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ABSTRACT 

 

The direct RNA sequencing platform offered by Oxford Nanopore Technologies allows for direct 

measurement of RNA molecules without the need of conversion to complementary DNA, 

fragmentation or amplification. As such, it is virtually capable of detecting any given RNA modification 

present in the molecule that is being sequenced, as well as provide polyA tail length estimations at the 

level of individual RNA molecules. Although this technology has been publicly available since 2017, 

the complexity of the raw Nanopore data, together with the lack of systematic and reproducible 

pipelines, have greatly hindered the access of this technology to the general user. Here we address 

this problem by providing a fully benchmarked workflow for the analysis of direct RNA sequencing 

reads, termed MasterOfPores. The pipeline converts raw current intensities into multiple types of 

processed data, providing metrics of the quality of the run, quality-filtering, base-calling and mapping. 

The output of the pipeline can in turn be used to compute per-gene counts, RNA modifications, and 

prediction of polyA tail length and RNA isoforms. The software is written using the NextFlow 

framework for parallelization and portability, and relies on Linux containers such as Docker and 

Singularity for achieving better reproducibility. The MasterOfPores workflow can be executed on any 

Unix-compatible OS on a computer, cluster or cloud without the need of installing any additional 

software or dependencies, and is freely available in Github 

(https://github.com/biocorecrg/master_of_pores). This workflow will significantly simplify the analysis 

of nanopore direct RNA sequencing data by non-bioinformatics experts, thus boosting the 

understanding of the (epi)transcriptome with single molecule resolution.  
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INTRODUCTION 

Next generation sequencing (NGS) technologies have revolutionized our understanding of the cell 

and its biology. However, NGS technologies are heavily limited by their inability to sequence long 

reads, thus requiring complex bioinformatic algorithms to assemble back the DNA pieces into a full 

genome or transcriptome. Moreover, NGS technologies require a PCR amplification step, and as 

such, they are typically blind to DNA or RNA modifications (Novoa et al., 2017). 

The field of epitranscriptomics, which studies the biological role of RNA modifications, has 

experienced an exponential growth in the last few years. Systematic efforts coupling antibody 

immunoprecipitation or chemical treatment with next-generation sequencing (NGS) have revealed that 

RNA modifications are much more widespread than originally thought, are reversible (Jia et al., 2011), 

and can play major regulatory roles in determining cellular fate (Batista et al., 2014), differentiation 

(Furlan et al., 2019; Lee et al., 2019; Lin et al., 2017) and sex determination (Haussmann et al., 2016; 

Kan et al., 2017; Lence et al., 2016), among others. However, the lack of selective antibodies and/or 

chemical treatments that are specific for a given modification have largely hindered our understanding 

of this pivotal regulatory layer, limiting our ability to produce genome-wide maps for 95% of the 

currently known RNA modifications (Jonkhout et al., 2017).  

Third-generation sequencing (TGS) platforms, such as the one offered by Oxford Nanopore 

Technologies (ONT), allow for direct measurement of both DNA and RNA molecules without prior 

fragmentation or amplification (Brown and Clarke, 2016), thus putting no limit on the length of DNA or 

RNA molecule that can be sequenced. In the past few years, ONT technology has revolutionized the 

fields of genomics and (epi)transcriptomics, by showing its wide range of applications in genome 

assembly (Jain et al., 2018), study of structural variations within genomes (Cretu Stancu et al., 2017), 

3’ poly(A) tail length estimation (Krause et al., 2019), accurate transcriptome profiling (Bolisetty et al., 

2015), identification of novel isoforms (Byrne et al., 2017; Križanovic et al., 2018) and direct 

identification of DNA and RNA modifications (Carlsen et al., 2014; Garalde et al.; Liu et al., 2019; 

Simpson et al., 2017). Thus, not only this technology overcomes many of the limitations of short-read 

sequencing, but importantly, it also can directly measure RNA and DNA modifications in their native 

molecules. Although ONT can potentially address many problems that NGS technologies cannot, the 

lack of proper standardized pipelines for the analysis of ONT output is greatly limited its reach to the 

scientific community.  

To overcome these limitations, workflow management systems together with Linux containers offer an 

efficient solution to analyze large-scale datasets in a highly reproducible, scalable and parallelizable 

manner. In the last year, several workflows to analyze nanopore data have become available; 

however, these are mainly limited to genome assembly (e.g. Katuali; 

https://github.com/nanoporetech/katuali) and genome annotation (e.g. Pinfish; 

https://github.com/nanoporetech/pipeline-pinfish-analysis). Here we provide a scalable and 

parallelizable workflow for the analysis of direct RNA (dRNA) sequencing datasets, termed 

MasterOfPores (https://biocorecrg.github.io/master_of_pores/), which uses as input raw direct RNA 

sequencing FAST5 reads, and is aimed to facilitate the analysis of (epi)transcriptomics sequencing 
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data. Specifically, MasterOrPores takes as input the raw fast5 reads produced by the sequencer, 

which can be either in single FAST5 of multi-FAST5 format, and performs quality control, filtering, and 

base-calling. For each step, it extracts metrics which are compiled in a final HTML report that can be 

easily visualized and analyzed by non-expert bioinformaticians. A direct RNA sequencing run 

produced by MinION or GridION devices, which typically comprises about 1M reads, takes ~2 hours 

to analyze  on a cluster using 100 nodes, each one with 8 CPUs, and ~1 hour or less on a single GPU 

(see Table 1 for detailed metrics). Moreover, the pipeline can also be run on the cloud (see section 

“Running on AWS”).    

MasterOfPores simplifies the analysis of direct RNA sequencing data by providing a containerised 

pipeline implemented in the NextFlow framework. It is important to note that this approach avoids the 

heavy-lifting of installing dependencies by the user, and thus, is simple and accessible to any 

researcher without bioinformatics expertise. We expect that our workflow will greatly facilitate the 

access of Nanopore direct RNA sequencing to the community. 

 

RESULTS 

Overview of the MasterOfPores workflow 

Workflow management systems together with Linux containers offer a solution to efficiently analyse 

large scale datasets in a highly reproducible, scalable and parallelizable manner. During the last years 

an increasing interest in the field has led to the development of different programs such as  

Snakemake (Köster and Rahmann, 2012), NextFlow (Di Tommaso et al., 2017), Galaxy (Afgan et al., 

2018), SciPipe (Lampa et al., 2019) or GenPipes (Bourgey et al., 2019), among others. These tools 

enable the prototyping and deployment of pipelines by abstracting computational processes and 

representing pipelines as directed graphs, in which nodes represent tasks to be executed and edges 

represent either data flow or execution dependencies between different tasks.  

Here we chose the workflow framework NextFlow (Di Tommaso et al., 2017) because of its native 

support of different batch schedulers (SGE, LSF, SLURM, PBS and HTCondor), cloud platforms 

(Kubernetes, Amazon AWS and Google Cloud) and GPU computing, which is crucial for processing 

huge volumes of data produced by nanopore sequencers. NextFlow has tight integration with 

lightweight Linux containers, such as Docker and Singularity. Automatic organization of intermediate 

results produced during the NextFlow pipeline execution allows reducing the complexity of 

intermediary file names and the possibility of name clashing. Continuous check-pointing with the 

possibility of resuming failed executions, interoperability and meticulous monitoring and reporting of 

resource usage are among other thought-after features of NextFlow. The executables of the 

presented pipeline have been bundled within Docker images accessible at DockerHub that can be 

converted on the fly into a Singularity image, thus allowing the HPC usage.  

The MasterOfPores workflow includes all steps needed to process raw FAST5 files produced by 

Nanopore direct RNA sequencing and executes the following steps, allowing users a choice among 

different algorithms (Figure 1, see also Figure S1):  
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i) Read base-calling with the algorithm of choice, using Albacore (https://nanoporetech.com) or Guppy 

(https://nanoporetech.com). This step can be run in parallel and the user can decide the number of 

files to be processed in a single job by using the command --granularity.  

ii) Filtering of the resulting fastq files using Nanofilt (De Coster et al., 2018). This step is optional and 

can be run in parallel. 

iii) Quality control of the base-called data using MinIONQC (Lanfear et al., 2019) and FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc). 

iv) Read mapping to the reference genome or transcriptome using minimap2 

(https://github.com/lh3/minimap2) or graphmap2 (https://github.com/lbcb-sci/graphmap2).  

v) Quality control on the alignment using NanoPlot (https://github.com/wdecoster/NanoPlot) and 

bam2stats (https://github.com/lpryszcz/bin). 

vi) Final report of the data processing using multiQC (https://github.com/ewels/MultiQC) that combines 

the single quality controls done previously, as well as global run statistics.  

 

Running MasterOfPores: installation, input, parameters and output 

To run MasterOfPores, the following steps are required: 

i) Install NextFlow (version 19.10.0): 

 $ curl -s https://get.nextflow.io | bash 

ii) Clone the MasterOfPores repository: 

$ git clone --depth 1 biocorecrg/master_of_pores master_of_pores 

iii) Install Docker and/or Singularity (for Singularity, version 2.6.1 and Docker 19.03 or later are 

required): 

Docker: https://docs.docker.com/install/ 

Singularity: https://sylabs.io/guides/2.6/user-guide/quick_start.html#quick-installation-steps 

iv) Download Nanopore base-calling algorithms: guppy with or without GPU support and or the 

albacore Wheel file (a standard built-package format used for Python distributions) and install them 

inside the bin folder inside the MasterOfPores directory. The users can place their preferred version of 

guppy and/or albacore in the bin folder (in the example below, albacore version 2.1.7 and guppy 

3.1.5). 

$ cd master_of_pores/bin 

$ tar -zvxf ont-guppy_3.1.5_linux64.tar.gz 

$ ln -s ont-guppy_3.1.5_linux64/ont-guppy/bin/guppy_* . 

$ pip3 install --target=./albacore ont_albacore-2.1.7-cp36-cp36m-manylinux1_x86_64.whl 

$ ln -s albacore/bin/multi_to_single_fast5  

$ ln -s albacore/bin/read_fast5_basecaller.py 

v) Optional step: install CUDA drivers (only needed for GPU support):   

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html  
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vi) Run the pipeline (using singularity or docker): 

$ nextflow run preprocessing.nf -with-singularity 

$ nextflow run preprocessing.nf -with-docker 

 

MasterOfPores can handle both single- and multi-FAST5 reads as input. To execute the workflow, 

several parameters can be defined by the user, including the choice of the basecaller software 

(albacore or guppy), choice of the mapper (minimap2 or graphmap2), as well as their command line 

options. If these are not specified by the user, the workflow will be run with default parameter settings 

(Table 2). The final report includes 4 different types of metrics: (i) General statistics of the input, 

including the total number of reads, GC content and number of identical base-called sequences; (ii) 

Per-read statistics of the input data, including scatterplots of the average read length versus sequence 

identity, the histogram of read lengths, and the correlation between read quality and identity; (iii) 

Alignment statistics, including the total number of mapped reads, the total number of mapped bases, 

the average length of mapped reads, and the mean sequence identity; (iv) Quality filtering statistics, 

including the number of filtered reads, median Q-score and read length, compared to those observed 

in all sequenced reads; and (v) Per-read analysis of biases, including information on duplicated reads, 

over-represented reads and possible adapter sequences  (Figure 2).  

The final outputs of the pipeline include: 

- Basecalled fast5 files within the “fast5_files” folder. 

- Filtered fastq files within “fastq_files” folder. 

- QC reports within “QC” folder. 

- Final report within “report” folder. 

- Aligned reads in BAM files within the “aln” folder. 

 

Running MasterOfPores on the cloud (AWS Batch and AWS EC2) 

Nanopore sequencing allows for real-time sequencing of samples. While GridION devices come with 

built-in GPUs that allows live base-calling, smaller MinION devices do not have built-in CPU or GPU. 

Thus, the user has to connect the MinION to a computer with sufficient CPU/GPU capabilities, or run 

base-calling after the sequencing. In all these contexts context, the possibility of running the 

MasterOfPores pipeline on the cloud presents a useful alternative.  

The Amazon Web Services (AWS) Batch is a computing service that enables users to submit jobs to 

a cloud-based user-defined infrastructure, which can be easily set up via either  code-based 

definitions or a web-based interface. Computation nodes can be allocated in advance or according to 

resource availability. Cloud infrastructure can be also deployed or dismantled on demand using 

automation tools, such as CloudFormation or Terraform.  

Here we show that the MasterOfPores pipeline can be successfully implemented on the cloud, and 

provide the Terraform script for running MasterOfPores on the AWS Batch CPU environments, 

available in the GitHub repository (https://biocorecrg.github.io/master_of_pores/). To run the pipeline 
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using the AWS Batch, the users only need to change a few parameters related to their accounts in a 

configuration file. The pipeline can be run from either a local workstation or an Amazon EC2 

entrypoint instance initiated for this purpose (we recommend the latter). Data to be analysed can be 

uploaded to an Amazon S3 storage bucket.  

Similarly, we also tested whether our pipeline could be run in Amazon Web Services (AWS) Elastic 

Compute Cloud (EC2), which is one of the most popular cloud services (Table S1). Compared to 

AWS Batch, to run any workflow in AWS EC2, the user must first create an Amazon Machine Image 

(AMI). The AMI can be created using the same instructions as provided in File S1, starting from the 

official Ubuntu 18.04 LTS AMI, and including both Docker and Singularity software with NVIDIA 

libraries support. Here we show that the resulting image can be used to run the MasterOfPores 

workflow with NVIDIA Tesla V100 GPU cards. Automation scripts to run MasterOfPores in AWS EC2 

can be found in the GitHub repository (https://biocorecrg.github.io/master_of_pores/). 

 

Test case: Analysis of Saccharomyces cerevisiae SK1 polyA(+) RNA  

Running the MasterOfPores pipeline on S. cerevisiae polyA(+) RNA  

To benchmark the performance of the MasterOfPores workflow, we employed two publicly available 

direct RNA sequencing runs of polyA(+)-selected S. cerevisiae WT and ime4∆ strains, which had 

been sequenced using MinION and GridION devices, producing a total of ~3 million reads (Table 1).  

We used up to 100 nodes with 8 CPUs for testing the base-calling in CPU mode and 1 node with 1 

GPU card for testing the base-calling in GPU mode (Table 1).   

 

The MasterOfPores pipeline was ran using guppy version 3.1.5 as the base-caller and minimap2 

version 2.17 as the mapping algorithm. Reads were filtered by running nanofilt with the options “-q 0 --

headcrop 5 --tailcrop 3 --readtype 1D”. Filtered reads  were mapped to the yeast SK1 fasta genome. 

Specifically, the command that was executed to run the pipeline with these settings was:   

$ nextflow run main.nf --basecaller guppy --multi5 YES --seqtype RNA \ 

--fast5 "FOLDERNAME/*.fast5" --reference genome.fa.gz --mapper minimap2\ 

--filter nanofilt --filter_opt “-q 0 --headcrop 5 --tailcrop 3 --readtype 1D”. 

 

Benchmarking the time used for the analysis of S.cerevisiae polyA(+) RNA  

Here we have tested the pipeline using both CPU and GPU computing. Specifically, we ran the 

pipeline on the following configuration: (i) a single CPU node (e.g., emulating the computing time on a 

single laptop); (ii) a CPU cluster with 100 nodes; (iii) a single mid-range GPU card (RTX2080); and 

(iv) a single high-end GPU card (GTX1080 Ti).  

We found that the computing time required to run the pipeline on a single GPU card was significantly 

lower than the running time in parallel on a high-performance CPU cluster with 100 nodes, 8 cores per 

node (Table 1, see also Table S1). Moreover, we found that the computing time can be significantly 
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reduced depending on the GPU card (base-calling step was ~2X faster for GTX1080 Ti than for 

RTX2080).  

 

Reporting resources used for the analysis of S. cerevisiae polyA(+) RNA  

Taking advantage of the NextFlow reporting functions, the pipeline can produce detailed reports on 

the time and resources consumed by each process (Figure 3), in addition to the output files (bam, 

fastq) and final report (html), if the workflow is executed with parameters -with-report (formatted 

report) or-with-trace (plain text report).  Running the base-calling on each multi-fast5 file in parallel on 

our dataset showed that the most memory intensive tasks (about 5 Gbytes) were the mapping step 

(using minimap2) and the quality control step (using Nanoplot) (Table 3), while the most CPU-

intensive and time-consuming step (~80min) was the base-calling (using Guppy) (Table 4).  

 

Finally, we should note that the latest (19.10.0) version of NextFlow allows the user to control the 

execution of a pipeline remotely. To  enable this feature, the user needs to login to the https://tower.nf/ 

website developed by the NextFlow authors and retrieve a token for communicating with the pipeline. 

For doing that, the user should set this token as an environmental variable and run the pipeline as 

follows: 

 

 $ export TOWER_ACCESS_TOKEN=YOUR_TOKEN 

             $ nextflow run main.nf -with-docker --granularity 300 -with-report -with-trace -bg -with-tower 

 

DISCUSSION 

 

The direct RNA sequencing technology offered by Oxford Nanopore technologies (ONT) offers the 

possibility of sequencing native RNA molecules, allowing to investigate the (epi)transcriptome at an 

unprecedented resolution, in full-length RNA molecules and in its native context. Although the direct 

RNA sequencing library preparation kit was made available in April 2017, only a modest number of 

researchers have started to adopt this new technology, partly due to the complexity of analyzing the 

resulting raw FAST5 data. Moreover, even in those cases when specific software and tools have been 

made available, the users typically experience many difficulties in installing dependencies and running 

the software. To overcome these issues and facilitate the data analysis of direct RNA sequencing to 

the general user, we propose the use of NextFlow workflows.  

 

Specifically, we propose the use of MasterOfPores workflow for the analysis of direct RNA 

sequencing datasets, which is a containerised pipeline implemented in the NextFlow framework.  

MasterOfPores can handle both single- and multi-FAST5 reads as input, is highly customizable by the 

user (Table 2) and produces informative detailed reports on both the FAST5 data processing and 

analysis (MultiQC report, Figure 2) as well as on the computing resources used to perform each step 

(NextFlow report, see Figure 3). Thus, the current outputs of the MasterOfPores workflow include: (i) 

base-called FAST5 files, (ii) base-called fastq file, (iii) mapping BAM file, (iv) MultiQC report, and (v) 
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NextFlow report. In the future we plan to integrate within the MasterOfPores workflow the software for 

the  downstream analyses of direct RNA sequencing datasets including the PolyA tail length 

estimation, using Nanopolish (Workman et al., 2018) and tailfindr (Krause et al., 2019)) per-transcript 

isoform quantification and differential expression analysis, using Flair (Tang et al., 2018) and the 

analysis of RNA modifications, using Tombo (Stoiber et al., 2017) and EpiNano (Liu et al., 2019)).  

 

The process of Nanopore read base-calling, that is, converting ion current changes into the sequence 

of RNA/DNA bases, has significantly improved during the last few years, mainly due to the adoption of 

deep learning approaches, such as the use of convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), which are currently the most commonly used strategies for base-calling. The 

adoption of RNN and CNN-based base-calling algorithms led to a dramatic improvement in base-

calling accuracy. However, this came at the expense of a higher computational cost: only 5-10 reads 

can be base-called on 1 CPU core per second using the latest versions of the base-calling algorithms. 

The use of graphic processing units (GPUs) can greatly accelerate certain CPU-intensive 

computational tasks, thus allowing to process 50-500 reads per second (Table S1). We therefore 

developed our pipeline for both for CPU and GPU computing. Moreover, we provide the GPU-enabled 

docker image and detailed information on how to setup the GPU computing (see section: “Running 

MasterOfPores”).  We encourage users to adopt the GPU computing for the analysis of Nanopore 

sequencing data whenever possible, as this option is both more time and cost-efficient.  

 

MATERIAL AND METHODS 

 

Code availability 

The pipeline is publicly available at https://github.com/biocorecrg/master_of_pores under an MIT 

license. The example input data as well as expected outputs are included in the GitHub repository. 

Detailed information on program versions used can be found in the GitHub repository. 

 

Availability of Dockerfiles and Docker images 

The pipeline uses software that is embedded within Docker containers. Dockerfiles are available in 

the GitHub repository (https://github.com/biocorecrg/master_of_pores/tree/master/docker/). The 

pipeline retrieves a specific Docker image from DockerHub, depending on whether the user requests 

to run the base-calling in GPU 

(https://cloud.docker.com/u/biocorecrg/repository/docker/biocorecrg/npbasecallgpu) or in CPU mode 

https://cloud.docker.com/u/biocorecrg/repository/docker/biocorecrg/npbasecallcpu) and it uses 

another one for the other tasks of the workflow 

(https://cloud.docker.com/u/biocorecrg/repository/docker/biocorecrg/nanopore). 

 

Integration of base-calling algorithms in the Docker images 

Due to the terms and conditions that users agree to when purchasing Nanopore products, we are not 

allowed to distribute Nanopore software (binaries or in packaged form like docker images). While the 
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original version of the MasterOfPores pipeline includes both guppy and albacore, we are not legally 

allowed to distribute it with the binaries. Therefore, here we only make available a version where the 

binaries must be downloaded and placed into a specific folder by the user. We expect future versions 

of MasterOfPores will include these softwares within the docker image once this issue is solved.  

 

CPU and GPU computing time and resources 

The MasterOfPores workflow was tested both locally (using either CPU or GPU), as well as in the 

cloud (AWS). Computing times for each mode are shown in Table 2. CPU time was determined using 

a maximum of 100 nodes simultaneously with maximum 8 cores CPU per node (2.8-3.5 GHz, 80-130 

Watt). GPU time was computed using either GIGABYTE GeForce RTX 1660 Ti (1536 CUDA cores @ 

1770 MHz with 6GB of GDDR6 vRAM memory, 120 Watt) or INNO3D GeForce RTX 2080 (2944 

CUDA cores  @ 1710 MHz with 8 GB of GDDR6 vRAM memory, 225 Watt) or NVIDIA Tesla V100 

(5120 CUDA cores + 640 Tensor cores @ 1462 MHz with 16 GB of HBM2 memory). For GPU 

computing, both system memory (RAM) and GPU memory (vRAM) are used. Base-calling with guppy 

typically uses 1 Gb or 4.2 Gb of vRAM in fast and high accuracy mode, respectively. As a result, only 

one base-calling process can be performed on above mentioned cards in high accuracy mode at 

given time. The execution time in the AWS EC2 p3.2xlarge instance involves reading files already 

placed in a previously set-up S3 storage bucket but not writing back output results into it. 

 

Data availability  

Direct RNA sequencing datasets for Saccharomyces cerevisiae SK1 PolyA(+) RNA were taken from 

publicly available GEO datasets (GSE126213)  

 
 
TABLES 
 
Table 1. Comparison of computing time and RAM used to run the pipeline for the four S. cerevisiae 

polyA(+) direct RNA sequencing datasets used in this study, including subsets of one of the runs.  

 

  Yeast WT 
rep1 

Yeast WT 
rep2 

Yeast ime∆ KO 

rep1 
Yeast ime∆ KO 

rep2 

Raw 
data 

Number of 
reads 

1,197,462 629,270 694,907 573,404 

CPU* Total time  2h 13m 2h 11m  2h 6m  2h 1m  

 Total time per 
1000 reads (s) 

7s 
 

12s 10s 12s 

GPU** Total time  6h 44m 3h 59m 4h 05m 3h 19m 

 Total time per 
1000 reads (s) 

20s 23s 21s 21s 

GPU *** Total time 1h 8m 36m 37m 30m 
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 Total time per 
1000 reads (s) 

3s 2s 2s 1s 

 
* CPU time computed using a maximum of 100 nodes with 8 CPU per node;  

** GPU time computed using 1 card GIGABYTE GeForce RTX 1660 Ti;  

*** GPU time computing using 1 card INNO3D GeForce RTX 2080 

 
Table 2. Settings and parameters that can be customized to run the MasterOfPores workflow. 

 

 Parameter Description of the parameter Default Values 

RUN_INFO kit Sequencing kit used  SQK-RNA001 

  flowcell flowcell type FLO-MIN106 

  fast5 fast5 files including the path "$baseDir/data/multifast/*.
fast5" 

  multi5 if input is multi-fast5 (YES or NO) "YES"  

  reference reference genome / transcriptome 
sequence 

"$baseDir/anno/curlcake_
constructs.fasta.gz" 

RUN_SETUP seqtype sequence type (RNA, gDNA, cDNA) "RNA" 

  output output folder "$baseDir/output" 

  qualityqc quality threshold for QC  5 

  granularity number of files analyzed per process 1 

BASE-CALLING basecaller can be: albacore / guppy "albacore" 

  basecaller_opt command line options for basecalling "" 

  GPU whether or not using GPU (ON or OFF) "OFF" 

  barcodekit kit for barcodes "" 

  filter can be empty or nanofilt "nanofilt" 

MAPPING filter_opt command line options for filtering "-q 0 --headcrop 5 --
tailcrop 3 --readtype 1D"  

  mapper can be minimap2 or graphmap2 or empty  minimap2 

  mapper_opt command line options for mapping "" 

  map_type can spliced or unspliced spliced 

REPORTING email email (to receive the report when finished) "" 
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Table 3. RAM peak (Mbytes) used by each of the pipeline modules 

 

Sample 
Number of 

reads (millions) basecalling mapping QC fastQC alnQC alnQC2 filtering multiQC 

wt1 1.2  578  4,517 
 

2,751  283  109  4,891  76  76 

wt2 0.6  458  2,129 
 

1,651  520  39  4,751  69  57 

ko1 0.7  417  1,954 
 

1,715  427  115  2,111  70  77 

ko2 0.6  480  1,771 
 

1,400  494  49  2,266  69  75 

 

 

Table 4. CPU time peak (min) used by each of the pipeline modules 

 

Sample 
Number of 

reads (millions) basecalling mapping QC 
fastQ

C alnQC alnQC2 filtering multiQC 

wt1 1.2  33  1  4  1  1  2  1  1 

wt2 0.6  67  1  3  1  1  1  1  1 

ko1 0.7  79  2  3  1  1  2  1  1 

ko2 0.6  66  1  3  1  1  1  1  1 

 

 

FIGURE LEGENDS 

 

Figure 1. Overview of the MasterOfPores workflow for the processing of direct RNA nanopore 

sequencing datasets. The workflow accepts both single FAST5 and multi-FAST5 reads and includes 

5 main steps: i) base-calling, i) filtering, iii) quality control, iv) mapping and v) final report building. The 

outputs generated by MasterOfPores (BAM file, fastq file, base-called fast5 files) can in turn be used 

as input to predict RNA modifications, polyA estimations, or per-transcript isoform quantifications. See 

also Figure S1.  

 

Figure 2. Snapshots of the final report generated by MasterOfPores. (A) Main menu and 

overview of the final report generated by MasterOfPores. (B) The report includes detailed metrics on 

the input reads (“MinIONQC”), as well as on the mapped reads (“AlignmentQC”). (C,D) Example of 

plots that are included as part of the MasterOfPores final report, some of which are generated by 

integrating Nanoplot (C) and FastQC (D) software. 
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Figure 3. Snapshot of the NextFlow resources report. The report includes detailed information of 

the computing resources and time needed to execute each of the modules of the pipeline.  Base-

calling and mapping are the most CPU demanding tasks. The base-calling step is the longest to run, 

whereas mapping and generation of alignment QC metrics are the most memory-demanding tasks. 
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