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Abstract

Cardiac cell models reconstruct the action potential and calcium dynamics of cardiac
myocytes, and are becoming widely used research tools. These models are highly
detailed, with many parameters in the equations that describe current flow through ion
channels, pumps, and exchangers in the cell membrane, and so it is difficult to link
changes in model inputs to model behaviours. The aim of the present study was to
undertake sensitivity and uncertainty analysis of two models of the human atrial action
potential. We used Gaussian processes to emulate the way that 11 features of the action
potential and calcium transient produced by each model depended on a set of. The
emulators were trained by maximising likelihood conditional on a set of design data,
obtained from 300 model evaluations. For each model evaluation, the set of inputs was
obtained from uniform distributions centred on the default values for each parameter,
using latin-hypercube sampling. First order and total effect sensitivity indices were
calculated for each combination of input and output. First order indices were well
correlated with the square root of sensitivity indices obtained by partial least squares
regression of the design data. The sensitivity indices highlighted a difference in the
balance of inward and outward currents during the plateau phase of the action potential
in each model, with the consequence that changes to one parameter can have opposite
effects in the two models. Overall the interactions among inputs were not as important
as the first order effects, indicating that model parameters tend to have independent
effects on the model outputs. This study has shown that Gaussian process emulators
are an effective tool for sensitivity and uncertainty analysis of cardiac cell models.

Author summary

The time course of the cardiac action potential is determined by the balance of inward
and outward currents across the cell membrane, and these in turn depend on dynamic
behaviour of ion channels, pumps and exchangers in the cell membrane. Cardiac cell
models reconstruct the action potential by representing transmembrane current as a set
of stiff and nonlinear ordinary differential equations. These models capture biophysical
detail, but are complex and have large numbers of parameters, so cause and effect
relationships are difficult to identify. In recent years there has been an increasing
interest in uncertainty and variability in computational models, and a number of tools
have been developed. In this study we have used one of these tools, Gaussian process
emulators, to compare and contrast two models of the human atrial action potential.
We obtained sensitivity indices based on the proportion of variance in a model output
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that is accounted for by variance in each of the model parameters. These sensitivity
indices highlighted the model parameters that had the most influence on the model
outputs, and provided a means to make a quantitative comparison between the models.

Introduction 1

The cardiac action potential arises from the movement of ions through channels, pumps, 2

and exchangers in the cell membrane. At any instant, the current carried by each ionic 3

species depends on potential difference across the cell membrane, as well as ion 4

concentrations and the dynamics of ion channel gating. The complex interplay of 5

currents produces depolarisation and then repolarisation of the membrane, which then 6

acts to trigger release of Ca2+, initiating mechanical contraction. 7

The first model of the action potential in a cardiac myocyte was developed over 50 8

years ago [1], and since then a series of more detailed models have been developed as 9

experimental techniques and data have improved. The present generation of models 10

provide detailed reconstructions of the cardiac action potential [2], and computational 11

models of cardiac cells and tissue have become valuable research tools because they can 12

encode biophysical mechanisms into a quantitative framework, and so can be used to 13

test and construct hypotheses [3]. 14

Although these detailed models are capable of simulating the behaviour of real 15

cardiac myocytes, this veracity comes at the price of complexity. Models of the cardiac 16

action potential typically comprise a system of coupled, stiff, and non-linear ordinary 17

differential equations. There are many model parameters and boundary conditions, 18

which we will refer to as model inputs from here onward. These model inputs can be 19

derived from experimental data, using approaches based on those pioneered by Hodgkin 20

and Huxley in squid giant axon [4]. However, experimental data are subject to 21

variability and error arising from both limitations of experimental methods as well as 22

intrinsic variability in cardiac cells. Some of these inputs, such as binding affinities and 23

reaction rate constants, can be considered to have fixed values because they have a 24

physical basis. However others, such as maximum ion channel conductance, depend on 25

the ion channel density in the cell membrane as well as other factors that are variable. 26

These quantities may therefore vary from one cell to another, and even from beat to beat 27

in the same cell. These considerations underlie three specific problems. First, errors and 28

variability in data are typically not taken into account when fitting model inputs, and 29

taking an average of experimental data can distort model behaviour [5]. Second, data 30

from different sets of experiments can result in different models of the same cell type. 31

For example, there are several models of the human atrial action potential, all based on 32

human data, but which show different types of behaviour [6, 7]. Finally, a further 33

complication arises from the modular nature of cardiac cell models. The equations for a 34

particular ion channel, pump, or exchanger are often re-used in different models and so 35

the provenance of model inputs may be very difficult to establish [8]. 36

Addressing these problems requires approaches that can establish how model 37

behaviours and outputs depend on inputs that may be uncertain. However, the level of 38

detail included in the present generation of cardiac cell models means that formal 39

analysis is difficult, and so a detailed examination of how model inputs influence 40

outputs relies on large numbers of numerical simulations where the inputs vary from one 41

model run to the next [9]. These datasets can be used for regression analysis, which 42

enables the sensitivity of model outputs to changes in model inputs to be assessed [10]. 43

Another approach is to select a set of inputs, or population of models, that produce 44

action potentials that are in the range of experimental observations [11–13]. A 45

drawback of these approaches arises from the high dimensional input space for the 46

models; a very large number of model evaluations is needed to investigate the input 47
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space thoroughly [14], although recent work indicates that this challenge can be 48

overcome by new models that are designed for uncertainty quantification [15]. 49

Methods to quantify uncertainty and variability using probabilistic approaches have 50

been developed and applied in a number of areas [16], including cardiovascular flow 51

models [17]. These approaches are promising because an emulator of a computational 52

model can treat uncertainties explicitly, and can be evaluated at much lower 53

computational cost than the original model [19,42]. Gaussian Processes are flexible 54

non-parametric regression tools capable of fitting complex data, thus they are widely 55

used in the machine learning community. They provide confidence intervals on their 56

predictions, and are therefore ideal tools for sensitivity and uncertainty analysis. 57

In this report we demonstrate the use of Gaussian process emulators for sensitivity 58

and uncertainty analysis of two biophysically detailed models of the human atrial action 59

potential. Our objectives were to gain insight into the comparative mechanisms of each 60

model by first calculating variance based sensitivity indices that quantify how variance 61

in model inputs influences variance in model outputs, and second by examining how 62

each model behaved under uncertain inputs. 63

Materials and methods 64

Human atrial cell models. 65

Several models of the human atrial action potential have been developed and are 66

reviewed in detail elsewhere [6, 7, 12]. We selected two models for the present study, 67

both based on data from human atrial cells. The first model is the Courtemanche 68

model [20]. The second model is an extension of the model developed by Nygren et 69

al [21], with modifications to the IKur and Ito currents as well as the movement of 70

Na+ [22], which we refer to as the Maleckar model. 71

We chose these models because both represent the action potential of human atrial 72

cells, and so have clinical relevance. Both have been used for tissue and whole-organ 73

scale simulations of atrial fibrillation [23–26]. Furthermore, both models have a 74

comparable set of ion channels, pumps, and exchangers, however differences in Ca2+ 75

handling underlie the different action potential shapes [7]. 76

Model inputs and outputs 77

The Courtemanche and Maleckar cell models include components that represent 78

membrane electrophysiology as well as intracellular Ca2+ storage, uptake, and release. 79

We chose to concentrate on parameters that control the maximum current density 80

carried by ion channels, pumps, and exchangers in the cell membrane as well as those 81

that control the rate and magnitude of uptake and release of intracellular Ca2+. We 82

also selected the cell capacitance Cm, and the extracellular concentrations [Na+]o, 83

[K+]o, and [Ca2+]o as additional inputs. The inputs examined in this study are listed 84

in Table 1, where the central values given are the default for each model. 85

The rationale for this choice was that each of the selected inputs can be considered 86

uncertain (i.e. not a physical constant), yet has a biophysical interpretation. Maximum 87

conductances of ion channels, pumps, and exchangers depend on protein expression, and 88

so could be expected to vary within an individual cell at different times as well as from 89

cell to cell. Cell size and capacitance vary from cell to cell. This natural variability can 90

be considered to be aleatoric uncertainty, which is irreducible [16]. On the other hand, 91

the kinetics of transmembrane currents are related to ion channel biophysics, and so 92

could be considered epistemic uncertainty, which can in principle be reduced. 93
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Our analysis proceeded in two stages. In Stage 1 the influence of all of the inputs 94

listed in Table 1 was examined for a fixed pacing cycle length of 1000 ms. In Stage 2, a 95

subset of the inputs was selected on the basis of their Stage 1 sensitivity index (see 96

below), and a new set of emulators was built using this subset as inputs, together with 97

the diastolic interval (DI) of the S2 beat in an S1-S2 pacing sequence as an additional 98

input. 99

Cardiac cell models produce an output that is a time series of states. Of these, 100

membrane voltage Vm and intracellular Ca2+ concentration [Ca2+]i describe the time 101

course of action potentials and Ca2+. To investigate how cell model inputs influence 102

action potential shape, we selected nine features of the action potential that quantify its 103

shape, based on biomarkers used in related work [11,12] as well as the minimum and 104

maximum intracellular Ca2+ concentration. These eleven outputs are shown in Fig 1 105

and are listed below. 106

• dVm/dtmax – Maximum slope of the action potential upstroke. 107

• Vmax – Peak voltage of the action potential. 108

• V20, V40, V60, and V80 – Membrane voltage measured at 20, 40, 60, and 80% of 109

APD90. 110

• APD50 and APD90 – Action potential duration at 50% and 90% of repolarisation. 111

• RestVm – Resting membrane potential, calculated as the average membrane 112

voltage over a 10 ms period, 100 ms prior to the action potential upstroke. 113

• Ca2+min and Ca2+max – Minimum and maximum intracellular Ca2+ concentration. 114

Fig 1. Action potential biomarkers Nine action potential biomarkers were used as
outputs to characterise each simulator run. A: Courtemanche model, B: Maleckar model.
Biomarker labels are a: dV/dtmax, b: Vmax, c-f: V20, V40, V60, and V80, g: APD50, h:
APD90, i: RestVm. Ca2+max and Ca2+min not shown

Model implementation 115

Both cell models were implemented in Matlab (Mathworks inc.), using Matlab code 116

automatically generated from the CellML repository (http://cellml.org). The 117

models were solved using the ode15s time adaptive solver for stiff systems of ODEs 118

with the relative and absolute tolerance both set to 10−6, and the maximum time step 119

set to 0.5 ms. 120

To ensure that both cell models remained stable over the range of inputs used to 121

train the GP emulators, we made some small modifications. Previous studies (for 122

example [6]) have identified an instability in the Courtemanche model that arises from a 123

gradual drift in the intracellular concentrations [Na+]i and [K+]i. We therefore fixed 124

[Na+]i and [K+]i at their default initial values of 11.17 and 139.00 mM respectively in 125

the Courtemanche model implementation. In the Maleckar model, we fixed the IK,Ach 126

current to zero. 127

For each run, action potentials were initiated by an inward current of 2000 pA 128

delivered for 2 ms in the Courtemanche model, and 750/Cm pA/pF for 6 ms in the 129

Maleckar model. In Stage 1, each run comprised 40 action potentials at a cycle length of 130

1000 ms. In Stage 2, each run was composed of 39 S1 action potentials at a cycle length 131

of 1000 ms and a final S2 stimulus delivered at an S1S2 interval determined by the 132

APD90 of the final S1 beat, plus an offset of 10 ms, plus a diastolic interval (DI) with a 133
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range of 50-450 ms sampled using a Latin hyper-cube design with the other selected 134

inputs as described below. 135

Gaussian process emulators 136

Our overall approach is described in detail in a previous paper [18]. We treat the 137

cardiac cell models as simulators which produce a vector of model outputs ys as a 138

function of a vector of model inputs (parameters) x such that ys = fs(x). An emulator 139

is then a statistical model of the simulator, sometimes known as a meta-model, a 140

surrogate model, or a response surface model. The emulator approximates the model as 141

ye = fe(x), where the emulator output approximates the simulator output ye ≈ ys for 142

a given input x. 143

In the present study we specified the emulator as a Gaussian process (GP), where 144

the GP hyperparameters are optimized using a set of simulator runs called design data. 145

When the GP has been fitted, the posterior prediction ye at an input x∗ can be 146

evaluated, which is a probability density with an expectation and a variance. The 147

variance for the prediction ye expresses uncertainty in the prediction of the simulator 148

behaviour at x∗ [27, 28]. 149

Simulator runs for emulator design data 150

For Stage 1 we generated design data from 300 runs of each cell model implemented as 151

described above. The inputs for this design were sampled using an optimized Latin 152

hyper-cube design ranging from ±50% of the central values (model defaults) given in 153

Table 1 (i.e. from central value ×0.5 to central value ×1.5), except for GK1, Cm, and 154

extracellular ion concentrations. To reduce the incidence of instability (see below), these 155

inputs had ranges of ±25%, ±25%, and ±10% respectively. A set of output biomarkers 156

was obtained from the final action potential. A further set of 150 model model runs 157

were then used for emulator validation (see below). For Stage 2, a second set of design 158

data was produced from 200 simulator runs of each model, with a reduced set of inputs 159

sampled from a Latin hyper-cube as described in the results section, and other inputs 160

set to their central value. A further set of 100 simulator runs were used for emulator 161

validation. 162

Fig 2. Design data Action potentials and calcium transients produced by Latin
hyper-cube sampling as described in the main text, and running each model with a
pacing cycle length of 1000 ms. Traces shown in grey were used for emulator design
data, and those shown in blue were excluded (see text for details). A, B: Courtemanche
model. C, D: Maleckar model.

Outputs from the model runs used for Stage 1 design data in the Courtemanche 163

model and Maleckar model are shown in Fig 2. A wide variation in action potential 164

shapes and durations were elicited by varying the model inputs. 165

Model runs were removed from the design data if there was instability or 166

abnormality in the model outputs evidenced by pacemaking activity, a resting potential 167

greater than -60 mV, APD90 greater than 600 ms, or if APD90 of the 39th and 40th 168

beats differed by more than 5% indicating alternans. Using these criteria, 5 out of 300 169

Courtemanche model runs in Stage 1 were removed, because of a long APD or APD 170

alternans. In the Maleckar model 14 out of 300 model runs in Stage 1 were removed, all 171

with pacemaking activity or failure to repolarise. In Fig 2 the removed runs are 172

highlighted in blue. In Stage 2 no model runs were removed for the Courtemenache 173

model, and 5 model runs were removed for the Maleckar model. 174
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Table 1. Range of inputs used for design data in each cell model.

Courtemanche model
Input Central value Range Units
GNa 7.8 5.85 - 11.70 (±50%) nS/pF
GK1 0.09 0.045 - 0.018 (±25%) nS/pF
Gto 0.165 0.0826 - 0.0330 (±50%) nS/pF
fGKur 1.0 0.50 - 1.50 (±50%) none
GKr 0.0294 0.0147 - 0.0441 (±50%) nS/pF
GKs 0.1294 0.0647 - 0.1941 (±50%) nS/pF
GCa,L 0.1237 0.0619 - 0.1856 (±50%) nS/pF
Gb,Na 0.0006 0.0003 - 0.0010 (±50%) nS/pF
Gb,Ca 0.0011 0.0005 - 0.0017 (±50%) nS/pF
iNaKMax 0.5993 0.2997 - 0.8990 (±50%) pA/pF
iNaCaMax 1600.0 800.00- 2400.0 (±50%) pA/pF
ip,CaMax 0.275 0.1375 - 0.4125 (±50%) pA/pF
Krel 0.30 0.15 - 0.45 (±50%) /ms
τtr 180.0 90.0 - 270.0 ( ±50%) ms
iupMax 0.005 0.0025 - 0.0075 (±50%) mM/ms
Kup 0.00092 0.00046 - 0.0014 ±50%) mM
Cm 100.0 75.0 - 125.0 (±25%) pF
[Na+]o 140.0 126.0 - 154.0 (±10%) mM
[K+]o 5.4 4.86 - 5.94 (±10%) mM
[Ca2+]o 1.8 1.62 - 1.98 (±10%) mM

Maleckar model
Input Central value Range Units

PNa 0.0018 0.0009 - 0.0027 (±50%) nL/s
GK1 3.1 2.325 - 3.875 (±25%) nS
Gt 8.25 4.125 - 12.375 (±50%) nS
GKur 2.25 1.125 - 3.375 (±50%) nS
GKr 0.5 0.250 - 0.750 (±50%) nS
GKs 1.0 0.50 - 1.50 (±50%) nS
GCa,L 6.75 3.375 - 10.125 (±50%) nS
Gb,Na 0.0605 0.303 - 0.909 (±50%) nS
Gb,Ca 0.0590 0.0295 - 0.0885 (±50%) nS
NaKMax 68.55 34.27 - 102.82 (±50%) pA
KNaCa 0.0750 0.0375 - 0.1125 (±50%) pA/mM4

ip,CaMax 4.0 2.0 - 6.0 (±50%) pA
αrel 200000 100000 - 300000 (±50%) pA/mM
τtr 0.01 0.005 - 0.015 (±50%) s
iupMax 2800 1400 - 4300 (±50%) pA
Kcyca 0.0003 0.00015 - 0.00045 (±50%) mM
Ksrca 0.5 0.25 - 0.75 (±50%) mM
Kxcs 0.4 0.2 - 0.6 (±50%) dimensionless
Cm 50 37.5 - 62.5 (±25%) pF
[Na+]o 140.0 126.0 - 154.0 (±10%) mM
[K+]o 5.4 4.86 - 5.94 (±10%) mM
[Ca2+]o 1.8 1.62 - 1.98 (±10%) mM
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Emulator fitting. 175

Our approach to fitting and using GP emulators is described in full detail 176

elsewhere [18,19]. Mathematical details including the expression for the posterior 177

prediction of the emulator are provided in Supporting Information as well as in [27–29], 178

and the Python code used in this study for emulator fitting, validation, sensitivity and 179

uncertainty analysis is available from https://github.com/samcoveney/maGPy. 180

Briefly, each emulator was composed of a mean function and a zero mean Gaussian 181

Process, 182

fe(x) = m(x) + g(x); (1)

with a linear mean, 183

m(x) = h(x)Tβ = β0 + β1x1 + ...+ βPxP , (2)

and a zero-mean GP, 184

g(x) ∼ GP(0, σ2c(x,x′)), (3)

where the covariance has a Radial Basis Function form, 185

c(x,x′) = exp

[
−

P∑
p=1

(
xp − x′p

)2
δ2p

]
. (4)

In these expressions x = (x1, x2, ... , xP ) are the P inputs (parameters), the 186

emulator hyperparameters β and δ are vectors of length P, and σ2 is a scalar. The 187

hyperparameters were obtained by maximum log-likelihood fitting to model inputs and 188

outputs in the design data, assuming weak prior information on β and σ2 [29], and with 189

a fixed nugget of 10−7 [30]. To avoid the fitting process becoming trapped in a local 190

maximum, we repeated each fit ten times, each with a different set of randomly chosen 191

initial values for the hyperparameters. The fit with the greatest log-likelihood was then 192

selected. We produced a separate emulator for each of the outputs shown in Fig 1. 193

Sensitivity and uncertainty analysis 194

Sensitivity and uncertainty analysis can be seen as distinct but related topics; where 195

sensitivity analysis identifies the contribution of variance in each input to variance in 196

each output, and uncertainty analysis concentrates on estimating the uncertainty in 197

model outputs [31]. 198

We calculated a first order sensitivity index for each combination of input and 199

output [28]. For each input i, the first order sensitivity index describes how much the 200

output variance would be reduced if xi is fixed, while all other inputs are uncertain. 201

The first order index is expressed as a proportion of the output variance calculated 202

when all inputs are considered uncertain. 203

Sw =
V ar[E(fe(x|xw))]

V ar[fe(x)]
(5)

To capture the effect of interactions between the inputs, the total effect index can be 204

calculated. This describes the reduction in output variance when xw is uncertain and all 205

other inputs are fixed, denoted as x∼w. It is also expressed as a proportion of the 206

output variance when all inputs are considered uncertain. 207

STw =
V ar[fe(x)]− V ar[fe(x|x∼w)]

V ar[fe(x)]
(6)
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The difference between STw and Sw is then the contribution of all interactions 208

between xw and x∼w to the variance in the output. These quantities were calculated 209

using expressions given in the Supporting Information and described in [28]. Each 210

uncertain input was assigned a mean of 0.5 in normalised units defined by the input 211

ranges given in Table 1. Inputs that varied ±50% were assigned a variance of 0.02, GK1 212

and Cm were assigned a variance of 0.04, and the extracellular ionic concentrations were 213

assigned a variance of 0.1. We also calculated the main effect of each input on each 214

output, using the procedure described in the Supporting Information, and the gradient 215

of the main effect of a particular input around 0.5 normalised units was used to allocate 216

a sign to the corresponding first order sensitivity index. 217

Several recent studies have calculated sensitivity indices based on partial least 218

squares (PLS) regression [32, 33]. In this approach, each model output is assumed to be 219

a weighted sum of inputs. Thus the model is described by the linear relationship 220

y = xB, (7)

where y = (y1, y2, ... , yM ) is a vector of M outputs, x = (x1, x2, ... , xP ) a vector 221

of P inputs, and B a P ×M matrix of regression coefficients. An estimate of the matrix 222

B, BPLS, can be found by PLS regression on a set of design data obtained from N 223

model runs, that generates an N ×M matrix of inputs Y and an N × P matrix of 224

outputs X. Each element of X, xi,j is regularised by subtracting the mean xj and 225

dividing by the standard deviation of xj , and each element of Y is regularised in the 226

same way. BPLS is found by minimising the difference ||Ŷ −Y||, where Ŷ = XBPLS. 227

The matrix BPLS can be interpreted as a matrix of sensitivity indices, provided the 228

linear model holds. Each element of BPLS, bi,j describes how changing input xi results 229

in a corresponding change in output yj . In both cases the change is relative to the mean 230

value, and is a fraction of its standard deviation. 231

For comparison with variance based sensitivity indices, we calculated PLS sensitivity 232

indices from the Stage 1 design data used to train the GP emulators. The input and 233

output matrices X and Y were constructed from regularised design data inputs and 234

outputs. The regression matrix BPLS was then calculated using the Matlab function 235

mvregress. 236

Emulator validation. 237

Each emulator was validated against an independent set of 150 simulator runs for Stage 238

1 and 100 simulator runs for Stage 2. For each output, we calculated the mean average 239

predicted error (MAPE) and the median individual standard error (ISE) for each 240

validation run. The MAPE was given by 241

MAPE =
100%

N

1

ys

N∑
n=1

|yns − yne | , (8)

where N was the number of validation runs, yns simulator output for run n, and yne the 242

posterior mean emulator output for run n. We used the mean of the simulator output 243

ys as a denominator instead of |yns | to avoid bias associated with small values of |yns |. 244

ISE =
|yns − yne |√
V ar(n, n)

, (9)

where yns was the simulator output for run n, yne the posterior mean emulator output for 245

run n, and V ar(n, n) the posterior emulator variance for run n. 246

For most stage Stage 1 and Stage 2 emulators the MAPE was less than 10% and the 247

median ISE was less than 1.0. Most of the differences between the output from the 248
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emulator and the output of the simulator for a given set of inputs were small, and so 249

the fit of the emulators was considered acceptable. A Table of MAPE and ISE is 250

provided in the Supporting Information. 251

Results 252

Stage 1 sensitivity indices 253

The first order sensitivity indices for both cell models are shown in Fig 3. Each row of 254

the figure corresponds to one of the model outputs, and each column represents a model 255

output. The sign of each sensitivity index was determined from the slope of the main 256

effect (see below). The sum of the absolute values of the sensitivity indices for each 257

output is given to the right of each grid. Since first order sensitivity indices are a 258

proportion, a sum close to one indicates that almost all of the output variance is 259

accounted for by the variance on each input. Smaller values for this sum, such as those 260

for APD50 and APD90, can indicate that there are interactions among the inputs. 261

Fig 3. Stage 1 first order sensitivity indices. The first order sensitivity index for
each input and output is given, with a sign based on the gradient of the mean effect.
Sensitivity indices less than 0.05 not shown, to assist visualization. The numbers at the
right hand side of the table indicate the sum of the absolute values of sensitivity indices
along each row. A: Courtemanche model. B: Maleckar model.

The total effect indices are shown in Fig 4. For each combination of input and 262

output, the difference between the total effect index and the first order index reflects 263

interactions with the other inputs. The sum of these differences is shown at the right 264

hand side of Fig 4. In most cases the first order and total effect indices are similar, and 265

the sum of differences is small indicating that the effect of interactions is small. 266

However, the sum of differences is larger for V80 in the Courtemanche model, as well as 267

for APD50 and APD90 in both models, and we conclude that there are interactions 268

between inputs, and these interactions have an effect on repolarisation. 269

Fig 4. Stage 1 total effect indices. The total effect sensitivity index for each input
and output is given, indices less than 0.01 not shown. Numbers on right hand side are
the the sum across each row of the differences between the total effect index and the
absolute value of the first order index. A: Courtemanche model. B: Maleckar model.

For comparison, Fig 5 shows sensitivity indices obtained by PLS regression on the 270

emulator design data, and a comparison with variance based first order indices. The 271

comparison plots show broad agreement, with the first order indices Si ≈ B2
i . This 272

relationship arises from the different definitions of Si and Bi based on variance and 273

standard deviation respectively [34]. 274

Fig 5. Multivariate regression sensitivity indices. The sensitivity index based
on multivariate regression for each input and output is given. Right hand panels
compare these sensitivity indices with those obtained from GP regression and shown in
Fig 3. A: Courtemanche model. B: Maleckar model.

Overall these sensitivity indices show the contribution of uncertainty in each input 275

to uncertainty in each output. Thus the main contributors to uncertainty in dV/dtmax 276

are the Na+ channel maximum conductances GNa and PNa, and the membrane 277

capacitance Cm. The sign of the sensitivity indices show that these act in opposite 278
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directions, as would be expected from the role played by the Na+ current in 279

depolarisation: increasing Na+ current acts to increase dV/dtmax, whereas increasing 280

Cm acts to decrease dV/dtmax. The bigger influence of Cm in the Maleckar model arises 281

becuase the stimulus current scales with 1/Cm; a larger Cm results in a smaller stimulus 282

current, which in turn produces a smaller dV/dtmax and a smaller Vmax. 283

In both models, these sensitivity indices can be interpreted to show that increased 284

outward currents (such as GKur) act to decrease both the voltage of the action 285

potential plateau and action potential duration, whereas increased outward currents 286

GGaL and GbCa have an opposite effect. In the Maleckar model INaKMax has the 287

opposite effect to GbCa. In the Courtemanche model, Ca2+max and Ca2+min are influenced 288

by GCaL, GbCa, INaCaMax and Ca2+ handling parameters Irel and Kup, whereas in the 289

Maleckar model GCaL and KNaCa have a negligible effect, and this reflects the different 290

formulation of Ca2+ handling in the two models [7]. 291

The sensitivity analysis shows that several inputs influence APD50, APD90, 292

RestVm, and Ca2+max. Fig 6 shows the main effect of each input on these outputs, for 293

each cell model. The main effect shows the expected value of the output as each input 294

is fixed and varied in turn across the normalised range 0 . . . 1 corresponding to the input 295

ranges given in Table 1, while all other inputs are considered uncertain. The residual 296

variance arising from the uncertain inputs accounts for the fact that the main effects do 297

not converge exactly for an input value of 0.5. 298

Fig 6. Stage 1 selected main effects plots. Main effects for APD50, APD90,
RestVm, and Ca2+max. A: Courtemanche model. B: Maleckar model.

Some of the effects are comparable between the two models, for example increasing 299

GbCa acts to increase APD90, RestVm, and Ca2+max. Several of the effects are nonlinear, 300

for example the main effect of GCaL on APD50 and APD90. However, the overall 301

picture is complex, and it is hard to compare the different models. In order to simplify 302

the analysis, we selected a subset of inputs for Stage 2 of the analysis based on their 303

sensitivity indices as described below. 304

Stage 2 sensitivity analysis 305

For Stage 2, we concentrated on inputs that strongly influenced action potential shape 306

and duration, with first order sensitivity index of more than 0.1. To simplify the 307

analysis further, we excluded GNa and PNa as these inputs mainly influence action 308

potential upstroke and amplitude. We also excluded extracellular concentrations, since 309

these are tightly controlled in normal physiological conditions, and we excluded the 310

inputs directly involved in the storage, uptake and release of intracellular Ca2+ because 311

we sought to concentrate on action potential shape and duration. The Stage 2 inputs 312

selected for the Courtemanche model were GK1, Gto, GKurMult, GCaL, GbCa, 313

INaKMax, INaCaMax, and IPCaMax, and for the Maleckar model GK1, Gt, GKur, 314

GCaL, GbCa, INaKMax, and Cm. All other inputs were assigned their central value 315

from Table 1. In addition, the DI of the final action potential was introduced as an 316

additional input to explore the dynamic behaviour of the model. 317

The sensitivity indices for Stage 2 are shown in Fig 7 and 8, and the main effects for 318

APD50, APD90, RestVm, and Ca2+max in Fig 9. 319

Overall, both first order and total effect sensitivity indices were similar to Stage 1, 320

but the interactions for the Courtemanche model were larger than for Stage 1. In the 321

Courtemanche model both first order and total effect indices for DI were larger than for 322

the Maeckar model, indicating that DI acts to influence both the shape and duration of 323

the action potential in the Courtemanche model. 324

October 18, 2019 10/20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2019. ; https://doi.org/10.1101/818047doi: bioRxiv preprint 

https://doi.org/10.1101/818047
http://creativecommons.org/licenses/by/4.0/


Fig 7. Stage 2 first order sensitivity indices. The first order sensitivity index for
each input and output is given, with a sign based on the gradient of the mean effect.
Sensitivity indices less than 0.05 not shown. The numbers at the right hand side of the
table indicate the sum of sensitivity indices along each row. A: Courtemanche model. B:
Maleckar model.

Fig 8. Stage 2 total effect sensitivity indices. The total effect index for each
input and output is given, indices less than 0.01 not shown. A: Courtemanche model. B:
Maleckar model.

Fig 9. Stage 2 selected main effects plots. Stage 2 main effects for APD50,
APD90, RestVm, and Ca2+max. A: Courtemanche model. B: Maleckar model.

The main effects plots show opposite effects of inward and outward currents on 325

action potential duration; however APD50 as a proportion of APD90 in the Maleckar 326

model was considerably shorter than in the Courtemanche model as a result of the 327

different action potential shape, and so both the sensitivity indices and main effects for 328

APD50 may not be easily comparable. This observation is reflected in the larger main 329

effect of DI on APD50 in the Courtemanche model. The main effects plots also show 330

several nonlinear relationships, for example the main effect of GKur was nonlinear in 331

each of the outputs shown in Fig 9. The main effect of GKur on APD90 in the 332

Maleckar model was larger, and in an opposite direction, to the main effect in the 333

Courtemanche model. This was explored in additional simulations where GKur was 334

decreased to 50% and increased to 150% of its default value. Fig 10 shows a simulated 335

action potential, together with the principal inward and outward currents that act 336

during the action potential plateau. 337

Fig 10. Effect of magnitude of IKur on inward and outward currents.
Simulated action potential, outward current IKur, inward current ICa,L, and outward
current IKr. In each case the final beat of 40 is shown, with a pacing cycle length of
1000 ms. A: Courtemanche model. B: Maleckar model.

Changing GKur influenced the voltage of the action potential plateau in both 338

models, but had a different effect on the timing of repolarisation because of different 339

current formulations in each model. The time course of Ito in both models was similar, 340

and was not strongly influenced by GKur and so is not shown. A decrease in GKur 341

reduced the outward current during the initial part of the action potential plateau. This 342

resulted in an increased voltage during the plateau, and a larger inward ICa,L, which is 343

voltage-dependent and acts to prolong the action potential plateau. In turn, the 344

increased plateau voltage resulted in greater activation of the outward current IKr, 345

which is larger in the Courtemanche model compared to the Maleckar model. Thus in 346

the Courtemanche model, a decrease in GKur resulted in increased IKr, with little 347

change in action potential duration. In the Maleckar model IKr is much smaller, and so 348

the increased plateau voltage did not result in increased outward current during 349

repolarisation, and so action potential duration was prolonged. 350

APD restitution 351

The Stage 2 analysis included diastolic interval as an input, which enabled us use the 352

emulators to examine how different inputs affect APD restitution. In Fig 11 we have 353

plotted a surface showing the expected value of APD90, coloured by the 95% credible 354

interval (see Supporting Information). In each of these plots the emulators were 355
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evaluated with all inputs assigned fixed values with no uncertainty, and so the 95% 356

credible intervals reflect only uncertainty in the emulator fit, with no uncertainty arising 357

from uncertainty in the inputs. We assigned a value of 0.5 in normalised units to all of 358

the inputs, except for DI and another inputs that were varied in each plot; these were 359

assigned fixed values between 0 . . . 1. 360

Fig 11. APD90 as a function of DI and other inputs. Each plot shows a
surface of predicted mean APD90, coloured by the 95% credible interval. A:
Courtemanche model. B: Maleckar model.

Overall, APD90 restitution was flatter in the Maleckar model compared to the 361

Courtemanche model, which is consistent with other studies [6, 7]. The overall effect of 362

GK1, GCaL and GbCa on APD90 was similar in each model, with INaKax in the 363

Courtemanche model having a similar effect to GKur in the Maleckar model. 364

However the shape of the APD90 restitution was modulated to some extent by the 365

other inputs shown. In the Courtemanche model, decreasing GbCa resulted in 366

steepening of APD90 restitution, with a marked decrease in APD90 for short DI as 367

GbCa was changed from 150% to 50% of its central value. The Maleckar model also 368

showed a marked decrease in APD90 as GbCa was reduced, but this change was seen 369

across the full range of DI. 370

Uncertainty analysis 371

We assessed how the uncertainty in model outputs changed as uncertainty in all of the 372

model inputs was increased, and the results for APD90 are shown in Fig 12. 373

Uncertainty in APD90 increased monotonically with uncertainty in the inputs, for both 374

Stage 1 and Stage 2. Reducing the number of uncertain inputs for Stage 2 acted to 375

reduce the output uncertainty for the Maleckar model, but increased output uncertainty 376

slightly in the Courtemanche model. This rather unexpected finding may be due to 377

interactions among the inputs. However, in the Maleckar model, the total effects for 378

APD90 in Fig4B are higher than the total effects for the Courtemanche model, 379

indicating a greater degree of interaction in the Maleckar than Courtemanche models. 380

The smaller number of inputs for Stage 2 could then result in less uncertainty arising 381

from interactions among uncertain inputs for the Maleckar model, and a consequent 382

reduction in uncertainty. However fixing some inputs for the Stage 2 analysis may have 383

had an effect on interactions the in the Courtemanche model, leading to an increase in 384

uncertainty in predicted APD90. An alternative explanation would be that with some 385

of the inputs fixed, the uncertain inputs contribute mote to output uncertainty in the 386

Courtemanche model. 387

The first two bars of Fig 12C show the coefficient of variation for APD90 with inputs 388

set to a mean of 0.5 and standard deviation of 0.1 in normalised units, corresponding to 389

a single point for each model in Fig 12 A and B. The third set of bars (denoted Fix 1) 390

show the coefficient of variation for APD90 when the three inputs with the highest 391

sensitivity indices are fixed at 0.5, and the fourth set of bars (denoted Fix 2) show the 392

coefficient of variation when all inputs except these three inputs are fixed at 0.5. 393

Discussion 394

In this study we have obtained novel insights into the comparative mechanisms of two 395

atrial cell models, and have demonstrated the use of Gaussian process emulators for 396

sensitivity and uncertainty analysis. 397
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Fig 12. Uncertainty in APD90 and Vmax Coefficient of variation (standard
deviation divided by mean) in APD90 for Stage 1 (A) and Stage 2 plotted against
imposed uncertainty on all inputs (B) for each model, with different mean values of 0.4,
0.5, and 0.6 in normalised units. (C) Coefficient of variation in APD90 for Stage 1 ;
Stage 2 ; simulations where GK1, GKr (GKur for Maleckar model), and GbCa were fixed
at 0.5 and all other inputs were uncertain with standard deviation of 0.1 (Fix 1); and
simulations where all other inputs were fixed with mean of 0.5, and GK1, GKr (GKur

for Maleckar model), and GbCa were uncertain with standard deviation of 0.1.

Human atrial cell models 398

Models of the human atrial action potential are a subject of research interest and 399

clinical relevance because heterogeneity in action potential shape and duration in 400

different parts of the atria is associated with vulnerability to atrial fibrillation [35], and 401

persistence of atrial fibrillation is associated with remodelling of the atrial action 402

potential [23, 36]. There are several different models of human atrial myocytes, each 403

with different properties [6, 7, 37]. Most studies of these models have focussed on the 404

mechanisms that change action potential duration because a reduced APD increases 405

vulnerability to atrial fibrillation, and APD can be modulated 406

pharmacologically [7, 9, 12,21,38]. These previous studies have highlighted the 407

importance of ICaL, as well as IK1 and IKur, in regulating APD. The present study 408

adds to our understanding of the Courtemanche and Maleckar models by providing a 409

more comprehensive view of how the model parameters affect the shape and duration of 410

the action potential, as well as the maximum and minimum of the Ca2+ transient. 411

Increased inward current tends to increase amplitude of the upstroke and plateau as 412

well as increasing APD, and increased outward current tends to have the opposite effect. 413

The present study has highlighted how action potential duration and shape depends on 414

the net flow of charge across the cell membrane, which is finely balanced so small 415

changes in the magnitudes of inward and outward currents can strongly influence action 416

potential shape and duration. The two models examined in this study represent 417

repolarisation using a different balance of currents, and this difference along with the 418

consequences can be seen in Fig 10. The relative magnitudes of ICaL and IKr in the 419

two models are different, with much smaller ICaL and IKr in the Maleckar model. This 420

may explain why GbCa exerts a stronger influence over Ca2+m in and Ca2+m ax in the 421

Maleckar model compared to the Courtemanche model. 422

Overall, the difference between the first order sensitivity indices (Fig 3) and the 423

total effect indices (Fig 4) was small. The sum of these differences for each output 424

(right hand column in Fig 4 and Fig 8) indicates more interactions in the Courtemanche 425

model than in the Maleckar model, and that these interactions tend to affect the 426

plateau of the action potential. These observations mean that overall the interactions 427

between the inputs in these models do not have a strong effect on the outputs, and so 428

we can conclude that the inputs examined in this study tend to act independently. This 429

is a potentially important feature of the models, which could be exploited for model 430

calibration as well as for examining mechanisms of remodelling and pharmacological 431

action. However, it remains to be seen whether this independence is a feature of real 432

cardiac myocytes. 433

Sensitivity and uncertainty analysis 434

As models of cardiac cell and tissue electrophysiology become more widely used, it is 435

becoming increasingly important to understand how different components of the models 436

influence model behaviour, and especially how these different components interact. 437
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Biophysically detailed cardiac cell models are complex, with many interacting parts. 438

Some of these model components may be inherited from earlier models and 439

experiments [8], and the process by which model parameters are fitted is also fragile 440

when there are uncertainties associated with experimental data [5]. The development 441

and evaluation of tools for sensitivity and uncertainty analysis of cardiac models is 442

therefore an important and growing area [16], but much remains to be done. 443

Several recent studies have pioneered the use sensitivity indices obtained by of 444

partial least squares (PLS) regression of simulator outputs on simulator inputs, which 445

allows a calculation of sensitivity indices [9, 10, 32]. This approach is straightforward to 446

implement, and we have found that it gives sensitivity indices that agree well with the 447

square root of the first order index obtained using the GP approach (Fig 5), and the 448

reason for this appears to be that the PLS and GP indices are based on variance and 449

standard deviation respectively. The overall agreement indicates that both approaches 450

can yield similar first order sensitivity indices, although the GP easily enables 451

calculation of interaction effects as well as first order indices. Other approaches for 452

uncertainty and sensitivity analysis based on generalised polynomial chaos expansion 453

have also been developed and used for analysis of cardiovascular system models [17]. 454

These approaches also enable calculation of sensitivity indices, but the relative merits of 455

these different approaches are only beginning to be explored [43]. Both GP emulators 456

and polynomial chaos expansions enable the explicit treatment of uncertainties, and so 457

offer advantages for more comprehensive model analysis. 458

Gaussian process emulation of biophysical models 459

The present study has focussed on Gaussian process (GP) emulators, which are one 460

class of tools for sensitivity and uncertainty analysis. A GP acts to interpolate an 461

output surface, providing a probabilistic estimate of a simulator output for a particular 462

point in a high dimensional input space. A GP is quick to evaluate. It can be trained 463

on a relatively small number of simulator runs, and so offers advantages over other 464

approaches that rely on large numbers of simulator evaluations [12,39]. 465

A GP is usually trained using a set of design data composed of a set of simulator 466

inputs and outputs. The emulator hyperparameters are obtained conditional on the 467

design data using a maximum likelihood approach. The quality of the emulator fit can 468

then be assessed by comparing the outputs obtained from the emulator for a particular 469

set of inputs with those obtained by the simulator for the same set of inputs. In the 470

present study we used the MAPE and ISE to quantify the difference between emulator 471

and simulator outputs, although other measures such as the Mahanalobis distance can 472

be used [18]. These measures provide some guidance about whether the emulator is 473

under or over-fitted to the design data. 474

The number of simulator runs required to compose the design data remains an open 475

question, and will depend on the complexity of the model output surfaces. A typical 476

rule of thumb is to use ten times the number of inputs, and based on our previous 477

experience [18] we opted for 300 runs for Stage 1 and 200 runs for Stage 2. We also 478

trained the Stage 1 emulators on design data sets composed of 200 and 400 simulator 479

runs, and obtained similar sensitivity indices to those presented here. However, further 480

work is required to develop methods to determine the number of simulator runs needed 481

as well as suitable metrics to determine emulator quality. One aspect of this challenge is 482

to develop optimal sizes for design data and test data so that emulators can be trained 483

and evaluated in a way that minimises the number of simulator runs and optimises the 484

emulator fit. 485

Emulators should be trained on design data that fill the input space evenly, and we 486

chose to use Latin hypercube sampling in this study [40]. Other methods, such as 487

orthogonal sampling [41] may provide a better sampling strategy. 488
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The ability to evaluate emulators cheaply can be valuable for model calibration, 489

where thorough exploration of a high dimensional input space is required [42]. A key 490

benefit of a GP emulator approach is the explicit handling of uncertainty. Under the 491

assumption that inputs and outputs have Gaussian distributions, the variance on the 492

emulator output can be calculated directly, given variances on the inputs. This enables 493

the direct calculation of sensitivity indices, as well as enabling a systematic investigation 494

of the way that output uncertainties depend on uncertainties in the inputs. 495

Limitations, challenges and future directions 496

The use of emulators to probe detailed biophysical models is at an early stage, and so 497

there are several limitations and challenges associated with the present study. 498

Choice of inputs 499

We concentrated on the effect of maximum conductances in the present study, as this 500

reduced the complexity of the analysis. The rationale for this approach was an 501

assumption that kinetic parameters are determined by biophysics, and so less prone to 502

variation than the expression of ion channels, pumps, and exchangers. However, a 503

detailed sensitivity analysis of IKr dynamics in the Courtemanche model showed that 504

these kinetic parameters influence APD [44], and other studies have highlighted 505

difficulties in calibrating ion channel dynamics using traditional approaches as well as 506

showing that different formulations can have an important effect on the magnitude and 507

time course of an ion channel current [45]. In the present study our focus was on the 508

action potential rather than Ca2+ handling, and a detailed sensitivity analysis of the 509

mechanisms of Ca2+ storage, release, and uptake in each model would be a valuable 510

extension to the work presented here. So far a fully comprehensive analysis has only 511

been done for specially constructed models [15]. Nevertheless, a complete sensitivity 512

analysis of biophysically detailed models, possibly using a hierarchical approach, 513

remains an important challenge. 514

Simulator instability 515

One of the issues with a complete sensitivity analysis, highlighted in [15], is that parts 516

of the simulator input space may generate implausible behaviours. For a cardiac cell 517

model these behaviours might be a numerical instability, spontaneous beats, or failure 518

to repolarise. In the present study we removed simulator runs from the design data 519

where model behaviour was implausible, or where the simulator runs produced action 520

potential alternans. We considered this to be a pragmatic approach. However, it is 521

clearly an area for improvement because the location of these regions of input space 522

conveys information about the model, and approaches where these locations are 523

encoded explicitly show promise [46]. 524

Choice of outputs 525

We selected a range of action potential features for our model outputs, these were based 526

on measures used to describe experimental action potentials and aim to capture the 527

main features of the action potential shape and duration. Our main focus was on the 528

action potential. We included the maximum and minimum intracellular Ca2+ 529

concentration as additional outputs, but did not consider the duration of the Ca2+ 530

transient. We would not consider our choice of outputs to be definitive, and there may 531

be better choices. A principal component analysis of the design data used in the present 532

study showed that 95% of the output variance was accounted for by the first 6 principal 533
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components for the Courtemanche model and the first 5 for the Maleckar model. 534

Parameterising the action potential and Ca2+ transient so that they are described by a 535

minimal set of features is likely to be important not only for model analysis but also for 536

model calibration [42]. Emulators that emulate time-dependent outputs have been 537

developed, but are not yet widely used [47,48], but could be a promising tool for 538

extending work in this area. 539

Future directions 540

Extending the use of emulators from models of cardiac cells to models of cardiac tissue 541

is an important next step, and initial studies are promising [49]. At present, tissue 542

calculations are computationally expensive, especially for personalised meshes. However, 543

the need to evaluate uncertainty in model predictions for use in the clinical setting 544

requires computationally efficient approaches, and we anticipate exciting developments 545

in this area. 546

Supporting information 547

S1 Text Mathematical details. Details of the procedures used to fit and evaluate 548

the Gaussian process emulators, and to calculate main effects and sensitivity indices. 549
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