevant in the present context. One ap-

proach uses spatial, agent-based or hybrid models to investigate SC dynamics, 

including questions of SC enrichment. Reference [32] provides an excellent re-

view of the relevant literature. In particular, a versatile model of CSC and non-

SCs has been developed [33,34], where the cellular expansion and competition 

dynamics could be explored. It was found that an increased proliferation capacity 

of non-stem cells results in encapsulation of SCs and tumor dormancy, while an 

increase in migration may lead to ``liberation” and expansion of SCs. In [34] it 

was demonstrated that the CSC fraction of a tumor population can vary by multi-

ple orders of magnitude as a function of the generational life span of the non- 

stem cancer cells. In [27], the time-dependent SC fraction was studied in the con-

text of a similar model, and it was further found that spontaneous cell death 

yields a higher SC fraction; Reference [35] studied dynamics and localization of 

SCs by using a hybrid model.    

 

The second approach is non-spatial, where the dynamics of SCs and their 

differentiation are represented by using ODEs with or without feedback. For ex-

ample, in [24], a systematic analysis of feedback is performed by using delay dif-

ferential equations. Reference [8] considers a two-compartment, multi-clone 

model with a specific type of negative feedback on SC self-renewal, and shows 

that clonal evolution selects for fast reproducing and highly self-renewing cells at 

primary diagnosis, while relapse following therapy-induced remission is associat-

ed with highly self-renewing but slowly proliferating cells. A multicompartment 
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model of differentiation was introduced axiomatically in [25,26,36] and the steady 

states were studied, both for general functional forms and for a particular case of 

regulatory feedback functions. In [37], a similar model was used to compare cel-

lular properties of leukemic stem cells to those of their benign counterparts, by 

deriving conditions for expansion of malignant cell clones. Reference [23] inves-

tigated the impact of feedback loops and their breakage on cancer progression. 

While questions of SC enrichment were not directly addressed in the above stud-

ies, reference [38] presented a hierarchical model of cell growth and differentia-

tion, and showed that in exponential growth (and in the absence of any control 

loops) the fraction of SCs reaches a steady state level, which is a decreasing 

function of the number of compartments and an increasing function of SC prolif-

eration rate.  

 

While a wealth of results of SC fraction dynamics have been obtained in 

the spatial (agent based and hybrid) models, analytical understanding or general-

izations are more difficult in the context of these models; also feedback factors 

were not usually considered explicitly. On the other hand, a high level of analyti-

cal understanding has been reached in ODE models, but SC enrichment dynam-

ics has not been specifically studied, except in the simpler cases in the absence 

of feedback loops.  In the present study, we develop an axiomatic model of SC 

dynamics where feedback loops are included explicitly, and the functional form of 

the controls (which remains unknown) is kept as general as possible. We investi-

gate conditions that lead to SC enrichment under different types of growth dy-
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namics, and define what types of regulatory feedback loops can and cannot con-

tribute to CSC enrichment, providing guidance to further experimental inquiries 

into specific signaling mechanisms.    

	

	

The basic mathematical modeling approach 

An ordinary differential equation model has been used to describe tissue hierar-

chy dynamics in a healthy tissue [13,16], and the models presented here build on 

these approaches. While cell lineages consist of stem cells, transit amplifying 

cells, and terminally differentiated cells, our models make a simplification and 

take into account only stem cells (which encompass all the proliferating cells) and 

differentiated cells. Denoting stem cells (SC) by x and differentiated cells (DC) by 

y, the model is given by: 

		

dx
dt

= Lx(2P −1)
dy
dt

=2Lx(1−P)−Dy
  

Stem cells divide with a rate L. With a probability P, the division results in two 

daughter stem cells (self-renewal), and with a probability (1-P), the division re-

sults in two daughter differentiated cells (differentiating division). Differentiated 

cells are assumed to die with a rate D. This model captures a probabilistic model 

of tissue control, which occurs on the population level if about half of the symmet-

ric divisions result in two daughter stem cells and the other half result in two 

daughter differentiated cells. In addition to symmetric divisions, asymmetric divi-
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sions may play a role in tissue renewal. With asymmetric cell division, a stem cell 

gives rise to one stem cell and one differentiated cell, thus maintaining a constant 

population of stem cells. In the current model, even though such divisions do not 

appear explicitly, it is possible to show that they are included implicitly, see Sec-

tion 1.2 of SI. It is proven that a model that considers both symmetric and asym-

metric divisions is mathematically identical to the one studied here.  

  

The basic model shown above contains no feedback loops. Hence, the 

rates L and D and probability P are constants that are independent of x or y. This 

system is only characterized by a neutrally stable family of nontrivial equilibria if 

P=0.5. If P>0.5, infinite growth is observed. If P<0.5, the cell population goes ex-

tinct.  

 

It has been shown that introduction of negative feedback loops can result 

in more realistic behavior, where a stable equilibrium is attained for P>0.5 [13]. 

This was shown in the context of two specific feedback loops, and subsequently 

generalized to comprehensively list all possible (positive and negative) feedback 

loops compatible with stability [19,39,40]. Here, we also use a general model to 

assume different kinds of feedback on the rate of cell division, L, the rate of cell 

death, D, and the probability of self-renewal, P. We also add the possibility that 

stem cells die with a rate δ (which can also be subject to feedback). In the con-

text of our model, feedback is equivalent to a dependence of rates and probabili-
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ties on the population sizes, x and/or y. Hence, the model is given by the follow-

ing ODEs:	

		

dx
dt

= L(x , y)x(2P(x , y)−1)−δ(x , y)x (1)
dy
dt

=2L(x , y)x(1−P(x , y))−D(x , y)y
	

The division rate L, the death rates, D and δ, and the probability of self-renewal, 

P, are now functions of either the number of stem cells, x, or the number of dif-

ferentiated cells, y, or both.   

 

 Evolution can result in the generation of mutant cell populations that are 

characterized by a higher self renewal probability, given by P2, which can be 

viewed as an early step towards carcinogenesis. Hence, we now have two stem 

and differentiated cell populations denoted by subscripts 1 and 2 for wild type 

and mutant types, respectively. The equations are thus given by		

		

dx1
dt

= L(x , y)x1(2P(x , y)−1)−δ(x , y)x1
dy1
dt

=2L(x , y)x1(1−P(x , y))−D(x , y)y1 (2)
dx2
dt

= L(x , y)x2(2P2(x , y)−1)−δ(x , y)x2
dy2
dt

=2L(x , y)x2(1−P2(x , y))−D(x , y)y2 ,

	

where x=x1+x2 and y=y1+y2. The two cell populations are in competition with 

each other, mediated by the feedback factors that are shared between the two 

populations. Table 1 summarizes all the variables used in this paper (both in this 
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section and in the later sections). These equations are structurally similar to pre-

viously published models that were explored in different contexts [37].  

 

Note that we only consider mutants with a higher self-renewal probability, 

because these are the only mutant types that can grow from low numbers and 

invade in this type of model. Mutants in other parameters fail to grow and will die 

out, as described in a different context in reference [21]. In principle, it is possible 

that a mutation causes a simultaneous change in more than one parameter, 

which, however, does not lead to a change in conclusion and is not pursued fur-

ther.  

 

	

	

Cell growth towards a new equilibrium.  

The first important scenario happens when the mutant cell population gains a se-

lective advantage, outcompetes the original, healthy cell population, and grows 

towards a new and higher equilibrium level. This is achieved by assuming that 

P2>P, along with other conditions on the rate functions that are specified in Sec-

tion 1 of SI We examine the conditions under which the stem cell fraction at the 

new equilibrium is increased compared to that at the original equilibrium. In terms 

of the model notation, we are interested in the quantity v(x,y) = x / y, i.e. the ratio 

of stem to differentiated cells. We investigate how different combinations of feed-

back loops that remain in the mutant cell population impact stem cell enrichment.  
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In the following we assume that the division and death rates in the above models 

are monotonic functions of the number of stem and/or differentiated cells. We fur-

ther assume that in the absence of mutants, the system is at equilibrium, charac-

terized by the pair 		(x , y) , which satisfies: 

		
P x , y( ) = 12 1+

δ x , y( )
L x , y( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
		

At this equilibrium, the fraction of stem to differentiated cells is given by 

		
v ≡ x

y
=

D x , y( )
L x , y( )−δ x , y( ) .  

We assume that the mutant cell population can invade from low numbers and 

displace the original cell population. This occurs if P2(x,y) > P(x,y) (this is a suffi-

cient condition). Assuming that a new equilibrium is reached, it is characterized 

by  

and the new fraction of stem cells is given by 

 
 

 We examine under what conditions	ν * >ν , i.e. when the stem cell ratio at the 

newly obtained mutant equilibrium exceeds that at the original equilibrium.    

 

		
P x* , y*( ) = 12 1+

δ x* , y*( )
L x* , y*( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
,

		
v* ≡

x*
y*

=
D x* , y*( )

L x* , y*( )−δ x* , y*( ) .
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We observe two qualitatively distinct outcomes, see Sections 2 and 3 of SI or the 

detailed analysis.  (i) The fraction of stem cells increases compared to the previ-

ous equilibrium state. We call this stem cell enrichment. This occurs if the ratios 

L/D and/or L/ δ are decreasing functions of the cell population. This happens 

when larger cell population sizes result in negative feedback on cell expansion 

parameters and/or positive feedback on death. For example, if the per cell divi-

sion rate decreases and/or the death rate increases with population size. (ii) The 

fraction of stem cells decreases compared to the previous equilibrium state. We 

call this stem cell depletion. This occurs if the ratios L/D or L/ δ are increasing 

functions of the cell population. In this scenario, larger populations promote cell 

expansion kinetics, e.g. by decreasing the death rate of cells or increasing their 

division rate. This would correspond to a positive feedback loop on cell division 

and/or a negative feedback loop on death rate. We note that mutant emergence 

generally changes the stem cell fraction, unless the division and death rates (L, 

D, and δ) are constant and hence not affected by feedback.  

 

We will illustrate these points by using some specific examples. The first example 

is of SC enrichment. Consider a system where δ=0, the self renewal probabilities 

P and P2 are given by decreasing functions of y (see solid lines in Fig 1(a)), and 

the division rate L is also a function of y, solid line in Fig 1(b). The cell dynamics 

and control loops corresponding to this system are schematically shown in Fig 

2(a). In this and other such diagrams, blue arrows correspond to cellular pro-

cesses (characterized by kinetic rates, such as L and D), and cell fate decisions, 
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which are probabilities (P or P2). The red negative arrows originating in the DC 

circle represent a negative dependence of both functions L and P on y (the num-

ber of DCs).  In this first example, SC enrichment is predicted to occur. Fig 2(b) 

shows the cell dynamics, once a mutant is introduced at 100 time units. While the 

wild type population goes extinct, the mutants rise to a new equilibrium charac-

terized by a significantly higher ratio x/y compared to the original equilibrium.  

 

The second example is SC depletion. It is given by a system with rate functions 

given by Fig 1(c,d), with δ=0 and the division rate positively controlled by the SC 

population. The controls are schematically shown in Fig 2(c). The resulting dy-

namics are presented in Fig 2(d), where the proportion of SCs at the new, mutant 

equilibrium is smaller than the original proportion. Note however that the de-

pendence of x/y on time is non-monotonic and a temporary phase of SC enrich-

ment is experienced before the ratio x/y lowers to its long-term level. 

 

These two examples illustrated in Fig 2 show that the proportion of SCs can ei-

ther increase (SC enrichment) or decrease (SC depletion), once mutants with al-

tered (increased) self-renewal probability take over the cell population. We refer 

to Section 2 of SI  for the detailed analysis of the scenario where all the rates and 

functions are controlled either by SCs or by DCs, but not both. Section 3 of SI 

extends this to the more general case where the rate functions depend both on x 

and y.  
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Next, we examine the factors that affect the magnitude of the change. In Fig 3 we 

take the basic model of Fig 2(a) and modify it in three different ways, each of 

which leads to a decrease in the amount of SC enrichment, compared to the sit-

uation in Fig 2(a). First, we consider the death rate of the stem cells, δ. The 

amount of enrichment is smaller for nonzero stem cell death rates, compared to 

the case of δ=0. In Fig 3(b) we can see that in the presence of SC death, the in-

crease in the enrichment parameter, x/y, is more modest than that of Fig 2(b).  

 

The second modification is a smaller self-renewal probability, P2, of the mutant 

cell population, Fig. 3(c). The self- renewal probability P2 of the mutant cells is 

that given by the dashed line in Fig 1(a). Again, this results in a more modest in-

crease in the stem cell fraction compared to Fig 2(b). 

 

The third modification is a less pronounced feedback on the division rate. The 

result is that the SC enrichment becomes smaller. In Fig 3(d) we use a flatter di-

vision rate function, L, than that in Fig 2(a) (compare the dashed line in Fig 1(b) 

with the solid line). This results in a smaller SC enrichment, as shown by a 

smaller increase of x/y in Fig 3(d) compared to Fig 2(b).  A detailed analysis of all 

these scenarios is presented in Section 2 of SI.  

 

 

Stem cell enrichment in non-equilibrium situations 
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Next, we study the scenarios where the mutant population grows from low num-

bers and does not reach a new equilibrium, but instead, continues to grow indefi-

nitely. This would correspond to tumor growth. The definition of enrichment in this 

context and the relevant methodology will be somewhat different in this case. We 

will consider the mutant population alone, and study the growth of x2 and y2, in 

order to find the dynamics of the quantity ν=x2/y2. We will say that stem cell en-

richment occurs if the quantity ν increases during population growth, either infi-

nitely, or temporarily. For simplicity we will assume that the cancer stem cell 

(CSC) population does not die (δ=0). We further assume that the probability of 

self-renewal of mutants, P2, is a monotonic function of the population size (stem 

cells or differentiated cells) that satisfies P2 > 1/2, and that in the limit of large 

populations, it approaches a limiting value, 	P  > 1/2. When we consider the mu-

tant dynamics, we will drop the subscript 2, and simply study the equations:  

		

dx
dt

= xL(x , y)(2P −1),
dy
dt

=2xL(x , y)(1−P)− yD(x , y).
 

If we assume that both D and L depend on a single population, that is, L=L(x), 

D=D(x), or L=L(y),D=D(y),  the following approximations can be derived (see 

Section 4 of SI). As the cell population expands, the DC population behaves as  

		
y~2(1−P)x L

D
,        (3) 

and ratio of stem to differentiated cells, ν, in the limit of large times is given by: 

		
ν ~(2P −1)+D/L2(1−P) .        (4) 
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Equation (4) states that the long-term dynamics of the SC fraction, v, is defined 

by the behavior of the ratio D/L, the per cell death rate of the DCs and per cell 

division rate of SCs. If either or both of these quantities are controlled by the 

population size, the ratio will change as the tumor grows. If the behavior of the 

death rate and division rates are known, formula (4) predicts the dynamics of the 

SC fraction in tumor growth. Three scenarios are possible. 

 

1) Unlimited SC enrichment. One relevant scenario occurs if the ratio D/L 

grows indefinitely as the population size increases; this corresponds to either a 

negative feedback on L (such that L approaches zero as population size increas-

es), and/or a positive feedback on D. If an increase in cell population sizes re-

sults in an unbounded increase in D/L, then the stem cell fraction, ν, will continu-

ously rise towards infinity. Therefore, as the tumor cell population grows, the frac-

tion of SCs increases, and at very large tumor sizes, the tumor is practically only 

made up of CSCs. This scenario is illustrated in Figs 4(a,b) and 5(a,b), where 

negative feedback on L results in an increase in the ratio  D/L, mediated by dif-

ferentiated cells (panels (a)) and stem cells (panels (b)). Figs 4(a), 5(a) explore 

negative feedback on L by DCs. It depicts a system similar to that of Fig 2(a), ex-

cept the self-renewal probability of the mutants is a constant, resulting in an un-

limited growth of mutants. The fraction x/y in this case experiences unlimited 

growth, as shown by the inset in panel 5(a). In Figs 4(b) and 5(b), we replace 

control of L by DCs with control by SCs; again, an unlimited growth of x/y is ob-

served, see the inset in panel 5(b). 
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2) Saturated SC enrichment. The second type of behavior is observed if an in-

crease in the number of cells results in a saturated growth in D and/or a decay of 

L to a nonzero level, such that the ratio D/L is a growing and saturating function 

as the cell population increases. In this case, the ratio ν will increase and reach a 

constant level, as the tumor size grows beyond a given size. In other words, once 

the tumor size has reached a critical threshold, the stem cell fraction is predicted 

to remain constant as the tumor grows further.  This scenario is illustrated in fig-

ure 5(c,d), where populations x and y grow indefinitely, but the ratio x/y first in-

creases and then reaches a constant level (see the inset). The only difference in 

simulations of panel 5(c) compared to those of panel 5(a) is the fact that the divi-

sion rate, L, no longer decreases to zero, but reaches a small but nonzero con-

stant level, as the cell population grows. Panel 5(d) depicts the two functions, 

L(y), that are used in the simulation (the solid line for panel 5(a) and the saturat-

ing, dashed line for panel 5(c)).  

 

3) SC depletion. The third and final scenario that is possible corresponds to the 

case where function D/L decreases as the population size increases. This can 

happen if the division rate is positively controlled and/or when the death rate is 

negatively controlled by the cell populations. This type of dynamics is illustrated 

in figures Fig 4(c, d) and 6(a,b). In these simulations, positive feedback on L was 

mediated either by SCs (figures 4(c) and 6(a)) or by differentiated cells (figures 

4(d) and 6(b)). In this case, a temporary reduction in the ratio ν can be observed 
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during tumor growth, until ν converges to a constant. In other words, we observe 

a reduction in the CSC fraction over time, until it reaches a limiting value. Note 

that the SC fraction can never decrease to zero, the minimum fraction is given by 

		
2P −1
2(1−P) .  

 

To summarize, the following three types of SC fraction dynamics are predicted: 

(1) If L is subject to negative feedback and decays to zero and/or D is subject to 

positive feedback and increases without bound, then we have unlimited SC en-

richment, such that the content of SCs grows to 100% in the log run. (2) If L is 

subject to negative feedback but never decreases to zero and/or D is subject to 

positive feedback and increases within bounds, then we have limited SC enrich-

ment, where the SC fraction increases and then remains constant. (3) If L is sub-

ject to positive feedback and/or D is subject to negative feedback, then we have 

SC depletion, and the SC fraction decreases to a nonzero level. 

 

Note that if L and D are subject to the same type of feedback, then the resulting 

behavior would be determined by the overall behavior of L/D.  For example, if L 

and D are both subject to positive feedback and increase within bounds, but the 

feedback on L is greater than the feedback on D such that L/D is increasing with 

the population size, then this would correspond to type (3) and result in depletion. 

However, if the feedback on D is (effectively) greater such that L/D is decreasing 

and bounded above 0, then this would correspond to type (2) and result in limited 

SC enrichment, where SC fraction grows and saturates below 100%. 
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SC enrichment in spatially structured populations 

According to the above results, stem cell enrichment during growth requires cer-

tain feedback mechanism to be present in the tumor cell population, such that the 

ratio L/D is reduced as the population size is increased. Typically such feedback 

can occur through signaling factors that are secreted from stem or differentiated 

cells. Another way to achieve a similar result can be spatially restricted reproduc-

tion of cells. In such scenarios, cells experience range expansion in two dimen-

sions, or grow as expanding sphere-like structures in 3D. Inside the expanding 

population, divisions must be balanced with deaths because free space is limited. 

In a way this works similarly to control loops affecting division and/or death rates, 

which were discussed earlier in the paper; in the case of spatially restricted 

growth, control is essentially competition for space, which leads to slower divi-

sions/ higher death as the density increases.  

 To explore this, we first considered a two-dimensional stochastic agent-

based model that describes spatially restricted cell growth. The model assumes a 

2-dimensional grid consisting of nxn spots. A spot can either be empty, contain a 

stem cell, or contain a differentiated cell. At each time step, the grid is sampled N 

times, where N is the number of cells currently present in the grid. If the sampled 

spot contains a stem cell, it divides with a probability L0, and dies with a probabil-

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2019. ; https://doi.org/10.1101/818005doi: bioRxiv preprint 

https://doi.org/10.1101/818005
http://creativecommons.org/licenses/by/4.0/


	 21	

ity δ0. If the division event is chosen, one of the eight nearest neighboring spots 

is randomly picked as a target for one of the daughter cells. If the chosen spot is 

already filled, the division event is aborted, otherwise it proceeds. If division pro-

ceeds, both daughter cells will be stem cells with a probability P0 (self-renewal). 

With probability 1- P0, both daughter cells will be differentiated cells.  If the sam-

pled spot contains a differentiated cell, death occurs with a probability D0. No ex-

plicit feedback processes were included in the model. The simulation was started 

with 9 stem cells (and no differentiated cells). Assuming that stem cells do not 

die, the resulting average growth curve is shown in Figure 7(a). While initially, the 

differentiated cells grow to be more abundant than the stem cells, the stem cell 

population enriches over time and eventually becomes dominant as the cell pop-

ulation grows. Figure 7(b) shows the same kind of simulation, but assuming that 

stem cells die with a rate that is smaller than the death rate of differentiated cells. 

Consistent with the results obtained for explicit feedback mechanisms, we find 

that the degree of stem cell enrichment is reduced in the presence of stem cell 

death (higher rates of stem cell death lead to less enrichment).   

A  simple mean-field model that takes account of the space limitations in-

side an expanding population can explain these results (see Section 5 of SI). In-

deed, the system in the interim of the expanding globe reaches a dynamic equi-

librium state where the density of SCs and DCs is dictated by the balance of divi-

sion and death rates. Figure 8 shows theoretical predictions for the densities of 

SCs and the DCs in the colony’s interim; the solid lines depict theoretical predic-

tions and points correspond to numerical simulations of the agent based model. 
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The figure also provides typical images for two parameter combinations; blue 

dots represent SCs and yellow dots DCs. As expected, under higher DC death 

the proportion of DCs decreases.  

 

Using the mean-field model, we have also calculated the degree of SC en-

richment. The higher the SC death rate, the lower the overall density and the 

higher the fraction of DCs in the population. As time increases, the fraction of 

SCs reaches the value given by 

		
ν =

D0(2P0 −1)
2δ0(1−P0)

 

In particular, in the absence of SC death (δ0=0), the equilibrium value of v is infin-

ity, which means that SCs exclude DCs everywhere in the core of the expanding 

range, such that DCs only concentrate in the exterior part of the colony. This cor-

responds to unlimited SC enrichment.  

 

Agent-based simulations were repeated assuming a 3-dimensional space, 

where offspring cells could be placed into one of the 27 nearest neighboring 

spots (Section 5 of SI). Because there are more neighbors in three dimensions, 

the system is more mixed, and the extent of stem cell enrichment is generally 

lower. (As mentioned in the beginning of this paper, no stem cell enrichment oc-

curs in a perfectly mixed system in the absence of explicit feedback mecha-

nisms).   
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Discussion and Conclusions 

The experimental observation that a wound-healing type mechanism in bladder 

cancer can modulate the responsiveness of the tumor to chemotherapy [10] is to 

our knowledge the first clear case where a specific feedback loop has been im-

plicated in determining therapy outcome. At the same time, however, this inter-

esting observation has brought up a number of questions that can best be an-

swered by using mathematical models to interpret the data. Mathematical model-

ing [11] suggested that the wound-healing response alone cannot result in CSC 

enrichment that is sustained beyond the treatment phase, and hence cannot ex-

plain the loss of therapy response during subsequent treatment cycles. The 

mathematical model predicted, however, that inclusion of a particular negative 

feedback loop from differentiated cells onto the rate of CSC division can result in 

sustained CSC enrichment and in a loss of therapy response in successive 

treatment cycles. Many different negative and positive feedback loops, however, 

might be operational in bladder cancer, and so far we did not know which types 

of feedback mechanisms can in principle contribute sustained CSC enrichment 

(and a loss of treatment response), and which types cannot contribute to this 

phenomenon. This limits the experimental search for particular feedback factors 

that drive the response of bladder cancer to chemotherapy. The analysis pre-

sented here uses mathematical approaches to clearly define which types of 

feedback loops can and cannot contribute to sustained CSC enrichment, and this 

forms an important guide for the search of specific feedback factors in bladder 
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cancer, and also potentially in other tumors in which CSC-based resistance turns 

out to be important.  

 

We found that whether or not stem cell enrichment is observed in the sys-

tem depends on how the ratio D/L (deaths to divisions) changes with the popula-

tion size. If it rises as the population size increases, which corresponds to either 

a negative feedback on L or a positive feedback on D, exerted either by stem or 

by differentiated cells, then SC enrichment is observed. On the other hand, if the 

ratio D/L decreases as the population grows, then no stem cell enrichment is 

predicted, and in fact SC depletion can be observed. A simple analytical approx-

imation is derived for the long-term behavior of the expected fraction of SCs in 

the population, which is novel and useful for data interpretation. Further, accord-

ing to the model, three separate factors can decrease and even altogether pre-

vent SC enrichment. One is the presence of SC death; the second is a very weak 

feedback (or no feedback) on SC divisions remaining in the mutant populations, 

and the third is a relatively low self-renewal probability of mutant cells.  

 

In contrast to previous approaches, we employed axiomatic modeling 

techniques, where model parameters such as the division rate, death rate, and 

self-renewal probability of cells were general functions of the number of stem and 

differentiated cells, which can potentially secrete feedback factors. We have thus 

considered a class of mathematical models that incorporate a large variety of 

possible feedback loops that regulate cell fate decisions in lineages. The models 
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have the flexibility as to which cell populations exert the feedback signals, and 

whether feedback loops are positive or negative. The (unknown) exact details of 

the feedback functions remain unspecified. This is an important innovation when 

mathematically modeling complex stem cell dynamics with feedback regulation. 

When considering a specific model, as has been done in much of the literature 

so far, results can depend on the particular mathematical formulation of feedback 

interactions. These particular formulations are typically arbitrary, and the same 

biological processes can often be described by somewhat different mathematical 

terms, which can impact model predictions and thus lead to robustness issues. 

The axiomatic modeling approach performed here does not suffer from this prob-

lem.  

 

The spatial models considered here have shown that in the presence of 

spatially restricted cell division, CSC enrichment can occur even in the absence 

of explicit feedback loops mediated by signaling molecules. It is the nature of 

spatially restricted cell spread that cells in the inside of an expanding population 

compete for space, such that their reproduction rate declines with population size 

and/or their death rate increases. This has the same effect on the dynamics as 

the presence of explicit feedback loops. Whether this represents a physiologically 

important mechanism that drives CSC enrichment remains to be explored further. 

The presence of cell migration can destroy the reported effect (because cell mi-

gration essentially leads to a higher degree of cell mixing). Since cell migration 

occurs even in spatially structured tumors, it is likely that explicit feedback regula-
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tory loops have to be invoked to explain the loss of treatment response in bladder 

cancer.   

 

All modeling approaches contain simplifying assumptions, and the models 

presented here are no exception. To gain analytical insights, we reduced the 

complexity of the lineage differentiation pathway to include only stem cells and 

differentiated cells, ignoring intermediate transit amplifying cell populations with 

limited self-renewal capacity. Our previous work included models that explicitly 

took into account transit amplifying cells [11], and the relationship between the 

presence of negative feedback on stem cell division and the occurrence of stem 

cell enrichment remained qualitatively the same [41].   Other modeling approach-

es have treated the cell differentiation pathway as a continuous process using 

partial differential equations, rather than considering discrete cell sub-populations 

[42]. Future work is required to determine to what extent the dynamics explored 

here remain robust in those types of models.  

 

It is further important to note that the models discussed here are based on 

a set of core assumptions that we consider critical when addressing the particular 

questions that were the focus of this investigation. Further complexities can be 

included in future work when studying more advanced questions. An important 

example is additional tumor heterogeneity that is certainly present in bladder 

caners as well as in most other tumors. Variation is likely to occur in division 

rates, death rates, and the ability to secrete or respond to feedback signals; it will 
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be important to extend the models with this in mind. Furthermore, while we con-

centrated on feedback signals that originate from tumor cells themselves, it is 

likely that regulatory signals originating from the microenvironment play a role in 

shaping cell renewal and differentiation dynamics. Thus, there is indication that in 

bladder cancer, interactions between the tumor cells and the extracellular matrix 

are important for pathogenesis and treatment [43]. These interactions are worth 

exploring mathematically in their own right, and would go beyond the scope of 

the current paper.  
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Table and caption 

 

Notation Definition 

L Division rate of SCs 

D, δ Death rate of  DCs and SCs, respectively 

x1 and x2 Wild type and mutant SCs 

y1 and y2 Wild type and mutant DCs  

		(x , y)  The equilibrium values of the wild type cells  

		(x
* , y* )  The mutant equilibrium values 

ν Ratio SCs/DCs 

P Probability of SCs self-renewal for wild type cells 

P2 Probability of SCs self-renewal for mutant cells 

 

 Table 1. Mathematical symbols and the definitions of variables. 

 

 

 

Figure captions 

 

Fig 1: Examples of functional dependencies leading to SC enrichment (a,b) and 

depletion (c,d) at a new equilibrium. (a) Self renewal probability functions, 

P(y)=(1+0.001 y)
-1

 and P
2
(y)=(1+0.001 y)

1/2 
P(y) (the solid lines). An example of a 
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smaller self renewal probability of mutants is given by P
2
(y)=(1+0.005y)

1/2 
P(y) 

(the dashed line). (b) An example of a negatively controlled division rate is given 

by L(y)=2x5
1-0.001y 

 (solid line). A flatter division rate is given by L(y)=2
2-0.001y

 

(dashed line). (c) Self renewal probability functions, P(x)=(1+0.02 x)
-1

 and 

P
2
(x)=(1+0.015 x)

1/2 
P(x). (d) An example of a positively controlled division rate is 

given by L(x)=401(1-e
-0.0001x

). 

 

Fig 2: Dynamics of enrichment when a new equilibrium is reached by mutants. 

The left panels (a, b) illustrate SC enrichment, and the right panels (c,d) SC de-

pletion.  In the top panels, the dynamics and the control loops are presented 

schematically. SCs (the leftmost circle) divide at rate L, such that the decision of 

whether to self renew or to differentiate (denoted by a question mark) is gov-

erned by probability P. Control loops are depicted by red arrows (positive or neg-

ative) directed from the population mediating the control to the rate/probability 

that is being controlled. In the bottom panels, the time series are shown, where 

functions for wild type cells, x
1
(t) and y

1
(t), are plotted in black, and functions for 

mutant cells,  x
2
(t) and y

2
(t), are plotted in red. SCs are depicted by solid and 

DCs by dashed lines. Initially, the system is at the original equilibrium, 		(x , y ,0,0). 

At t=100, mutant stem cells are introduced at a low level, resulting in the extinc-

tion of wild type cells, and convergence to a new equilibrium, (0,0,x
*
,y
*
). In the 

insets, the SC fraction, x/y, is depicted as a function of time. (a,b) Negative con-
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trol by DCs, resulting in SC enrichment: the functions L, P, and P
2
 are given by 

the solid lines in Fig 1(a,b). (c,d) Positive control by SCs, resulting in SC deple-

tion: the functions L, P, and P
2
 are specified in Fig 1(c,d). 

 

 

Fig 3. Parameter dependence of the SC enrichment magnitude. (a) The basic 

model, whose 3 aspects are modified. SCs (the leftmost circle) divide at rate L, 

such that the decision of whether to self renew or to differentiate (denoted by a 

question mark) is governed by probability P. Control loops are depicted by red 

arrows (positive or negative) directed from the population mediating the control to 

the rate/probability that is being controlled. (b) SC death: same parameters as in 

Fig 2(a), except δ=0.03. (c) Smaller P
2
: same parameters as in Fig 2(b) except 

P
2
 is given by the dashed line in Fig 1(a). (d) Shallower L: same parameters as in 

Fig 2(b), except the division rate L is given by the dashed line in Fig 1(b). We ob-

serve that the SC enrichment is (b-d) is less pronounced compared to Fig 2(b).  

 

Fig 4. Four types of control used in Fig 5 to study unbounded growth. SCs (the 

leftmost circle) divide at rate L, such that the decision of whether to self renew or 

to differentiate (denoted by a question mark) is governed by probability P. Control 

loops are depicted by red arrows (positive or negative) directed from the popula-

tion mediating the control to the rate/probability that is being controlled. (a) Nega-

tive control by DCs; (b) Negative control by SCs; (c) Positive control by DCs; 

Positive control by SCs; (d) Positive control by SCs. Unlike in Fig 2(a,c), the mu-
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tant self-renewal probability is assumed to be constant (and thus the control loop 

is completely severed in mutants), leading to unlimited growth. The 2 top panels 

correspond to Fig 5(a,b); the 2 bottom panels correspond to Fig 6(a,b).  

 

Fig 5. Dynamics of unbounded growth under negative control on SC divisions. 

Notations are as in Fig 2(b,d). The purple line in each panel plots the approxima-

tion for y (formula (3)), and in the insets the approximation for x/y (formula (4)). 

(a) Negative control by DCs: parameters are as in Fig 2(b) except P
2
=	P  =0.6. (b) 

Negative control by SCs: similar to (a), except the rate functions depend on SCs: 

L(x)=2*5
 (1-x/50) 

, P(x)=(1+0.02x)
-1

, and P
2
=	P  =0.6. In both panes, unlimited SC 

enrichment is observed. (c) Saturated SC enrichment: same as (a), except the 

division rate decreases to a constant: L(y)=0.05+2*5
1-0.001y

. (d) The two division rates 

are plotted on a logarithmic scale as functions of DC populations. The solid line 

depicts the function used in panel (a) and the dashed line the function used in 

panel (c). 

 

Fig 6. Dynamics of unbounded growth under positive control on SC divisions. 

Notations are as in Fig 2(b,d). The purple line in each panel plots the approxima-

tion for y (formula (3)), and in the insets the approximation for x/y (formula (4)). 

(a) Positive control by SCs: corresponds to parameters of Fig 2(d), except P
2
=	P  

=0.505.  (b) Positive control by DCs: similar to (a), except the rate functions de-

pend on DCs: L(y)=21(1-e
-0.0001y

), P(y)=(1+0.001y)
-1
, P

2
=	P  =0.505. 
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Figure 7. Effect of spatially restricted cell division on CSC enrichment, according 

to the 2-dimensional implementation of the agent-based model. (A) Dynamics in 

the absence of stem cell death, δ0=0. In the top panel, stem cells are shown in 

blue, differentiated cells in green. The bottom panel shows the stem cell fraction 

over time. (B) Same, but for a non-zero stem cell death rate, i.e. δ0=0.005. Other 

parameters were chosen as follows: L0=0.95, P0=0.6, D0=0.01, nxn=15002. 8 

simulations were run, and the mean is shown as a solid line while the mean ± 

standard error are shown by dashed lines. 

 

 

Figure 8. Agent based model simulations and theory. The fractions of SCs and 

DCs are shown for different values of parameter D0. Theoretical predictions from 

mean field modeling are given by solid lines and agent based model simulation 

results by points. Typical simulation results are presented for two of the parame-

ter combinations. Gray is empty spots, blue SCs and yellow DCs. The rest of the 

parameters are: L0=0.95, P0=0.6, δ0=0.005. 
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