Establishing Rod-Shape from Spherical, Peptidoglycan-Deficient Bacterial Spores

Huan Zhang ${ }^{1}$, Garrett A. Mulholland ${ }^{1}$, Sofiene Seef ${ }^{2}$, Shiwei Zhu ${ }^{3,4}$, Jun Liu ${ }^{3,4}$, Tâm Mignot ${ }^{2}$ and Beiyan Nan ${ }^{1 *}$
${ }^{1}$ Department of Biology, Texas A\&M University, College Station, TX 77843, USA
${ }^{2}$ Laboratoire de Chimie Bactérienne, CNRS - Université Aix Marseille UMR7283, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
${ }^{3}$ Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
${ }^{4}$ Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
*Corresponding author: Beiyan Nan, 306C BSBE, 3258 TAMU, College Station, TX77843, Tel.: 979-845-3487, email: bnan@tamu.edu

Keywords: germination, Rod system, MreB, GTPase, gliding motility

Abstract

Chemical-induced spores of the Gram-negative bacterium Myxococcus xanthus are peptidoglycan (PG)-deficient. It is unclear how these spherical spores germinate into rod-shaped, walled cells without preexisting PG templates. We found that germinating spores first synthesize PG randomly on spherical surfaces. MgIB, a GTPase activating protein, surveys the status of PG growth and establishes one future cell pole. Following MgIB, the Ras family GTPase MgIA localizes to the second pole. MgIA directs molecular motors to transport the bacterial actin homolog MreB and the Rod PG synthesis complexes away from poles. The Rod system establishes rod-shape by elongating PG at nonpolar regions. Thus, the interaction between GTPase, cytoskeletons and molecular motors provides a mechanism for the de novo establishment of rod-shape in bacteria.

Significance

Spheres and rods are among the most common shapes adopted by walled bacteria, in which the peptidoglycan (PG) cell wall largely determines cell shape. When induced by chemicals, rod-shaped vegetative cells of the Gram-negative bacterium Myxococcus xanthus thoroughly degrades their PG and shrinks into spherical spores. As these spores germinate, cells rebuild rod-shaped PG without preexisting templates, which provides a rare opportunity to visualize de novo PG synthesis and bacterial morphogenesis. In this study, we investigated how spherical spores elongation into rods during germination and elucidated a system for rod-shape morphogenesis that includes the Rod PG synthesis system, a GTPase-GAP pair, the MreB cytoskeleton and a molecular motor.

Morphogenesis is a fundamental problem in biological systems. Compared to symmetric spheres, rods are asymmetric and polarized. For most rod-shaped bacteria, the peptidoglycan (PG) cell wall defines cell geometry, which is synthesized by two major enzymatic systems. The Rod system consists of RodA, a SEDS-family PG polymerase, PBP2, a member of the class B penicillin-binding proteins (bPBPs), and MreB, a bacterial actin homolog (1-3). MreB orchestrates PG growth by the Rod complexes in response to local cell curvature (4-9). In contrast, class A PBPs (aPBPs) contribute to PG growth independent of $\operatorname{MreB}(10,11)$.

Myxococcus xanthus, a rod-shaped Gram-negative bacterium, utilizes polarized geometry for directed locomotion. MgIA, a Ras family small GTPase, controls the direction of gliding motility. The motors for gliding assemble into functional machineries on MreB filaments (12-16). Consequently, the gliding machineries carry MreB filaments as they move rapidly in the membrane (17). As cells move, GTP-bound MgIA forms large clusters at leading cell poles, whereas GDP-bound MgIA distributes homogeneously in the cytoplasm $(16,18,19)$. The activity of MgIA is regulated by its cognate GTPase-activating protein (GAP), MgIB, which forms large clusters at lagging cell poles. MgIB activates the GTPase activity of MgIA, expelling MgIA-GTP from lagging poles $(18,19)$. MgIA regulates the assembly and moving direction of the gliding machinery through direct interaction with $\operatorname{MreB}(16,20)$. Overall, the polarized localization and activities of MgIA and MgIB ensure that the majority of gliding machineries moves from poles to nonpolar regions, which generates propulsion (12, 16, 20).

Some rod-shaped bacteria change their geometry through sporulation. In Firmicutes such as Bacilli and Clostridia, the morphological differentiation from rodshaped vegetative cells to oval spores begins with an asymmetric division, resulting in the formation of a smaller spore wholly contained within a larger mother cell. In contrast to endospore-forming bacteria, M. xanthus produces spores using two divisionindependent mechanisms. First, groups of vegetative cells can aggregate on solid surfaces and build spore-filled fruiting bodies (21). Second, individual M. xanthus cells can form dispersed, spherical spores in response to chemical signals, such as glycerol (22). Unlike endospores that contain intact and often thickened PG $(23,24)$, PG is thoroughly degraded during single cell sporulation (25). Without the polarity defined by PG, the mechanism by which glycerol-induced M. xanthus spores elongate into rods remains largely unknown.

Results

Two-phase morphological transition during M. xanthus spore germination.

Overnight induction by 1 M glycerol produced spores with length to width aspect ratios (L/W) of $1.56 \pm 0.36(n=789)$, among which 40.9% are approximately spherical $(\mathrm{L} / \mathrm{W} \leq$
1.3). Overall, the L/W values of most (85.4\%) spores were lower than 2. As spores germinated, the morphological transition progressed in a two-phase manner. In the first hour of germination (Phase I), L/W did not change significantly ($p=0.57$, Fig. 1A, 1B, $S I$ Appendix, Movie S1). After 1 h, L/W increased sharply as the emerging cells transformed into rods (Phase II). $70.2 \%(\mathrm{n}=198)$ of emerging cells reached the dimensions of vegetative cells by 3 h (Fig. 1A, 1B, SI Appendix, Movie S1, Table S1). After 8 h , the emerging cells are indistinguishable from vegetative cells (L/W $=5.55 \pm$ 1.12, $n=233$. Fig. 1A, 1B). Importantly, many oval spores initiated elongation along their short axes (Fig. 1C, SI Appendix, Movie S2), indicating that although not perfectly spherical, the geometry of mature spores does not predetermine the polarity of emerging cells.

Using cryo-electron tomography (cryo-ET), we confirmed that mature glycerolinduced spores do not retain PG (SI Appendix, Fig. S1). To investigate the role of PG growth in germination, we treated spores with several inhibitors for PG synthesis. In the presence of mecillinam and A22, which inhibit PBP2 and MreB in the Rod system, respectively, spores failed to germinate into rods as their L/W ratios did not increase within 8 h (Fig. 1A, 1B). These treated spores were viable because they were able to grow into rods in inhibitor-free medium. Since A22 and mecillinam-treated spores became even more spherical in Phase I (Fig. 1D), neither inhibitor blocked the
hydrolysis of spore coats that maintain the oval shape of spores. In the presence of cefsulodin that inhibits PBP1A/B, and cefmetazole that inhibits all PBPs except PBP2, spores were able to form rods, albeit the elongation rate was slower (Fig. 1A, 1B). Although not essential for rod-like morphogenesis, aPBPs still contribute to the establishment and maintenance of rod shape. First, L/W values of the cefmetazoletreated spores increased significantly in Phase I of germination ($p<0.0001$, Fig. 1B, 1D), suggesting that cells elongate earlier when PBP2 is dominant over other PBPs. Second, despite successful elongation in early Phase II (1-3h), 57.2\% ($\mathrm{n}=215$) cefsulodin-treated and $96.6 \%(\mathrm{n}=203)$ cefmetazole-treated emerging cells retrogressed to spheres after 8-h treatments (Fig. 1A, 1B). As glycerol-induced spores preserve PG precursors(25), when fosfomycin was added to inhibit the production of UDP-MurNAc, a precursor of PG, spores were able to elongate into rods (Fig. 1A, 1B). Taken together, PG polymerization by the Rod system is essential for the establishment of rod-shape.

We next visualized the patterns of PG growth using a fluorescent D-amino acid, TAMRA 3-amino-D-alanine (TADA) (26) to label newly synthesized PG. To enhance labeling efficiency, we deleted the dacB gene (mxan_3130), which encodes a D-Ala-DAla carboxypeptidase (27). The resulted $\Delta d a c B$ cells showed identical morphology to the wild-type ones and produced sonication-resistant spores. The $\Delta d a c B$ spores showed minor delay in germination and efficient TADA incorporation (Fig. 1E, SI Appendix, Fig. S2 and Table S1). Although L/W of spores did not change, PG had started to grow in Phase I. The surfaces of most Phase I spores $(78.0 \%, \mathrm{n}=600)$ were evenly labeled (Fig. 1E). The remaining 22.0% of spores showed bright patches of

TADA on their surfaces (Fig. 1F). However, these TADA patches do not likely register future poles because $47.0 \%(n=132)$ of spores contained more than two such patches and these patches positioned randomly on spore surfaces (Fig. 1G, 1F). In contrast, as cells grew into rods, TADA was incorporated heavily at nonpolar regions and fluorescence signals were generally absent at cell poles (Fig. 1E). The patterns of PG growth indicate that spores first synthesize PG on their spherical surfaces in Phase I and then break symmetry in Phase II by growing PG at nonpolar regions.

Neither mecillinam, cefsulodin or cefmetazole was able to block TADA incorporation in Phase I of germination. However, a treatment by all three antibiotics abolished TADA incorporation (Fig. 1H), indicating that both aPBPs and the Rod system contribute to the isotropic PG growth in Phase I. In contrast, mecillinam, but not cefsulodin or cefmetazole, blocked TADA incorporation in Phase II of germination (Fig. 1H). Consistent with a recent report that cells reduce their diameter when the Rod system becomes dominant over aPBPs (28), emerging cells continued to grow in length but shrink in width in Phase II (Fig. S3). These results confirm that while both aPBPs and the Rod system participate PG synthesis in Phase I of germination, the Rod system plays major roles in cell elongation in Phase II.

MgIA and MgIB are required for rapid cell elongation To investigate how M. xanthus spores establish cell polarity de novo, we tested the potential roles of polar-localized motility regulators. $\Delta m g I A$ and $\Delta m g l B$ cells were able to form sonication-resistant spores but their spores showed severe delays in elongation during germination. After 3 h , only 15.7% of the $\Delta m g I A(\mathrm{n}=140)$ and 10.4% of $\Delta m g I B(\mathrm{n}=298)$ cells reached the vegetative aspect ratio (Fig. 2A, 2B). In contrast, deleting romR and $p l p A$, the genes
encode another two polar-localized motility regulators (29-31), only caused minor delay in germination (Fig. S4 and Table S1). Both the $\Delta m g l A$ and $\Delta m g l B$ spores were able to elongate in length and shrink in width, albeit at significantly lower rates (Fig. 2A, 2B, S/ Appendix, Fig. S3), indicating that PG growth by the Rod complex still occurred. Strikingly different from wild-type spores that maintained relatively smooth surfaces during germination, the $\Delta m g l A$ and $\Delta m g l B$ spores generated pronounced bulges at nonpolar regions in Phase II, appearing to have multiple cell poles (Fig. 2A, 2C, SI Appendix, Movie S3). However, this crooked morphology was largely corrected after prolonged growth (8 h) (Fig. 2A), implying that a system independent of MgIA and MgIB was able to generate rod shape, although much less robustly. To determine how MgIA and MgIB regulate germination, we investigated the spores that expressed the $\mathrm{Mgl} \mathrm{A}^{\text {Q82L }}$ variant as the sole source of MgIA, under the control of the native promoter of the $m g I B A$ operon. $\mathrm{MgIA}^{\text {Q82L }}$ expresses normally but is unable to hydrolyze GTP (19). Spores expressing wild-type MgIB and MgIA ${ }^{\text {Q82L }}$ showed both a severe delay in cell elongation and bulged surfaces on emerging cells, similar to the $\Delta m g l A$ and $\Delta m g l B$ spores (Fig. 2A, 2B). Thus, the GTPase activity of MgIA is required for rapid cell elongation and MgIB functions through MgIA.

Both the delayed morphological transition and bulged surfaces of the mutant spores suggest that MgIA and MgIB might regulate PG growth during germination. $\Delta m g l A \Delta d a c B$ and $\Delta m g l B \Delta d a c B$ spores were able to grow $P G$ in an isotropic manner in Phase I, identical to the $\Delta d a c B$ spores (Fig. 2D). However, emerging cells from both mutant spores displayed elevated PG growth at cell poles and bulges in Phase II (Fig. 2D). As the Rod complex is the major system for PG growth in Phase II, the MgIA-MgIB
polarity axis might promote rapid cell elongation by restricting the Rod complexes to nonpolar regions.

MgIB determines the first future pole. We expressed endogenous YFP-labeled MgIA and mCherry-labeled MgIB and correlated their localization patterns with L/W. 94.1\% (n $=152$) of Phase I spores (L/W ≤ 2) contained one or two MgIB clusters (Fig. 3A, 3B). In phase II spores (L/W > 2), this ratio increased to $100 \%(\mathrm{n}=120)$. In contrast, MgIA did not form clusters until Phase II, when 54.2\% of emerging cells contained one or two MgIA clusters (Fig. 3A, 3B). Thus, during germination, MglB establishes polarized localization before MgIA.

To test if the clusters of MgIB in Phase I spores mark the polarity inherited from previous vegetative cells, we imaged MglB clusters at 0.05 Hz . the majority of MgIB clusters in Phase I spores was highly dynamic (Fig. 3C, SI Appendix, Movie S4). Among 114 MgIB clusters in Phase I spores, 22.9\% remained stationary, and 77.1\% showed typical diffusion, with diffusion coefficients (D) of $1.05 \times 10^{-4} \pm 4.62 \times 10^{-5} \mu \mathrm{~m}^{2} / \mathrm{s}$. These "wandering" MgIB clusters were observed in both the approximately spherical (L/W < 1.3) and oval spores ($1.3<\mathrm{L} / \mathrm{W} \leq 2$), which supports our hypothesis that, regardless of their geometry, polarity is not yet established in Phase I spores. As a control, imaged at the same frequency, the fluorescence patches of TADA remained stationary in all spores, which excludes potential artifacts caused by the movements of spores (Fig. 3C, SI Appendix, Movie S5).

As germination progressed to Phase II (L/W > 2), the population of diffusive MgIB clusters decreased from 77.1\% to 23.6\% ($n=106$, Fig. 3D). Stabilized MgIB clusters oscillated between newly established poles (Fig. 3C, SI Appendix, Movie S6), which
might provide a mechanism to ensure that MgIB occupies each future cell pole for an equal amount of time. When we expressed MgIA-YFP in the $\Delta m g I B$ background, the formation of MglA clusters was delayed significantly, and in Phase II of germination, only $23.3 \%(n=120)$ of emerging cells contained MgIA clusters (Fig. 3A, 3B). Thus, rods start to form when a wandering MgIB cluster stabilizes at one future cell pole and positions MgIA to the opposite future pole.

To investigate whether pole-like local cell curvature stabilizes MgIB clusters, we quantified the localization of stationary MgIB clusters with regard to the geometry of spores. We divide the spore/cell envelope into four quarters. In the quarter that contained stationary MgIB clusters, we defined the long and short axes as 0° and 90°, which mark the local curvature that shows the highest and lowest similarity to the poles of vegetative cells, respectively. As shown in Fig. 3E, MgIB clusters stabilized randomly in Phase I spores, indicating that MgIB stabilizes before the establishment of cell poles and that local curvature does not dictate the stabilized localization of MgIB . The population of diffusive MgIB clusters decreased dramatically in the presence of A22, mecillinam, cefmetazole and cefsulodin (Fig. 3D), indicating that in Phase I of germination, active PG growth prevents MgIB clusters from settling down. After the stabilization of MgIB , the sites harboring MgIB clusters transformed into poles $\left(0^{\circ}\right)$ in Phase II cells (Fig. 3E).

MgIB clusters could stabilize either at the sites where PG synthesis has completed or at the sites where PG synthesis has not yet initiated. We ruled out the second possibility because the majority of MgIB clusters $(76.4 \%, \mathrm{n}=106)$ stabilizes at poles in Phase II (Fig. 3A, 3B), where PG growth has completed (Fig. 1E). Consistent with our
finding that the Rod system becomes the dominant system for PG growth in Phase II (Fig. 1H), A22 and mecillinam further reduced the small population of diffusive MgIB clusters in Phase II, while cefmetazole and cefsulodin did not show significant effects (Fig. 3D). Taken together, it is the progress of PG growth, rather than the geometry of the spore, that defines cell polarity. As MgIB clusters only stabilize at the sites where PG growth is completed, a region where PG synthesis completes first in Phase I will become a future cell pole.

The MgIA-MgIB polarity axis regulates PG synthesis by the Rod system through MreB and the gliding motor. MgIA and MgIB are both cytoplasmic proteins, which are not likely to regulate the enzymatic activities of the Rod system directly. To investigate whether MgIA and MgIB regulate the distribution of the Rod complexes, we used a fully functional, photoactivatable mCherry (PAmCherry)-labeled MreB variant (17) to mark the localization of Rod complexes in germination Phase II. When the majority of PAmCherry was photoactivated, MreB-PAmCherry appeared as small patches (17) (Fig. 4A). Compared to the wild-type spores where MreB patches mainly localized at nonpolar locations, many MreB patches formed near cell poles and bulges of the emerging $\Delta m g I A$ and $\Delta m g I B$ cells (Fig. 4A). We then photoactivate a few MreBPAmCherry particles in each emerging cell and quantified their localization using photoactivatable localization microscopy (PALM). Along the long cell axis, we defined a region within 320 nm from each end of cell as the pole and the rest of the cell as the nonpolar region. In the emerging cells from wild-type spores that expressed MreBPAmCherry, the ratio between nonpolar and polar-localized MreB fractions was 2.68 (n $=573$, Fig. 4B). In contrast, in the $\Delta m g I A$ and $\Delta m g I B$ backgrounds, this ratio decreased
to $1.06(\mathrm{n}=713)$ and $1.41(\mathrm{n}=812)$, respectively (Fig. 4B). Our data support that during the sphere-to-rod transition, MgIA and expel MreB, and thus the Rod system, from cell poles.

MgIA connects MreB to the gliding motors and the gliding motors drive the movement of MreB filaments $(16,17,20)$. To test if MgIA recruits the gliding motors to transport the Rod complexes to nonpolar locations through MreB, we investigated the regrowth process of the \triangle agIQS pseudospores. $\triangle a g / Q S$ cells carry truncated gliding motors that are unable to drive the rapid motion of MreB filaments (17). Due to the truncation of motors, the Δ agIQS pseudospores lack compact polysaccharide layers on their surfaces (32). Phenocopying the $\Delta m g I A$ and $\Delta m g l B$ spores, elongation of $\Delta a g / Q S$ pseudospores delayed significantly and many emerging cells displayed bulged surfaces in Phase II (Fig. 2). Consistently, significantly higher PG growth and MreB localization were observed at cell poles and bulges in the elongation phase (equivalent to Phase II of germination), similar to the observation made in $\Delta m g I A \Delta d a c B$ and $\Delta m g I B \Delta d a c B$ spores (Fig. 2D, 4A, 4B). In summary, MgIA and mgIB restrict PG growth to nonpolar regions in germination Phase II utilizing the gliding motors, which transport the Rod complexes under the control of MgIA.

Discussion

As spheres and rods are among the most common shapes adopted by walled bacteria, the sphere-to-rod transition during M. xanthus spore germination provides a unique opportunity to study rod-like morphogenesis in bacteria. Due to the absence of PG, glycerol-induced M. xanthus spores are especially valuable for the study of de novo PG synthesis, which drives spontaneous cell elongation in homogenous environments. In contrast to fruiting bodies that require millions of cells and days to form, glycerolinduced sporulation mimics the natural process that individual M. xanthus cells form spores within hours in response to environmental stresses. Without the protection from the fruiting body, rapid elongation could be critical for the survival of individual M. xanthus spores.

Based on the mutually exclusive localization of MgIB and MgIA-GTP in vegetative cells, we propose a model for spontaneous cell elongation during M. xanthus spore germination (Fig. 4C). We observed that MgIB forms wandering clusters in Phase I of germination. Emerging cells start to elongate when the clusters of MgIB stop moving and stabilize at what is to become a future pole. An important clue for understanding this process is that active PG growth prevents MgIB clusters from settling down. Thus, the wandering dynamics of MglB clusters serves as a mechanism to survey the status of PG growth and the region where PG growth completes first in Phase I will host a MgIB cluster and become a future pole in Phase II. MreB plays a key role in the stabilization of MgIB clusters because both MgIA and the Rod complexes assemble on MreB. Since MgIB avoids colocalizing with MgIA-GTP by converting the latter to MgIAGDP $(18,19)$ and MgIA only binds to MreB (which also carries the Rod complexes) in
its GTP-bound form (16), the mutual exclusion between MgIB and MgIA-GTP will expel MgIB clusters from the Rod complexes. Once an MgIB cluster stabilizes at one pole, the expulsion between MgIB and MgIA-GTP causes MgIA-GTP to cluster at the opposite side of the spore (Figure 7). Then the diametrically opposing clusters of MgIA-GTP and MgIB establish the polarity axis of the emerging cell.

A surprising finding of this work reveals that the MgIA-MgIB polarity axis regulates the distribution of Rod complexes through the gliding machineries. Essential for gliding motility, MreB serves as the platform for the assembly of the gliding machineries (12, 33). For this reason, compared to its homologs in other bacteria, M. xanthus MreB displays unique dynamics: it is transported rapidly by the gliding motors, with a maximum velocity of near $3 \mu \mathrm{~m} / \mathrm{s}$ (17). At cell poles, MgIA-GTP stimulates the assembly of the gliding machinery by directly connecting it to MreB $(12,16)$. Once assembled, the gliding machineries transport MreB filaments, thus entire Rod complexes, to nonpolar locations (Figure 7) $(17,20)$. Utilizing the same system that defines the leading-lagging axis in vegetative cells, spherical spores grow their walls at nonpolar regions and eventually form rods.

Consistent with our model, the connection between the Rod complexes and gliding machineries was also observed in a recent report, which showed that PG stops growing in vegetative cells when the gliding machineries are dedicated to gliding (12). The mechanism by which the gliding machineries switch between gliding and PG growth remains to be investigated. Nonetheless, our results have added another layer to the striking versatility of the gliding motors, which transport various cargos in different compartments of the cells: spore coats on cell surfaces (32), the Rod complex and
gliding proteins in the membrane and periplasm (12, 15), as well as MreB and gliding proteins in the cytoplasm (12, 17, 34).

Materials and Methods

Strain construction. Deletion and insertion mutants were constructed by electroporating M. xanthus cells with $4 \mu \mathrm{~g}$ plasmid DNA. Transformed cells were plated on CYE plates supplemented with $100 \mu \mathrm{~g} / \mathrm{ml}$ sodium kanamycin sulfate or $10 \mu \mathrm{~g} / \mathrm{ml}$ tetracycline hydrochloride. In-frame deletion of dacB is described in SI Appendix, Materials and Methods, Table S2.

Sporulation, spore purification and germination. Vegetative M. xanthus cells were grown in liquid CYE medium (10 mM MOPS pH 7.6, 1\% (w/v) Bacto ${ }^{\text {TM }}$ casitone (BD Biosciences), 0.5% yeast extract and 4 mM MgSO 4) at $32^{\circ} \mathrm{C}$, in $125-\mathrm{ml}$ flasks with rigorous shaking, or on CYE plates that contains 1.5% agar. When the cell culture reaches $\mathrm{OD}_{600} 0.1-0.2$, glycerol was added to 1 M to induce sporulation. After rigorous shaking overnight at $32{ }^{\circ} \mathrm{C}$, remaining vegetative cells were eliminated by sonication and sonication-resistant spores were purified. Sonication-resistant spores were collected by centrifugation ($1 \mathrm{~min}, 15,000 \mathrm{~g}$ and $4^{\circ} \mathrm{C}$). The pellet was washed three times with water. More details of spore purification and the purification of $\Delta \mathrm{ag} / \mathrm{QS}$ pseudospores are provided in SI Appendix, Materials and Methods.

Microscopy Analysis. Cryo-ET was performed on a Polara G2 ${ }^{\text {TM }}$ electron microscope. Images were collected at $9,000 \times$ magnification and $8-\mu \mathrm{m}$ defocus, resulting in 0.42 $\mathrm{nm} /$ pixel. Data were acquired automatically with the SerialEM software (35). Time-lapse videos of the germination progress of wild-type and $\Delta m g l A$ spores were recorded using an OMAX ${ }^{\text {TM }}$ A3590U CCD camera and a Plan Flour ${ }^{\text {TM }} 40 \times / 0.75$ Ph2 DLL objective on a phase-contrast Nikon Eclipse ${ }^{T M} 600$ microscope. The length, width and geometric aspect ratios (L/W) of spores/cells were determined from differential interference
contrast (DIC) images using a custom algorithm written in MATLAB (The MathWorks, Inc., Natick, MA), which is available upon request. DIC images of spores/cells were captured using a Hamamatsu ImagEM X2 ${ }^{\text {TM }}$ EM-CCD camera C9100-23B (effective pixel size 160 nm) on an inverted Nikon Eclipse-TiTM microscope with a 100×1.49 NA TIRF objective, which are also used for capturing regular fluorescence and PALM images. MgIB clusters and single-molecules were localized using an algorithm written in MATLAB (17), which is available upon request. More detailed information is provided in SI Appendix, Materials and Methods.

References

1. A. J. Meeske et al., SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537, 634-638 (2016).
2. P. D. A. Rohs et al., A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery. PLoS Genet 14, e1007726 (2018).
3. S. van Teeffelen, L. D. Renner, Recent advances in understanding how rod-like bacteria stably maintain their cell shapes. F1000Res 7, 241 (2018).
4. B. P. Bratton, J. W. Shaevitz, Z. Gitai, R. M. Morgenstein, MreB polymers and curvature localization are enhanced by RodZ and predict E. coli's cylindrical uniformity. Nature communications 9, 2797 (2018).
5. A. Colavin, H. Shi, K. C. Huang, RodZ modulates geometric localization of the bacterial actin MreB to regulate cell shape. Nature communications 9, 1280 (2018).
6. S. Hussain et al., MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. Elife 7 (2018).
7. T. S. Ursell et al., Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc Natl Acad Sci U S A 111, E1025-1034 (2014).
8. F. Wong, E. C. Garner, A. Amir, Mechanics and dynamics of translocating MreB filaments on curved membranes. Elife 8 (2019).
9. R. M. Morgenstein et al., RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis. Proc Natl Acad Sci U S A 10.1073/pnas. 1509610112 (2015).
10. H. Cho et al., Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat Microbiol 10.1038/nmicrobiol.2016.172, 16172 (2016).
11. T. K. Lee, K. Meng, H. Shi, K. C. Huang, Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells. Nature communications 7, 13170 (2016).
12. L. M. Faure et al., The mechanism of force transmission at bacterial focal adhesion complexes. Nature 539, 530-535 (2016).
13. E. M. Mauriello et al., Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MgIA. Embo J 29, 315-326 (2010).
14. B. Nan et al., Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories. Proc Natl Acad Sci U S A 110, E1508-1513 (2013).
15. B. Nan et al., Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proc Natl Acad Sci U S A 108, 2498-2503 (2011).
16. A. Treuner-Lange et al., The small G-protein MgIA connects to the MreB actin cytoskeleton at bacterial focal adhesions. J Cell Biol 210, 243-256 (2015).
17. G. Fu et al., MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. Proc Natl Acad Sci U S A 115, 2484-2489 (2018).
18. S. Leonardy et al., Regulation of dynamic polarity switching in bacteria by a Raslike G-protein and its cognate GAP. Embo J 29, 2276-2289 (2010).
19. Y. Zhang, M. Franco, A. Ducret, T. Mignot, A bacterial Ras-like small GTPbinding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility. PLoS Biol 8, e1000430 (2010).
20. B. Nan et al., The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MgIA. Proc Natl Acad Sci U S A 112, E186-193 (2015).
21. D. R. Zusman, A. E. Scott, Z. Yang, J. R. Kirby, Chemosensory pathways, motility and development in Myxococcus xanthus. Nat Rev Microbiol 5, 862-872 (2007).
22. M. Dworkin, S. M. Gibson, A System for Studying Microbial Morphogenesis: Rapid Formation of Microcysts in Myxococcus xanthus. Science 146, 243-244 (1964).
23. E. I. Tocheva et al., Peptidoglycan transformations during Bacillus subtilis sporulation. Mol Microbiol 88, 673-686 (2013).
24. K. Khanna et al., The molecular architecture of engulfment during Bacillus subtilis sporulation. Elife 8 (2019).
25. N. K. Bui et al., The peptidoglycan sacculus of Myxococcus xanthus has unusual structural features and is degraded during glycerol-induced myxospore development. J Bacteriol 191, 494-505 (2009).
26. Y. P. Hsu et al., Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls. Chem Sci 8, 6313-6321 (2017).
27. E. Kuru et al., In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int Ed Engl 51, 12519-12523 (2012).
28. M. F. Dion et al., Bacillus subtilis cell diameter is determined by the opposing actions of two distinct cell wall synthetic systems. Nat Microbiol 10.1038/s41564-019-0439-0 (2019).
29. D. Keilberg, K. Wuichet, F. Drescher, L. Sogaard-Andersen, A response regulator interfaces between the Frz chemosensory system and the MgIA/MgIB GTPase/GAP module to regulate polarity in Myxococcus xanthus. PLoS Genet 8, e1002951 (2012).
30. C. B. Pogue, T. Zhou, B. Nan, PlpA, a PilZ-like protein, regulates directed motility of the bacterium Myxococcus xanthus. Mol Microbiol 107, 214-228 (2018).
31. Y. Zhang, M. Guzzo, A. Ducret, Y. Z. Li, T. Mignot, A dynamic response regulator protein modulates G-protein-dependent polarity in the bacterium Myxococcus xanthus. PLoS Genet 8, e1002872 (2012).
32. M. Wartel et al., A versatile class of cell surface directional motors gives rise to gliding motility and sporulation in Myxococcus xanthus. PLoS Biol 11, e1001728 (2013).
33. B. Nan, Bacterial Gliding Motility: Rolling Out a Consensus Model. Curr Biol 27, R154-R156 (2017).
34. M. Sun, M. Wartel, E. Cascales, J. W. Shaevitz, T. Mignot, Motor-driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci U S A 108, 7559-7564 (2011).
35. D. N. Mastronarde, Automated electron microscope tomography using robust prediction of specimen movements. Journal of Structural Biology 152, 36-51 (2005).

ACKNOWLEDGEMENTS

We thank Drs. Joseph Sorg and Ritu Shrestha for their help in the initial determination of germination phenotypes, Drs. Michael Van Nieuwenhze and Yen-Pang Hsu for providing TADA, and Drs. David Zusman, Michael Manson and Joseph Sorg for critical reading of this manuscript. This work is supported by the National Institute of Health R01GM129000 (to B.N.) and R01AI087946 (to J.L.) and by CNRS to T.M.

Figure Legends
Figure 1. PG polymerization by the Rod complex is essential for de novo
establishment of rod-shape. A) Morphological changes of untreated (UT) and inhibitor-treated wild-type spores in the germination process. Mecillinam (MEC, 100 $\mu \mathrm{g} / \mathrm{ml})$, A22 ($100 \mu \mathrm{~g} / \mathrm{ml}$) cefmetazole (CMZ, $5 \mathrm{mg} / \mathrm{ml}$), cefsulodin (CSD, $5 \mathrm{mg} / \mathrm{ml}$) and fosfomycin (FOF, $8 \mathrm{mg} / \mathrm{ml}$). B) Quantitative analysis of the germination progress using the aspect ratios (L/W) of spores/cells. Boxes indicate the $25^{\text {th }}-75^{\text {th }}$ percentiles, whiskers the $5^{\text {th }}-95^{\text {th }}$ percentiles. In each box, the midline indicates the median and \times indicates the mean (Also see Table S1). Outlier data points are shown as individual dots above and below the whiskers. C) Some oval spores initiate elongation along their short axes during Phase II of germination (also see Movie S2). D) Phase I spores become more spherical after 1-h treatments by mecillinam and A22 but initiate elongation earlier when treated by cefmetazole. E) Patterns of PG growth in both phases of germination were visualized by TADA labeling in $\Delta d a c B$ spores. The average and standard deviation of TADA intensity were calculated from 20 spores/cells in the diagrams to the right (same below). F) Imaged at different focal planes, 22.0% of Phase I spores show bright TADA patches (arrows) that position randomly on spore surfaces. G) Among these 22.0% spores, many contain multiple TADA patches. H) Compared to untreated (UT) $\Delta d a c B$ spores, while neither MEC, CMZ or CSD is able to block PG growth, the combination of all three antibiotics (+3) abolishes PG growth in Phase I of germination. In contrast, MEC alone is sufficient to inhibit PG growth in Phase II. Scale bars, $2 \mu \mathrm{~m} . p$ values were calculated using the Student paired t test with a two- tailed distribution (same below). NS, nonsignificant difference.

Figure 2. MgIA and MglB are required for rapid cell elongation. A) Emerging cells from $\Delta m g l A, \Delta m g l B, m g l A^{Q 82 L}$ spores and $\Delta a g I Q S$ pseudospores show significant delay in elongation and crooked morphology in Phase II of germination. B) Quantitative analysis of the germination progress. C) A representative image of the altered morphology of the emerging $\Delta m g I A$ cells after 3-h of germination. Arrows point to the bulges that appear as additional poles. D) The disruption of either the MgIA-MgIB polar axis ($\Delta m g I A \Delta d a c B$ and $\Delta m g I B \Delta d a c B$) or the gliding motor ($\Delta a g / Q S \Delta d a c B$) resulted in significantly stronger PG growth at cell poles and budges (arrows) in Phase II. Quantitative analysis of TADA fluorescence is shown on the right. Scale bars, $2 \mu \mathrm{~m}$. Figure 3. MgIB determines the first future pole. A, B) While MglB-mCherry forms clusters in Phase I spores (L/W ≤ 2), MgIA-YFP are largely diffusive in Phase I. Without MgIB, MgIA-YFP forms significantly less clusters in Phase II. For (B), the total number of spores/cells analyzed for each strain is shown on top of the bar. C) 77.1% of MgIB clusters (red arrow) showed "wandering" dynamics in Phase I spores. In Phase II, MgIB clusters (yellow arrow) stabilized at cell poles and oscillated between opposite poles. As a control, a TADA patch (white arrow) on a Phase I spore did not move during the entire imaging process. D) The wandering behavior of MglB clusters depends on PG growth as the inhibitors of PG synthesis, A22, MEC, CMZ and CSD, all significantly inhibit the wandering of MgIB in Phase I. In contrast, as the Rod system becomes the dominant PG synthesis machinery in Phase II, only A22 and MEC inhibit the wandering of MglB in Phase II. For each treatment, the total number of MgIB clusters analyzed is shown on top of the bar. UT, untreated. E) The stabilization of MgIB clusters at cell poles does not depend on local curvature. Scales bars, $2 \mu \mathrm{~m}$.

Figure 4. The MgIA-MgIB polarity axis regulates PG growth through MreB and the gliding motor. A) In the emerging $\Delta m g l A, \Delta m g / B$ and $\Delta a g / Q S$ cells in Phase II of germination, MreB patches (arrows) are frequently detected near cell poles and bulges. B) The nonpolar-to-polar distribution ratios of MreB molecules were quantified by PALM. For each strain, the total number of MreB particles analyzed is shown on top of the bar. C) A schematic model for the de novo establishment of rod-shape by the MgIAMgIB polarity axis. Scales bars, $2 \mu \mathrm{~m}$.

Fig. 1

Fig. 2

B

C

Fig. 3

Fig. 4

Fig. S1

Fig. S2

Fig. S3

Fig. S4

