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 2 

Abstract 24 

Heat shock protein 70 (Hsp70) is an important molecular chaperone that regulates 25 

oncoprotein stability and tumorigenesis. However, attempts to develop anti-chaperone 26 

drugs targeting molecules such as Hsp70 have been hampered by toxicity issues. Hsp70 27 

is regulated by a suite of co-chaperone molecules that bring “clients” to the primary 28 

chaperone for efficient folding. Therefore, rather than targeting Hsp70 itself, here we have 29 

examined the feasibility of inhibiting the co-chaperone HDJ2, a member of the J domain 30 

protein family, as a novel anticancer strategy. We found HDJ2 to be upregulated in a 31 

variety of cancers, suggesting a role in malignancy. To confirm this role, we screened the 32 

NIH Approved Oncology collection for chemical-genetic interactions with loss of HDJ2 in 33 

cancer. 41 compounds showed strong synergy with HDJ2 loss, whereas 18 dramatically 34 

lost potency. Several of these hits were validated using a HDJ2 inhibitor (116-9e) in 35 

castration-resistant prostate cancer cell (CRPC) and spheroid models. Taken together, 36 

these results confirmed that HDJ2 is a hub for anticancer drug resistance and that HDJ2 37 

inhibition may be a potent strategy to sensitize cancer cells to current and future 38 

therapeutics.  39 

 40 

 41 

42 
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 3 

Introduction 43 
 44 

Hsp70 is a molecular chaperone that plays important roles in protein quality control 45 

processes such as protein folding, transport, degradation, regulation and aggregation 46 

prevention [1]. Hsp70 levels are elevated in various cancers and overexpression 47 

correlates with poor prognosis for survival and response to cancer therapy [2]. The 48 

elevated levels of Hsp90 and Hsp70 chaperones in cancer and their role in fostering 49 

multiple oncogenic pathways has made these proteins attractive drug targets with 50 

numerous anti-chaperone compounds having been developed so far [3]. Problematically, 51 

Hsp70 is required for cell survival and protein homeostasis, and thus its inhibition is 52 

detrimental to the viability of both normal and cancer cells, with dubious selectivity for 53 

tumor cells [4]. 54 

Hsp70 performs all its functions in association with a large spectrum of helper 55 

proteins known as co-chaperones that include J-proteins, tetratricopeptide repeat (TPR) 56 

domain-containing proteins and nucleotide exchange factors (NEFs) which fine-tune 57 

Hsp70 specificity and activity in the cell. The J-proteins recruit the protein substrates or 58 

clients and interact with such clients at the interface of NBD and SBDb of Hsp70 [5]. This 59 

interaction leads to increased Hsp70-mediated ATP turnover and activation of protein 60 

folding. J-proteins have a highly conserved 70 amino acid motif containing Histidine, 61 

Proline and Aspartic acid amino acid residues known as HPD motif which is essential for 62 

stimulating ATPase activity of Hsp70 [6]. In humans, the J-protein family has about 50 63 

members which are further divided into three groups based on the localization of J domain 64 

within a protein [7, 8]. DNAJA1 (more commonly referred to as HDJ2) associates with 65 

unfolded polypeptide chains, preventing their aggregation [7]. Several Hsp70 inhibitors 66 
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 4 

have failed in clinical trials due to their toxicity. More recently, alternative strategies have 67 

focused on sensitizing cells to anticancer agents by either manipulating post-translational 68 

modification of chaperones or their interaction with specific co-chaperones [4, 9-19]. 69 

HDJ2 (mammalian homologue of yeast Ydj1) is an interesting possible anticancer target 70 

as a key mediator of Hsp70 function that appears to regulate specific features of 71 

tumorigenesis  [13, 20, 21]. A recent study demonstrated that CRPCs expressing ARv7 72 

are insensitive to Hsp90 inhibitors but are sensitive to Hsp40 inhibition [22]. In addition, 73 

we have shown that targeting specific oncoprotein complexes (ribonucleotide reductase) 74 

with a combination of traditional as well as an HDJ2 inhibitor produces highly synergistic 75 

effects [13]. We propose that targeting HDJ2 in cancer may offer an attractive alternative 76 

to the toxicity induced by full Hsp90/Hsp70 inhibition.  77 

Anticancer monotherapies using broadly active cytotoxic or molecularly targeted 78 

drugs are limited in their ability to demonstrate a reliable clinical response. This is due to 79 

redundant signaling pathways, feedback loops and resistance mechanisms in the cancer 80 

cells [23, 24]. Thus, combination anticancer therapies have been used clinically for over 81 

50 years to improve the responses achieved by monotherapies alone. Cancer cell line-82 

based models for these combination therapies are easy and inexpensive to perform using 83 

high-throughput drug screening protocols (HTS) to identify the most effective drug 84 

combination [25, 26]. HTS  helps to explore the relation between the cell line 85 

characteristics and drug specific dose responses [25]. Chemogenomics is one such HTS 86 

based approach where large collection of anticancer chemical drugs are screened to 87 

identify biological targets. These screening sets often contain small molecules that are 88 

well annotated and have defined molecular targets. Such an approach is particularly 89 
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beneficial for cancer research because malignant cells often contain multiple aberrations 90 

which require targeted therapy to inactivate cancer driver activities and mitigate 91 

deleterious effects of the drugs to normal cells [24, 27]. 92 

Here, we performed an unbiased screen of the NIH Approved Oncology Drug set 93 

containing 131 anti-cancer drugs in combination with HAP1 cancer cell lines depleted of 94 

J-protein HDJ2. We identified 41 compounds showing strong synergy with the loss of 95 

HDJ2, and by contrast 18 molecules displaying reduced potency in the knockout cell line. 96 

We validated three drugs (cabozantinib, clofarabine and vinblastine) in combination with 97 

a unique HDJ2 inhibitor (116-9e) for synergy in the LNCaP cancer cell lines and confirmed 98 

omacetaxine mepesuccinate, idarubicin and sorafenib for antagonism (i.e. with reduced 99 

potency after HDJ2 inhibition). This study demonstrates the validity of developing Hsp70 100 

co-chaperone inhibitors to sensitize cells to current anticancer therapies and suggests 101 

that determining HDJ2 status of a tumor may be beneficial in selecting the most 102 

appropriate course of treatment. 103 

 104 

Materials and Methods  105 

Cell culture. The HAP1 Chronic Myelogenous Leukemia cancer cell line and HDJ2 106 

Knockout cell line was purchased from Horizon Discovery and were cultured in Iscove’s 107 

Modified Eagle Medium (Invitrogen) with 10% fetal bovine serum (Gibco), 100 units/ml 108 

penicillin, and 100 μg/ml streptomycin at 5% CO2 and 37° C. The LNCaP cancer cell line 109 

was purchased from ATCC and were cultured in RPMI-1640 medium (Invitrogen) with 110 

10% fetal bovine serum (FBS, Clontech), 100 units/ml penicillin, and 100 μg/ml 111 

streptomycin at 5% CO2 and 37° C.  112 
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Drug Screening. Approved Oncology Drug plates consisting of the most current FDA 113 

approved anticancer drugs were obtained from National Cancer Institute (NCI). For 114 

experiments delineating the synergy between the loss of HDJ2 and approved anticancer 115 

drug, HAP1 cells and HAP1 (HDJ2 KO) cells were plated in growth media at 20% 116 

confluency 1 day prior to drug treatment. On Day 1 of treatment, cells were treated with 117 

DMSO (control), Approved oncology anticancer drugs at 50 µM for 72 hours. Following 118 

drug treatments, Cell Titer-Glo reagent was added directly to the wells according to 119 

manufacturer’s instructions. The luminescence was measured on Bio-Tek Plate reader. 120 

Luminescence reading was normalized to and expressed as a relative percentage of the 121 

plate averaged DMSO control. The data shown are the mean and SEM of three 122 

independent biological replicates.  123 

Combination index (CI) calculations. For IC50 calculations, LNCaP cells were seeded 124 

in triplicates in 96-well white bottom Nunc plates in growth media at 20% confluency 1 day 125 

prior to initiation of drug treatment. On Day 1 of treatment, cells were treated with DMSO 126 

(control) and ten folds serial dilution of anti-cancer drugs Cabozantinib, Clofarabine, 127 

Vinblastine, Sorafenib, Idarubicin and Omacetaxine mepesuccinate and 116-9e. After 128 

72 h, cell viability was measured using Promega Cell Titer-Glo cell viability assay on Bio-129 

Tek plate reader. The combination index was calculated using the Chou-Talalay method 130 

using CompuSyn software[28]. 131 

Spheroid Generation. Single-cell suspensions (5000/well) were plated in one well of 24-132 

well plates in a 1:1 mixture of RPMI medium and Matrigel (BD Bioscience CB-40324). 133 

Cells in Matrigel are kept cold at all times and under continuous agitation. Warm PBS is 134 

added to all empty wells, if any. Plates are incubated at 37 °C with 5% CO2 for 15 min to 135 
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solidify the gel before addition of 100 µl of pre-warmed RPMI to each well. Two days after 136 

seeding, medium is fully removed and replaced with fresh RPMI containing the indicated 137 

drugs. The same procedure is repeated daily on two consecutive days. Twenty-four hours 138 

after the last treatments, media is removed and wells are washed with 100 µl of pre-139 

warmed PBS. To prepare for downstream assays, spheroids are then released from 140 

Matrigel by incubating at 37 °C for 40 min in 100 µl of 10 mg/mL dispase (Sigma).  141 

Apoptosis assay. Apoptosis of LNCaP spheroids was detected by the Annexin V–142 

FITC/propidium iodide–binding assay. Cells were treated with either 0.1% DMSO 143 

(dimethyl sulfoxide),116-9e, Cabozantinib, Clofarabine, Vinblastine, Sorafenib, 144 

Idarubicin, Omacetaxine mepesuccinate and Sorafenib alone or in combination with 116-145 

9e for 48 hours at the IC50 concentrations, and then stained with Annexin V–FITC and 146 

propidium iodide. The rate of apoptosis was determined using BD FORTESSA, and data 147 

were analyzed using FlowJo software and were reported as the mean ± SD. The results 148 

are representative of three independent experiments. 149 

Bioinformatics. Cancer genome data and Cancer Cell Line Encyclopedia data were 150 

accessed from the cBioPortal (www.cbioportal.org) for Cancer Genomics (Gao et al, 151 

2013). Total patient numbers and detailed information regarding published datasets and 152 

associated publications are indicated in Fig 1A and 1B. 153 

Statistical analysis. Data were analyzed using GraphPad Prism built-in statistical tests 154 

indicated in relevant figure legends. The following asterisk system for P value was used:  155 

P <0.05; P <0.01; 0.001; and P <0.0001. 156 

Results 157 

HDJ2 is mutated and overexpressed in a variety of cancers. 158 
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We first investigated the incidence of HDJ2 alterations in cancer using cancer genomics 159 

databases. Mutations and copy number changes occur in HDJ2 at a relatively low level 160 

(<5% of samples) in the majority of cancer types (Figure 1).  However, the data shows 161 

that HDJ2 is strikingly amplified in neuroendocrine prostate cancer (NEPC) at a frequency 162 

of 18.42% (Figure 1A). Additionally, HDJ2 is mutated in 11.1% of Non-Small Cell Lung 163 

Cancer (NSCLC) cases (Figure 1A). Hsp70 and Hsp90 are often overexpressed in tumors 164 

[2, 29, 30].  To determine if the HDJ2 gene is also overexpressed in cancer, we analyzed 165 

the expression data from 72,175 samples in 236 studies (cBioportal database) [31, 32]. 166 

Interestingly, HDJ2 was expressed at significantly higher levels in cancer samples, with 167 

a median expression in cancer of between log2 values of 10 and 14 (Figure 1B). Taken 168 

together, these data suggest that alteration of HDJ2 function may be important in the 169 

malignant properties of cancer cells. 170 

 171 

Characterizing the role of HDJ2 in anticancer drug resistance.  172 

The existing literature is contradictory as to whether HDJ2 may possess tumor suppressor 173 

or driver properties [21, 33].To clarify whether silencing of HDJ2 could be beneficial in the 174 

treatment of cancer, we screened wildtype HAP1 cells and HAP1 cells lacking HDJ2 175 

(HAP1HDJ2 KO) for comparative resistance against the NIH NCI Approved Oncology 176 

Collection (Figure 2A)  177 

(https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.html). According to 178 

pharmacologic action, the compounds in the library have been divided into seven 179 

categories: Protein synthesis inhibitors, Proteasome inhibitors, Epigenetic modifiers, 180 

Metabolic inhibitors, Cytoskeletal inhibitors, Signal transduction inhibitors and DNA 181 
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synthesis and repair inhibitors. Further fold enrichment of each drug category was 182 

calculated for the drugs whose potency increased or decreased with HDJ2 KO. To 183 

monitor the screening quality, each screening plate contained control wells treated with 184 

vehicle (1% DMSO). The final concentration of the screening compounds was 50 µmol/L. 185 

Positive hits (synergistic) or negative hits (antagonistic) were determined by normalizing 186 

the log2 ratio of viability of HDJ2 knockout cells over wildtype cells. A full list of the 187 

screening results is shown in Supplementary Table T1 and the sorted data are graphically 188 

plotted in Figure 2B. 41 drugs had increased potency upon HDJ2 deletion whereas 18 189 

drugs displayed reduced potency. Drug target analysis was carried out by calculating fold 190 

enrichment of positive hits (synergistic) or negative hits (antagonistic) over the total 191 

number of drugs in that category. Drug target analysis of the synergistic drug hits revealed 192 

significant enrichment in DNA synthesis and repair inhibitors, epigenetic modifiers, signal 193 

transduction and cytoskeletal inhibitors (Figure 2C). In contrast, drug target analysis of 194 

antagonistic drug hits revealed a higher enrichment in categories such as epigenetic 195 

modifiers, protein synthesis inhibitors, cytoskeletal inhibitors and proteasome inhibitors 196 

(Figure 2D). 197 

Strikingly, compounds from different categories showed dissimilar distribution of log2 ratio 198 

of viability, implying that different pharmacologic mechanisms probably underlie the HDJ2 199 

inhibitory capacity. Category no. 6 (Signal Transduction inhibitors) contained the most 200 

hits which were synergistic with HDJ2 loss. Loss of HDJ2 also substantially increased the 201 

potency of DNA synthesis and repair (DDR) inhibitors. These results are in agreement 202 

with our previous study showing that HDJ2 plays an important role in maintaining the 203 
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stability of ribonucleotide reductase (RNR) complex which is important for DNA synthesis 204 

[13]. 205 

 206 

Validation of anticancer drugs significantly altered for potency upon loss of HDJ2. 207 

Many anticancer compounds have low potency, poor therapeutic index or suffer from 208 

development of resistance [34]. Monotherapy is rarely efficient and instead drug cocktails 209 

are widely used in the clinic [23, 26]. Establishing these combinations can enhance the 210 

scope of preclinical studies and inform the design of future clinical trials. Although several 211 

compounds were identified as becoming significantly more potent in cells lacking HDJ2, 212 

it remained to be determined whether small molecule inhibition of HDJ2 could produce a 213 

similar result. Our previous bioinformatics analysis indicated that a large proportion of 214 

prostate cancer cells contain either amplification or mutation of HDJ2 (approximately 215 

18%, see Figure 1). Therefore, we next analyzed the effect of treating prostate cancer 216 

cells (LNCaP) with a combination of 116-9e, a small molecule inhibitor of HDJ2 [35] and 217 

interesting hits from our screen. We decided to focus on three synergistic drugs 218 

discovered in the screen: cabozantinib (receptor tyrosine kinase inhibitor), clofarabine (an 219 

RNR inhibitor) [36] and vinblastine (microtubule inhibitor/G2 arresting agent) [37-40]. We 220 

also validated three drugs that demonstrated a significant loss of potency in cells lacking 221 

HDJ2: sorafenib (a VEGFR-2 inhibitor) [41], omacetaxine mepesuccinate (more 222 

commonly known as homoharringtonine, a protein translation inhibitor) [42] and idarubicin 223 

(topoisomerase II inhibitor) [43].To determine synergy in a quantitative manner, we 224 

calculated drug synergy (Combination Index values, CI) between 116-9e and either 225 

synergistic or antagonistic drugs hits across a broad range of concentrations using the 226 
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Chou-Talalay method [44]. For three hits identified in our screen (cabozantinib, 227 

clofarabine and vinblastine) we confirmed significant synergy (CI<1) with 116-9e across 228 

a range of doses (Figure 3A, B & C). In contrast,  idarubicin, omacetaxine and sorafenib 229 

displayed a significantly antagonistic interaction (CI>1) across a range of doses (Figure 230 

3D, E & F).  231 

These data suggest that while HDJ2 inhibition is a promising strategy to sensitize cells to 232 

some inhibitors, it might have inverse effects with other inhibitors. 233 

 234 

Evaluating the effects of dual targeting of identified drugs with HDJ2 inhibition on 235 

morphology and viability of prostate cancer spheroids.  236 

Recent studies have suggested that precision therapy approaches involving the exposure 237 

of drugs directly to the primary tumor tissue have the potential to augment the 238 

personalized medicine efforts and influence clinical decisions [45, 46]. Establishing ex 239 

vivo three-dimensional (3D) tumor spheroids or organoids derived from primary cancers 240 

can be easily established and potentially scaled to screen drug combinations [47]. These 241 

3D cancer models appear to recapitulate features of the tumor of origin in terms of 242 

heterogeneity, cell differentiation, histoarchitecture, and clinical drug response and can 243 

be used for rapid drug screening [48]. We therefore next examined the effect of drug 244 

combination (three antagonistic and synergistic hits) on LNCaP spheroids. Specifically, 245 

changes in spheroid size and shape induced by the 3 antagonistic and synergistic drugs 246 

were determined. Visual examination revealed that for the synergistic drugs combination 247 

with 116-9e resulted in physical disruption of LNCaP spheroids, resulting in decrease in 248 

apparent spheroid size (Figure 4A). The disruption started on the second day of the 249 
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treatment. However, when the 3 antagonistic drugs were administered along with 116-250 

9e, there were minimal changes in spheroid morphology indicating that the combination 251 

was ineffective.  252 

Next, we measured the induction of apoptosis in the spheroids post drug treatments. We 253 

determined the kinetics of apoptosis induction using AnnexinV/PI staining. Drug-induced 254 

apoptosis was readily detected in the LNCaP spheroids treated with mono and dual drug 255 

combinations. In concurrence with the previous results, the combination of the three 256 

synergistic drugs with 116-9e displayed enhanced apoptosis as compared to the single 257 

drug treatment whereas spheroids treated with the 3 antagonistic drugs showed little or 258 

no difference in the rate of apoptosis as compared to the dual drug combination with 116-259 

9e (Figure 4B). 260 

 261 

DISCUSSION 262 

Although inhibitors of Hsp70 and Hsp90 have been developed for research purposes, 263 

conversion of these molecules for use in patient treatment have been hampered by 264 

toxicity issues [4]. We undertook this study to resolve conflicting literature on whether 265 

inhibiting HDJ2, a co-chaperone of Hsp70 may be useful as a novel anticancer strategy. 266 

Our bioinformatic analysis of HDJ2 expression and mutation clearly identify HDJ2 as 267 

being highly altered in a range of cancers, particularly in Prostate Cancer. This data in 268 

conjunction with a recent finding  that Hsp40 is involved in functional regulation of ARv 269 

[22] makes HDJ2 inhibition an ideal choice as a novel therapeutic target in Prostate 270 

Cancer.  271 
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Chemogenomic screening of knockout cell lines produces both useful mechanistic and 272 

translational understanding of protein function. In this study, loss of HDJ2 increased the 273 

potency of a substantial number (31%) of clinically used anticancer drugs.  274 

Hsp70 activates many proteins involved in the DNA damage response and DNA 275 

repair pathways (DDR). These include ATM, APE1, PARP1, XRCC1, LIG3, MSH2, MLH1 276 

and Apollo [49-51]. In addition, studies from our group have established roles for both 277 

Hsp70 and HDJ2 in stability of the RNR complex [13, 50, 52]. As such, we would expect 278 

a high degree of synergy between loss of HDJ2 function and the DNA damage 279 

response/repair pathways. Correspondingly, around 20 commonly used anticancer DNA 280 

damage and Repair (DDR) inhibitors were found to be synergistic with loss of HDJ2. 281 

These included 5-fluorouracil (5-FU) and premetrexed, widely used anticancer drugs 282 

whose metabolites are incorporated into both DNA and RNA in addition to inhibiting 283 

thymidylate synthase [53]. Here we validated synergy with the RNR inhibitor clofarabine. 284 

Clofarabine is phosphorylated intracellularly to form cytotoxic active 5'-triphosphate 285 

metabolite, which inhibits the enzymatic activities of RNR and DNA polymerase, resulting 286 

in inhibition of DNA synthesis and repair[54]. In addition, we also identified PARP 287 

inhibitors olaparib and niraparib and the topoisomerase inhibitors etoposide, teniposide, 288 

valrubicin and dexrazoxane to have increased potency in our screen.  289 

While most DDR inhibitors displayed increased potency with HDJ2 depletion, four 290 

of them were antagonistic to loss of HDJ2. These include topoisomerase inhibitors and 291 

nucleic acid synthesis inhibitors such as trifluridine, irinotecan, epirubicin (4'-epi-isomer 292 

of the antibiotic doxorubicin) and idarubicin (4-demethoxy analogue of daunorubicin)[55]. 293 

While at first these results seem paradoxical, it is worth noting that inrinotecan is a type I 294 
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topoisomerase inhibitor, whereas Etoposide inhibits the type II class. It may be that Hsp70 295 

and HDJ2 play different regulatory roles in the stabilization and activation of these related 296 

proteins. It should be noted that both idarubicin and epirubicin trigger TOPII-mediated 297 

DNA cleavage. The effects of these molecules may be prevented if HDJ2 alters the 298 

function of TOPII.  299 

In addition to DDR, HDJ2 is also involved in signal transduction, with previous reports 300 

indicating that the yeast homologue of HDJ2 (Ydj1) is critical for supporting the integrity 301 

of kinase signaling networks [56]. HDJ2 is mobilized to specific sites within the nucleus in 302 

response to inappropriate targeting or folding of specific mutant receptors. HDJ2 303 

overexpression ameliorates  defective transactivation and trans repression activity of  304 

mutant Glucocorticoid receptors [57]. In line with the previous studies, we found that a 305 

handful of Receptor Tyrosine kinase inhibitors were synergistic with HDJ2 depletion. 306 

These included Vascular endothelial growth factor receptor (VEGFR) inhibitors such as 307 

sunitinib, cabozantinib, lenvatinib and pazopanib. Interestingly, randomized phase III 308 

clinical trials are being conducted to validate the efficacy of Cabozantinib in heavily 309 

pretreated prostate cancer patients [58]. One implication from our study is that HDJ2 310 

inhibition might significantly enhance the effect of cabozantinib monotherapy. 311 

Strikingly, some of the kinase inhibitors were antagonistic to HDJ2 depletion. These 312 

include VEGFR inhibitors such as regorafenib and sorafenib. This disparity can be 313 

explained by the different target receptors and mechanisms of action of these drugs. 314 

Interestingly, recent studies indicated that these small molecule inhibitors exhibit off-315 

target effects. Some of these drugs are misidentified and mischaracterized for their target 316 
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specific inhibition, which has contributed to the high failure rate of these drugs in treatment 317 

of cancer patients [59]. 318 

Other than its role in signal transduction, HDJ2 is also important for maintaining the 319 

cellular cytoskeleton. Previous studies have suggested that YDJ1 (yeast homolog of 320 

HDJ2) is important for the proper assembly of microtubules [60, 61]. Another report 321 

showed that HDJ2 depletion causes relocation of N-cadherin and enhanced activity of 322 

metalloproteinases. This leads to changes in the actin cytoskeleton indicating that HDJ2 323 

is important for prevention of the amoeboid-like transition of tumor cells [62]. These 324 

studies indicated the involvement of HDJ2 in maintaining cytoskeletal organization. We 325 

found 3 anticancer drugs targeting the cytoskeleton to be synergistic with HDJ2 depletion, 326 

including vinblastine sulfate (cytoskeletal inhibitor that disrupts microtubule formation 327 

during mitosis and interferes with glutamic acid metabolism), estramustine (binds to 328 

microtubule-associated proteins (MAPs) and inhibits microtubule dynamics) and 329 

ixabepilone (promotes tubulin polymerization and microtubule stabilization, thereby 330 

arresting cells in the G2-M phase [63]. 331 

Strikingly, two of the tubulin inhibitors were found to be antagonistic to HDJ2 depletion. 332 

These include paclitaxel and ixabepilone. Paclitaxel inhibits the disassembly of 333 

microtubules resulting in the inhibition of cell division whereas Ixabepilone promotes 334 

tubulin polymerization and microtubule stabilization, arresting cells in the G2-M phase of 335 

the cell cycle [63]. This discrepancy again implies that these cytoskeletal inhibitors might 336 

have off target effects due to their mischaracterization [59]. 337 

Epigenetic modifying drugs display substantially modified potency depending on cellular 338 

HDJ2 status. While previous studies have indicated the association between proteomic 339 
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changes and histone PTMs in response to Hsp90 inhibitor treatment in bladder carcinoma 340 

cells, no such association has been shown for HDJ2 and Histone PTMs [64]. Interestingly, 341 

vorinostat was the only drug that was synergistic to HDJ2 inhibition. It is a histone 342 

deacetylase inhibitor that binds to the catalytic domain of the histone deacetylases 343 

(HDACs) [65]. However, we identified two histone deacetylase inhibitor drugs to be 344 

antagonistic to HDJ2 depletion: panobinostat and romidepsin inhibit histone deacetylase 345 

(HDAC), inducing hyperacetylation of core histone proteins, which may result in 346 

modulation of cell cycle protein expression, cell cycle arrest in the G2/M phase and 347 

apoptosis [66]. This is the first study that indicates an association between histone PTMs 348 

and HDJ2. While these findings require further investigation, it is possible that HDJ2 349 

regulates histone properties. Interestingly, both of the protein synthesis inhibitors 350 

(bortezomib and omacetaxine) in our screen were antagonistic to HDJ2 depletion [67]. 351 

We confirmed that omacetaxine (protein biosynthesis inhibitor) displayed reduced 352 

potency upon inhibition of HDJ2 [42].  353 

Several important conclusions can be inferred from the data presented here. Firstly, our 354 

HTS screening method might be useful in the selection of drugs for individual patients in 355 

future studies, since the drug sensitivity of cancer cells is dependent on HDJ2 expression. 356 

For example, compounds that belong to the same category such as sunitinib and 357 

sorafenib may behave differently upon HDJ2 deletion.  358 

Finally, in addition to intra-pathway synergistic combinations (VEGFRi, MAPKi pathway 359 

inhibitors, and DNA damage/cell-cycle checkpoint pathway combinations), which is 360 

consistent with a wealth of publications demonstrating intrapathway synergy [68, 69], we 361 

also discovered novel inter-pathway combinations of HDJ2. This study describes 362 
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promising results and indicates an integrative approach based on HTS which has 363 

potential to govern cancer patient treatment by combination therapy. Taken together, this 364 

study suggests a potential Precision Medicine approach that has the potential to inform 365 

anticancer strategy based on patient HDJ2 status. 366 
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 637 

Figure legends. 638 

Figure 1. HDJ2 is altered in cancer. (A) Prevalence of HDJ2 alterations in various 639 

cancer genomes analyzed via the cBioPortal. Red bar, amplification. Blue bar, 640 

homozygous deletion. Green square, missense mutation. Purple square, Fusion. (B) 641 
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HDJ2 mRNA expression in tumor determined via cBioPortal. P-value for a gene 642 

represents its P-value for the median-ranked analysis. 643 

 644 

Figure 2. Sensitivity of WT and HDJ2 knockout cells to the NIH Approved Oncology 645 

Collection. (A) Workflow of high-throughput cell-based screen. (B) A collection of 132 646 

drugs were screened at 50μmol/L with Wild-type and HDJ2 KO cells. Results are the 647 

average of at least triplicates and error is SEM. The dotted lines represent an interaction 648 

change of up or down two-fold. The dotted lines represent an interaction change of 649 

Log2 > 1.5 or Log2 < −1.5.The effect of drug combination are colored according to 650 

significant upregulation and downregulation: red (synergistic), green (antagonistic) or 651 

black (no significant change). C) & D) Drug ontology of synergistic and antagonistic hits 652 

based on the pathways affected by the approved oncology drugs in the screen. 653 

 654 

Figure 3. Drug interaction between 116-9e (HDJ2 inhibitor) and selected hits. 655 

LNCaP cells were treated with different concentration of Cabozantinib, Clofarabine, 656 

Vinblastine, Idarubicin, Omacetaxine and Sorafenib with or without 116-9e for 72 hours 657 

in RPMI-1640 medium containing 10% FBS. Each point is the mean ± SD for three 658 

independent experiments. Growth inhibition was determined using Cell Titer-Glo assay. 659 

Combination Index (CI, measure of drug synergy) was determined using Chou-Talalay 660 

method via Compusyn software. CI values of <1 indicate drug synergy. 661 

 662 

Figure 4. Effect of combination treatments on prostate cancer spheroids.  663 

A. Cells were plated on Matrigel coated 24 well plates. Six drugs (Cabozantinib, 664 
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Clofarabine, Vinblastine, Idarubicin, Omacetaxine and Sorafenib) were tested in 665 

triplicates for prostate cancer spheroids. The pictures are representative images as 666 

acquired using EVOS cell imager. B. Proliferation of spheroids treated with  Cabozantinib 667 

(CBZ), Clofarabine (CFB), Vinblastine (VBT), Idarubicin (IRB), Omacetaxine (OAT) and 668 

Sorafenib (SRN) measured using AnnexinV/PI staining.  669 

 670 

Graphical Abstract 671 

HDJ2 knockout or inhibition via small molecule impacts cellular resistance to anticancer 672 

therapeutics. 673 

 674 

Supplementary Data 675 

 676 

 Supplementary Table 1. Hits identified in combination screen with simultaneous 677 

treatment of Approved oncology drugs with HDJ2 Knockout HAP1 cell lines. 678 
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