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Abstract

Robustness is a prominent feature of most biological systems. In a cell, the structure of the

interactions between genes, proteins, and metabolites has a crucial role in maintaining the cell’s

functionality and viability in presence of external perturbations and noise. Despite advances in

characterizing the robustness of biological systems, most of the current efforts have been focused on

studying homogeneous molecular networks in isolation, such as protein-protein or gene regulatory

networks, neglecting the interactions among different molecular substrates. Here we propose a

comprehensive framework for understanding how the interactions between genes, proteins and

metabolites contribute to the determinants of robustness in a heterogeneous biological network.

We integrate heterogeneous sources of data to construct a multilayer interaction network composed

of a gene regulatory layer, and protein-protein interaction layer and a metabolic layer. We design a

simulated perturbation process to characterize the contribution of each gene to the overall system’s

robustness, defined as its influence over the global network. We find that highly influential genes are

enriched in essential and cancer genes, confirming the central role of these genes in critical cellular

processes. Further, we determine that the metabolic layer is more vulnerable to perturbations

involving genes associated to metabolic diseases. By comparing the robustness of the network to

multiple randomized network models, we find that the real network is comparably or more robust

than expected in the random realizations. Finally, we analytically derive the expected robustness

of multilayer biological networks starting from the degree distributions within or between layers.

These results provide new insights into the non-trivial dynamics occurring in the cell after a genetic

perturbation is applied, confirming the importance of including the coupling between different

layers of interaction in models of complex biological systems.

2



I. INTRODUCTION

The recent development of high throughput omics technologies has facilitated the ex-

tensive profiling of the different molecular strata composing living organisms, such as the

transcriptome, epigenome, and proteome, providing a more comprehensive picture of the

detailed molecular composition of cellular systems. However, cellular processes are not only

driven by individual molecules but also by the interplay between them. These interactions

are conventionally modeled as context-specific molecular interaction networks [1], such as

gene regulatory networks [2], protein-protein interaction (PPI) networks [3], and metabolic

networks [4, 5]. Such network-based analysis [6] has become an effective and widely used tool

in the analysis of cellular systems. While the study of the static topology of these networks

has been successful in various applications, such as disease gene prioritization [7–9], disease

biomarkers discovery [10], and disease diagnosis and subtyping [11], substantial insights can

be gained by analyzing the properties of dynamical processes evolving over the nodes and

edges of the network. These processes are usually defined to mimic the effects of environ-

mental changes, internal perturbations, onset of diseases, or random failures occurring in

the network [12].

An established way to quantify the effect of perturbations in biological systems is the anal-

ysis of their robustness, defined as their ability to maintain stable functioning despite various

perturbations [13, 14]. In biological systems across all scales, from cells to organisms, robust-

ness is attained by a combination of five mechanisms: feedback control, structural stability,

redundancy, modularity, and adaptation [15, 16]. For example, by applying percolation the-

ory to the analysis of the robustness of biological networks [17, 18], Jeong et al. [19] found

strong connections between the centrality of a protein and its lethality; metabolic networks

are exceptionally robust [20], hinting at why organisms can survive under different envi-

ronmental conditions; robustness analysis of molecular networks under perturbations has

become an efficient tool for uncovering disease mechanisms at the molecular level [21, 22].

Most of these studies focus on the investigation of single molecular networks. However,

molecular networks are not independent, and processes can span multiple molecular layers

simultaneously, generating intricate patterns that are difficult to uncover when networks

are analyzed separately [12, 23]. For example, in a cell, genes can activate or inhibit other

genes, and this regulation is operated through physical protein-protein and protein-DNA
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interaction bindings. Proteins can, in turn, affect metabolic reactions through physically or

functionally associating with metabolites. In these cases, exploring networks of molecules of

the same kind in isolation can ultimately lead to an incomplete or even incorrect picture of

the problem. Thus, accounting for the interactions between different molecular networks is

critical for understanding cell dynamics and functionality.

In network science, systems composed of multiple interacting networks [24–28] have at-

tracted considerable attention owing to the discovery of novel structural and dynamical

features that differ from those observed in isolated networks. In the past decade, the mathe-

matical frameworks for characterizing the robustness of a network of networks [27] or multi-

layer networks [28] have been studied in various settings, such as full interdependency [24],

partial interdependency [29], interconnections [30], spatially embedded networks [31], mul-

tiple supports [32], directed networks [25], targeted attacks [33], multiple networks [34], and

many more. The robustness of multilayer networks has a broad impact on infrastructure

networks [35], ecological systems [36], social networks [37], and financial networks [38]. Re-

cently, the growing availability of massive genomic, proteomic, and metabolomics data has

stimulated the construction of multilayer biological molecular networks [39–44]. For exam-

ple, Shinde and Jalan [45] proposed a multiplex network composed of six different PPI layers

representing different life stages of C. elegans, showing varying degree-degree correlation and

spectral properties across the nematode’s life cycle. Bennett et al. [46] found functional com-

munities across layers in a two-layer PPI network of yeast, where one layer is connected by

physical interactions and the other by genetic interactions. In this context, different layers

model different kinds of interactions. Klosik et al. [47] designed a vast, directed, biological

molecular network, called the interdependent network of gene regulation and metabolism,

which is composed of three types of biological molecules: genes, proteins, and metabolites.

For multicellular organisms such as humans, Didier et al. [48] and Valdeolivas et al. [49]

investigated the community structure in multiplex biological molecular networks, which is

composed of three or four biological networks sharing the same set of genes/proteins, with

the nodes in each layer connected by different types of interactions, such as co-expression or

physical interactions.

Despite advances in network theories and biological modeling as discussed above, our un-

derstanding of determinants of the robustness and lethality of multilayer biological molecular

networks remains inadequate. The difficulty is rooted in four independent factors, each with
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its own layer of complexity:

(1) Biological modeling and data. A comprehensive framework integrating heterogeneous

sources of data of human molecular networks is still lacking. The integration of various

molecular data, such as gene regulatory, PPI, and metabolic networks, is a challenging

problem because these different components have completely different features and modes of

interaction within an organism. Modeling these interactions in a meaningful way is critical

for uncovering subtle molecular mechanisms responsible for disease pathogenesis and for

identifying candidate genes for targeted therapies in precision medicine applications.

(2) Complexity in network topology. The topological complexity of these interactions is

another major challenge preventing us from understanding its functionality. Biological net-

works are of different kinds and the interdependence between them follow specific patterns.

As an example, regulatory interactions between genes are usually modeled as directed, while

PPI networks are undirected in virtue of their symmetric nature. How to meaningfully in-

clude such variety of interaction in a single description remains an open challenge.

(3) Diverse failure mechanisms. We lack a reasonable failure mechanism to model how gene

perturbations influence the function of the PPI and metabolic layers and the robustness

of integrated multilayer biological networks. A perturbation of a gene may cause dysfunc-

tions in its regulated genes and their protein products, while the dysfunction of proteins

could cause other associated proteins to become non-functional since such proteins may be

indispensable partners in the performance of cellular activities. Since proteins have func-

tional associations with metabolites, the disruption of their functionality could affect the

metabolic reactions they regulate. Although we cannot perfectly capture a holistic picture

of the process by which a specific genetic perturbations propagates across a biological net-

work, modeling the effect of gene perturbations with reasonable failure mechanisms could

give us better understanding of the complex dynamics of the cell’s molecular machinery.

(4) Theoretical framework. None of the previously described frameworks can be directly

applied to multilayer biological molecular networks. Those approaches are, for the most

part, agnostic of their applied setting and deal with networks of the same type, which are

either all undirected [27] or all directed [25, 50], and in which where the interdependence

relations are random. By contrast, biological networks include both directed and undirected

network layers, and the non-randomly connected links between layers are of different types.

In addition, the network sizes are different in scales. Thus, developing a general framework
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to analyze the robustness of multilayer biological networks remains an unsolved problem in

interdependent networks [51].

Here, we discuss how to overcome these challenges and unveil the determinants of robustness

and lethality of multilayer biological molecular networks, revealing the relationships between

the critical structural features of a network and their functional importance in biology using

a unified model.

II. RESULTS

We start by integrating heterogeneous sources of data of human molecular networks,

including a gene regulatory network, a PPI network, and a metabolic network. Further,

we create a model for the robustness of a multilayer biological network, shown in section

A. We validate the coupling between gene regulatory and PPI networks by comparing it to

isolated networks in prioritizing the essential and cancer genes, shown in section B. In section

C, we validate the relationship between lethality with metabolic disease genes. In section

D, we compare the robustness of a multilayer biological network and its randomly rewired

counterparts s, discovering that real networks are more robust. Finally, we developed a

theoretical framework to analyze the robustness of multilayer biological networks.

A. Model robustness of multilayer biological network

According to the central dogma of molecular biology, DNA is transcribed into RNA which

is then translated into proteins. Many proteins can regulate metabolic reactions through

physically or functionally associating with metabolites. Based on these well-known rela-

tionships, we constructed a multilayer network by aggregating the three major biochemical

networks that govern cell function: a gene regulatory layer, a PPI layer, and a metabolic

layer, as shown in Fig. 1.

1. Topology construction

We first construct three layers of biological molecular networks (the details for construct-

ing the multilayer network are given in Methods section A):
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(1) Gene regulatory network. We use two types of gene regulatory networks in our work:

a general gene regulatory network and three tissue-specific gene regulatory networks [22].

The general gene regulatory network is generated by curating the binding motifs of a subset

of 695 human unique transcription factors, and the tissue-specific gene regulatory networks

are curated from the FANTOM5 database [52].

(2) PPI network. We combine several databases of physical protein-protein interaction

data from high- and low-throughput experiments, obtaining a PPI network whose largest

connected component consists of 15,906 proteins and 217,099 physical interactions.

(3) Metabolic network. The metabolic network is constructed by curating the biochemical-

biochemical (metabolite-metabolite) interactions from the STITCH database [53], and then

mapping to metabolites in the Human Metabolome Database (HMDB) [54].

(4) Connections between Gene regulatory and PPI networks. We connect the protein-coding

genes in the gene regulatory network directly to their protein products in the PPI network.

These connections result in 10,255 bidirectional interlayer links between the general gene

regulatory network and the PPI network.

(5) Links from PPI to metabolites. Protein-biochemical links are compiled from the STITCH

database [55] and are directed from the protein to the metabolic layer as we make the

simplifying assumption that the perturbation of an enzyme affects the metabolic reactions

it regulates, while the opposite does not hold. Note that proteins and metabolites are

connected in a many-to-many relation, since multiple enzymes and chemicals can participate

in the same reaction, and multiple proteins can be associated with multiple metabolites. The

interconnections between the PPI network and the metabolite network are obtained through

the biochemical-protein links in the STITCH database. For the 15,906 proteins and the 1,269

metabolites in the multilayer network, we have 141,283 directed interlayer links connecting

12,039 proteins to 1,211 metabolites.

2. Dynamical process on multilayer biological networks

To model the functionality and robustness of multilayer biological networks, we define a

cascading failure mechanism simulating the effect of a perturbation in the network. From the

molecular viewpoint, the cascade corresponds to a process whereby a number of perturbed

transcription factors lose their ability to regulate their targets, resulting in some genes being
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left unregulated in the regulatory network, ultimately affecting the expression of the proteins

for which they code in the PPI network. The altered expression of these proteins, in turn,

disrupts the metabolic reactions they regulate.

The process is summarized below and shown in Fig. 1. Each node of these networks is

assigned with a two-state variable, either “functional” or “dysfunctional”, and all the nodes

are initially set as functional nodes. When a node becomes dysfunctional, it is removed from

the network. The perturbation originates from a set of predefined target genes (TGs) in the

gene regulatory network, simulating a loss of functionality due to e.g. mutations or gene

knockouts. Since the TGs lose their ability to regulate other genes, both the TGs and the

genes they regulate in the gene regulatory network become dysfunctional. As a consequence,

the corresponding protein products of all of the involved genes become dysfunctional as well.

After the removal of these proteins, the functional proteins that are left disconnected from

the largest connected component of the PPI network become non-functional, along with

their corresponding protein-coding genes. The regulated genes of the newly dysfunctional

genes are then removed and the process continues in a cascading fashion until a stable state

is reached.

In a metabolic network, each metabolite has multiple support links from the protein-

protein interaction network. A metabolite stops functioning if a fraction fP2M of its sup-

porting proteins become dysfunctional, where fP2M is a constant between 0 and 1. As an

additional modeling choice, a metabolite is functional in any given time only if it belongs

to the largest connected component. As shown in Fig. 1, the perturbation in the gene

regulatory network can cause cascading failures propagating across the gene regulatory and

PPI networks. When the process comes to a halt, the remaining nodes are identified as the

final functional component.

B. Perturbation on single genes revealing that the genes being important to sys-

tem’s robustness enrich in essential and cancer genes

To investigate how the couplings between the gene regulatory and PPI networks con-

tribute to defining the system structure and function, we compared the effects of the above-

mentioned perturbation process, hereby referred to as a “coupled” process, to the outcomes

of a perturbation only affecting the PPI network alone, or an “uncoupled” process. The
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uncoupled process consists of removing the perturbed protein, their first neighbors, and any

proteins that are left disconnected from the largest connected component thereafter. In or-

der to provide a fair comparison between the two processes, we only consider perturbations

of genes that are associated with their corresponding protein product, while genes that have

no connections to the PPI layer are excluded from the analysis. In the PPI network of both

uncoupled and coupled cases, we characterize the contribution of each node to the system’s

integrity by measuring the final functional network size, fP
S , when that node is removed. A

smaller final fraction of functional nodes indicates a larger contribution of the target node

to system integrity. Thus, we assign an influence score (−fP
S ) to each node to evaluate its

influence on the system’s robustness, where fP
S is the final functional size of the PPI network.

We compiled two sets of genes corresponding to biologically essential genes, from the

Database of Essential Genes (DEG) [56], and cancer genes, from the Cancer Gene Census

(CGC) [57]. Essential genes are indispensable for supporting cellular viability [56, 58], and

cancer genes are those genes which contain mutations that have been causally implicated in

carcinogenesis and that explain how dysfunction of these genes drives cancer development

[57]. We calculated the precision-recall curves of coupled and uncoupled influence scores

in recovering the sets of essential and cancer genes. As shown in Fig. 2a and b, the

coupled influence scores yield higher precision-recall scores compared to the uncoupled and

random scores, denoting the higher descriptive power provided by the layer couplings. In

the coupled case, the removal of a single gene does not only cause one-time failures as those

in the uncoupled cases, but also cause the second or even third round of cascading failures.

we find that the averaged number of genes/proteins failed in the second round caused by

the removal of a essential or cancer gene is higher than that of removing a non-essential

or non-cancer gene, as shown in Fig. 2c and d, explaining why the coupled case performs

better in prioritizing essential and cancer genes than the uncoupled case.

Note that the same result holds when using different criteria for selecting essential genes:

(1) probability of haploinsufficiency (Phi), (2) probability of loss-of-function intolerance

(pLI), and (3) essential genes found by Dickinson et al. [59]. Genes with high scores of

essentiality, as measured by these metrics, are associated to higher influence scores, and

they are more prevalent among the genes with high influence scores in the coupled model

compared with that of the uncoupled model (Figure S5). Note that the influence score in

the coupled case incorporates the contribution of a gene to the integrity of the PPI net-
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work. We further test the performance of coupled influence scores in prioritizing disease

genes categorized by their association with Mendelian or complex diseases. We divide the

disease genes into MC (both Mendelian and Complex), MNC (Mendelian but Not Complex)

and CNM (Complex but Not Mendelian) disease genes, as defined in [60]. The influence

scores of genes show higher performance in prioritizing CNM disease genes (Figure S6),

suggesting that complex disease genes have more cohesive connections to their surround-

ings. This observation aligns with the current understanding of complex diseases, which

are hypothesized to stem from the interactions between a multitude of genes, requiring a

higher degree of influence on their surroundings. By contrast, since Mendelian genes are,

by definition, the primary cause of the disease phenotype they induce, their influence scores

are indistinguishable from random chance.

Since the proposed failure mechanism depends on the out-degrees of the perturbed genes,

we investigated to what extent the information provided by the influence score is different

from the simple out-degree measure. We compute the fraction of essential, disease, and

cancer genes among the sets of top n genes ranked by the influence scores and out-degrees,

repeating the operation for each n. To account for the ambiguity in ranking caused by genes

with the same out-degree or influence score, we randomly shuffled the ranks of the groups

of genes corresponding to the same values 100 times, and computed the average ratios. As

shown in Figs. 2 e and f, genes ranked by the influence score are enriched in larger fractions

of essential and cancer genes compared to genes ranked by their out-degree, indicating that

influence scores have a higher sensitivity in discerning the genes involved in critical cellular

processes.

C. Perturbation of a group of metabolic disease genes creates more damage to

the metabolic network

Gene perturbations can propagate to the metabolic network through the failure of en-

zymes. For example, we consider the gene TCF7L2, one of the most replicated type 2

diabetes mellitus (T2D) susceptibility genes [61]. Its perturbation generates a cascade of

failures that leads to the removal of o-hydroxyphenylacetic acid and lipid peroxidation in the

metabolic layer. Lipid peroxidation has been observed to be directly associated with T2D

[62], while o-hydroxyphenylacetic acid is formed from phenylalanine, an amino acid that is
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consistently associated with T2D risk [63]. As a more extensive experiment, we tested the

outcomes of perturbing a group of metabolic disease genes in the gene regulatory network

and observing the effects on the integrity of the metabolic network. We collected three sets

of genes that are associated with dyslipidemia, blood pressure, and type 2 diabetes. From

each set of metabolic disease genes, we randomly perturb a fraction p of genes and calculate

the final functional metabolic network size, for p ∈ {0.1, 0.2, ..., 1}. In order to control for

node degree, for each metabolic disease gene set we generate a population of random gene

sets of same size and similar degree as the original set, and repeat the perturbation process

described above.

As shown in Fig. 3, and Figures S7-S12, perturbations targeting these gene sets cause

more damage to the metabolic network with respect to degree-preserved random pertur-

bations. For example, Fig. 3 shows the comparison between targeted perturbations (red

boxes) of the dyslipidemia-related genes and random perturbations (blue boxes). In addi-

tion, we find that this result holds regardless of the value of the threshold fP2M in the failure

mechanism of the metabolic network (if more than a fraction fP2M of supporting proteins

fail, then the metabolite fails).

D. Robustness of the multilayer biological network

For the real model of multilayer biological molecular networks, we could have multiple

versions of randomized models : 1) intra-layer randomized versions, where the randomization

can happen within the gene regulatory, PPI or metabolic layers. 2) inter-layer randomized

versions, where the gene-protein or the protein-metabolite connections are randomly rewired.

For each randomizations, it has three directions of rewiring methods: forcing the connections

to be assortative or disassortative, or neutral without changing the degree correlations and

degree distributions. Assortative randomization in a directed gene regulatory network is

realized by keeping the in-degree and out-degree distributions unchanged but increasing the

correlations between the in-degree and out-degree of each node, while that in the PPI or

metabolic networks is achieved by rewiring the high-degree nodes to the high-degree nodes

and low-degree nodes to the low-degree nodes, with their degree distributions unchanged.

Assortative randomization in couplings involves connecting the high-degree nodes in one

layer to the high-degree nodes in the other layer. Similarly, disassortative randomization is
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realized by decrease the in-degree and out-degree correlations or connecting the high-degree

nodes to the low-degree nodes.

The robustness of the multilayer biological network can be valued by the final functional

sizes in three layers (fG
S , fP

S and fM
S , and we use fS as a general metric representing any of

them) after randomly removed 1−p fraction of genes. The higher value of the final functional

size indicates higher robustness. Or it can be valued by the integral size of functional network

size (R =
∫ 1

0
fS dp), with p varing from 0 to 1. We find that the robustness of the multilayer

molecular network is comparable to or higher than the robustness of the randomized models.

For the disassortatively and neutrally randomized models, their robustness are comparable

to the real models, as shown in Fig. 4a and Figures S13. We find that the real model

is more robust than the following two randomized models: (1) randomization in the gene

regulatory network keeping the in-degree and out-degree distributions and increasing the

in-degree and out-degree correlations (Fig. 4 b and c); (2) randomization of the couplings

between the gene regulatory and PPI networks keeping the degree distributions in gene

regulatory and PPI networks unchanged but increase the degree correlations between the

connected gene-protein pairs (Fig. 4 d).

E. Comparison of numerical and analytical solutions

We first derive equations for calculating the functional network size in the gene regulatory

network after initial perturbations on the 1− p fraction of genes (see Methods). Then, the

dysfunctional genes cause their corresponding proteins to stop functioning, and the func-

tional network size in the PPI network can be calculated based on the generating function

formalism [64] and percolation theory [24]. For most previous frameworks of robustness in

multilayer networks, they are proposed under assumptions that the connections between

layers are random [29] or follow specific patterns [39] in topology, which usually do not hold

in real cases. In multilayer biological networks, the connections between the gene regulatory

and the PPI networks are not purely random in topology, which makes it difficult to quantify

the amount of failures that go from the gene regulatory network into the PPI network theo-

retically. We propose an analytical method to determine two equivalent coupling strengths,

qG and qP to quantify the theoretical density of interconnections between omics layers (see

Supplementary Information). By using these two coupling strengths, the connections be-
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tween the gene regulatory and PPI networks can be treated as random in the theoretical

calculation.

Next, we present the solution for the final functional network sizes step-by-step according

to the cascading process between the gene regulatory network and the PPI network. At

the final stage of the cascading process, the final fraction of functional nodes in the gene

regulatory and PPI networks are, respectively, ψm and φm by using the framework as shown

in Eq. 5. In the metabolic network, a metabolite node fails if a fraction of more than fP2M

of its supporting proteins fail. By applying percolation theory, the final functional node size

of the metabolic network is fM
S (see eq. 6 in Methods).

To verify the proposed framework, we first apply it to a synthetic model composed of three

layers of Erdős-Rényi (ER) networks. We find that our framework accurately predicts the

final functional network size in multilayer ER networks (see Supplementary file). Next, we

repeat the calculations for the three-layer biological network described above. We evaluate

the fractions of functional nodes at each stage of the perturbation, finding that the fractions

of functional nodes in each cascading stage agree with the numerical simulations, as shown

in Fig. 5a. To test the generality of our framework on multilayer biological networks with

arbitrary degree distributions, we sequentially replace the gene regulatory layer with three

tissue-specific gene regulatory networks, namely forebrain (Fig. 5b), lymphocytes (Fig. 5c),

and lung (Fig. 5d). We find that in all three cases, our analytical framework correctly

predicts the final sizes of functional nodes in these multilayer molecular networks.

III. DISCUSSION

To uncover how the couplings between molecular networks influence their biological func-

tions, we propose a minimalistic model of multilayer molecular networks encompassing regu-

latory, protein-protein, and metabolic interactions, and develop a theoretical framework for

analyzing the system’s robustness. We define a perturbation process that roughly simulates

the cascade of effects occurring in the network when a group of genes is perturbed. We

show that our analytical formulation correctly predicts the size of functional nodes in each

stage of the cascading process. In this framework, we find that the topology of the proposed

multilayer network is more robust than that of the randomized models. This finding could

suggest that molecular networks may have evolved to avoid developing strong degree-degree

13



correlations, as to increase the system’s robustness under perturbation.

We define an influence score characterizing the contribution of each gene to the system’s

robustness, and find that essential and cancer genes are enriched in higher scores compared to

random chance. In addition, to assess the contribution of the connections between different

molecular layers, we compare the results above with the effects obtained by a perturbation

process acting only on the isolated PPI network, finding that the multilayer system achieves

superior performance in prioritizing essential and disease genes. Furthermore, targeting

a group of metabolic disease genes causes significantly more damage in the metabolic net-

work when compared to random perturbations, denoting the non-trivial association between

these genes and the metabolic processes they regulate. The results above are complemen-

tary. On the one hand, we find that the coupled perturbation process accurately predicts

genes that are important for biological processes and survival; on the other hand, we find

that perturbing biologically important genes, defined a priori, causes more damage to the

overall system’s integrity than perturbing other randomly chosen genes. The results in this

work offer a comprehensive framework integrating heterogeneous sources of data of human

molecular networks, opening new avenues to deepen our understanding of human molecular

systems and their dynamics. Future directions of this work are two-fold: at a theoretical

level, an important unmodeled factor in the analytical formulation is the correlation between

in- and out-degree of the gene regulatory layer; at the biological level, there are additional

molecular mechanisms that have major roles in determining the robustness of a cellular

system, such as gene methylation and non-coding RNA regulation.

One additional avenue of investigation for improving this model is the inclusion of de-

tailed molecular interaction parameters within the network, such as protein binding affinities

and reaction rate constants, allowing for a generalization of the methodology to weighted

networks. However, this approach has the drawback on relying on noisy and vastly incom-

plete sources of data, due to the lack of available information on most known interactions.

Furthermore, the inherent study bias in these kind of measurements has the potential of

generating spurious patterns that may confound the analysis. However, as high-throughput

techniques for molecular profiling are developed and become more feasible, modeling these

aspects can provide a deeper understanding of how perturbations spread in a heterogeneous

biological interaction network.
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IV. METHODS

A. Reconstruction of three layers of biological molecular networks

1. Reconstruction of gene regulatory network

For the general regulatory network, a subset of 695 human transcription factor motifs,

corresponding to 695 unique transcription factors, was curated from the list provided by an

online library of transcription factors and their binding motifs [65]. For each of these 695

motifs, the entire hg19 genome was scanned using a program that scans sequence databases

to find occurrences of known motifs [66], and significant hits with p < 1e− 3 were retained.

694 of the motifs had at least one significant hit in the genome for this scan. Once the

genome-wide scan was completed, we took hg19 RefSeq annotated transcription start sites

(TSS) and selected all associated Gene Symbols that mapped to a unique TSS. We then

took the locations of the motif hits from the FIMO scan described above, and found the

distance from the middle of the motif to the nearest TSS. Finally, we queried each of these

files to find only motif-hits that occur in the promoter, where we defined the promoter as

[-1000, +500] around the TSS. We used a p-value cutoff of 1e-6 for the regulatory network

layer of our multilayer network, which results in 18,566 nodes and 65,310 links.

The tissue-specific gene regulatory networks are reconstructed by integrating tran-

scription factor (TF) sequence motifs with promoter and enhancer activity data from

the FANTOM5 project [52]. We curate tissue-specific regulatory networks using the

FANTOM5 database [52], using the smaller “Network compendium” dataset, and se-

lect three tissue-specific regulatory networks, “forebrain” (ID:03), “lymphocytes” (ID:

12), and “lung” (ID: 23). These regulatory networks are downloaded from the website

http://regulatorycircuits.org, and we set an link weight threshold of 0.05.

2. Construction of protein-protein interaction network

For the protein-protein interaction network, we use physical protein interactions with

experimental support, and do not include interactions extracted from gene expression data

or evolutionary considerations. In order to obtain an interactome as complete as currently

feasible, we combine several databases with various types of physical interactions:
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• Regulatory interactions obtained from the TRANSFAC database [67]. Here nodes rep-

resent transcription factors, and connections represent physical binding to regulatory

elements.

• Binary interactions: We combine several yeast-two-hybrid high-throughput datasets

with binary interactions from IntAct [68] and MINT [69] databases.

• Manually-curated interactions from literature. We use IntAct, MINT, BioGRID [70],

and HPRD [71] databases.

• Protein complexes: Protein complexes are single molecular units integrating multiple

gene products. We use the CORUM [72] database, which is a collection of mammalian

complexes derived from a variety of experimental tools, from co-immunoprecipitation

to co-sedimentation and ion exchange chromatography.

• Metabolic enzyme-coupled interactions: Two enzymes are assumed to be coupled if

they share adjacent reactions in the KEGG [73] and BIGG [74] databases.

• Kinase-substrate pairs: Protein kinases are important regulators in different biological

processes, such as signal transduction using PhosphositePlus [75].

The union of all interactions yields a network of 15,966 proteins that are interconnected by

217,150 physical interactions. In this work, we focus on the largest connected component of

the PPI network, which consists of 15,906 proteins connected by 217,099 links.

3. Construction of metabolic network

For the metabolic network we use the STITCH database [53], which is an extensive

association database that has both biochemical-biochemical (metabolite-metabolite) and

biochemical-protein links. PubChem ids are used for metabolite identification, which maps

well to metabolites in the Human Metabolome Database (HMDB) [54], facilitating the iden-

tification of metabolites. We limit our use of the dataset to interactions with experimental,

similarity, and database evidence. The resulting metabolic association network, which we

construct by combining the STITCH and HMDB databases, contains 1,398 metabolites with

HMDB ids and 16,032 interactions between them, and its largest connected component in-

clude 1269 metabolites and 16019 links.

16



B. Develop the theoretic framework for analyzing the robustness of multilayer

molecular networks

We develop a general theoretic framework for modelling the cascading failures between

the gene regulatory and PPI networks, and computing the final functional node sizes in three

molecular layers after randomly removing a 1− p fraction of genes from the gene regulatory

network. We find that the gene regulatory network is vulnerable to perturbations, while

the robustness in metabolic network is highly dependent upon the supports from the PPI

network.

1. Percolation analysis in single gene regulatory networks

We denote the joint degree distribution of the top-layer gene regulatory network with

PGene(kin, kout). We randomly choose a fraction 1 − p of nodes as “perturbed” genes. The

probability density of genes with in-degree kin and out-degree kout not being perturbed or

a targeting gene of one perturbed gene is PGene(kin, kout)p
kin+1. Thus, after removing the

perturbed genes and their targets, the fraction of remaining nodes is

rS =
∞∑

kout=0

∞∑
kin=0

PGene(kin, kout)p
kin+1. (1)

Assuming that there are no correlations between the in-degrees and out-degrees, the degree

distribution of the remaining network can be written as

P (rS)(kin, kout) =
∞∑

i≥kin

∞∑
j≥kout

PGene(i, j)

(
i

kin

)(
j

kout

)
rkinS (1− rS)i−kinrkoutS (1− rS)j−kout , (2)

where
(
i
k

)
= i!

k!(i−k)! is a combination. In the remaining network, the isolates fail and the

functional network size (described in detail in Methods) is

fG
S = rS[1−

∞∑
i≥0

∞∑
j≥0

PGene(i, j)(1− rS)i(1− rS)j], (3)

which can be simplified as

fG
S = rS[1− P (rS)(kin = 0, kout = 0)], (4)

We apply this theoretical tool to gene regulatory networks including a generic network and

three tissue-specific networks. As shown in the Figure S2 in the Supplementary Information,
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the theoretical results (solid lines) agree well with the simulations (symbols), confirming our

theoretical analysis.

2. Percolation analysis in coupled gene regulatory, PPI and metabolic networks

Owing to the incompleteness of the data, some proteins do not have corresponding genes

in the regulatory networks, and some genes do not have corresponding proteins in the PPI

network. Thus, the gene regulatory and the PPI networks are partially interdependent,

and their interdependency relations are not random. We propose a method to find the

equivalent coupling strengths between the gene regulatory and PPI networks, denoted by

qG and qP, so that the non-randomly interdependent relations could be approximated by

random interdependency (see Supplementary Information).

We present the solution of the final functional network sizes step-by-step according to

the cascading process between the gene regulatory and the PPI networks. In order to

unify the quantities at each stage t of the cascading process, we define ψ′t as the remaining

network size after initial perturbation or receiving the failure from the PPI network, and ψt

as the functional network size in the gene regulatory network. At the initial stage t = 1,

the remaining network size after perturbation is ψ′1 = p, and the functional network is

ψ1 = ψ′1hGene(ψ
′
1), where hGene(p) = rS/p[1− P (rS)(kin = 0, kout = 0)]. Since a fraction of qP

nodes in the PPI network depends on nodes from the gene regulatory network, the number

of nodes in the PPI network become dysfunctional is (1 − ψ1)qP = qP(1 − ψ′1hGene(ψ
′
1)).

Accordingly, the remaining network size in the PPI network is φ′1 = 1− qP(1−ψ′1hGene(ψ
′
1)).

In the PPI network, the generating functions of the degree distribution and branching process

are, respectively, GPPI(x) =
∑∞

k=0 PPPI(k)xk and HPPI(x) = G′PPI(x)/G′PPI(1). The fraction

of nodes belonging to the largest connected component in the PPI is φ1 = φ′1hPPI(φ
′
1), where

hPPI(p) = 1−GPPI(pxc+1−p) with xc = HPPI(pxc+1−p). Following this approach, we can

construct the sequence for the remaining network sizes ψ′t and φ′t, the functional network

sizes ψt and φt. The general form is given by
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ψ′1 = p, ψ1 = ψ′1hGene(ψ
′
1)

φ′1 = 1− qP(1− hGene(ψ
′
1)p), φ1 = φ′1hPPI(φ

′
1)

ψ′2 = p(1− qG(1− hPPI(φ′1))), ψ2 = ψ′2hGene(ψ
′
2)...,

ψ′n = p(1− qG(1− hPPI(φ′n−1))), ψn = ψ′nhGene(ψ
′
n)

φ′n = 1− qP(1− hGene(ψ
′
n)p), φn = φ′nhPPI(φ

′
n). (5)

At the end of the cascading process, no further failures occur. The remaining fractions

of nodes in the gene regulatory network and the PPI reach stable values ψ′m = ψ′m+1 and

φ′m = φ′m+1 respectively. Thus, the fractions of the final functional nodes in the regulatory

and PPI networks are, respectively, fG
S = ψm and fP

S = φm.

The PPI and the metabolic networks are connected by unidirectional multiple support-

dependence relations. In the metabolic network, qMeta fraction of metabolites have mul-

tiple supports from the PPI network. The generating functions of the degree distribu-

tion of the metabolic network and its branching process are GMeta(x) =
∑∞

k=0 PMeta(k)xk

and HMeta(x) = G′Meta(x)/G′Meta(1), respectively. Each metabolite has ks supporting links

from the PPI network, and we define the support degree distribution as PD(ks) whose gen-

erating function is GD(x) =
∑∞

ks=0 PD(ks)x
ks , and whose branching process is HD(x) =

G′D(x)/G′D(1).

Since the failure in the metabolic network cannot affect the gene regulatory and PPI

networks, their percolation behaviors are equivalent to that in the coupled gene regulatory

and PPI networks, whose final functional node sizes are ψm and φm, respectively. In the

metabolic network, a metabolite node fails if more than fP2M fraction of its supporting pro-

teins fail. The probability that more than fP2M fraction of the supports to a metabolite fail

is ω = qMeta

∑∞
ks=0 PD(ks)

∑ks
l=dfP2Mkse

(
ks
l

)
(1−φm)lφks−l

m . Thus, the fraction of the remaining

nodes is rMeta = 1− ω. Thus, the final functional nodes size of the metabolic network is

fM
S = rMeta(1−GMeta(rMetaxc + 1− rMeta)), xc = HMeta(rMetaxc + 1− rMeta). (6)
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a b c
Initial Perturbation

FIG. 1: Schematic demonstration of the cascading failure process in the multilayer

biological molecular networks. The multilayer model includes a gene regulatory network

where the genes (ellipses) are linked by regulatory relations (orange directed links), a PPI

network where proteins (bone shapes) are linked by physical interactions (green undirected

links) and a metabolic network where metabolites (molecule shapes) are connected by

chemical-chemical interactions (purple undirected links). The gene regulatory and PPI

networks are connected by bidirectional interdependency links (yellow dashed lines). From

the PPI to metabolic networks, there are multiple supporting links (green dashed lines). a.

Initially perturb a gene in the gene regulatory network causing such gene stop functioning

(represented by a black ellipse). b. The targeting genes of the perturbed genes fail (black

ellipses), and their corresponding proteins stop functioning, represented by black bone

shapes. c. The proteins that disconnected from the largest connected component fail

(black bone shapes), and the metabolites losing its all supports from the PPI network stop

functioning (black molecule shapes).
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FIG. 2: Comparison between the coupled and uncoupled cases. Average Precision-Recall

(PR) curves of the coupled (red) and uncoupled (blue) influence scores in the prioritization

of essential (a) and cancer (b) genes. The gray PR curves represent 100 random node

rankings. On the right of each plot are listed the Average Precision Scores (APS) of the

three ranking strategies evaluated from the corresponding PR curves. The performance of

coupled influence scores in prioritizing essential and cancer genes are respectively 5.05%

and 48.94% higher than that by uncoupled influence scores. In the coupled case, the

removal of a single gene does not only cause one-time failures as those in the uncoupled

cases, but also cause the second or third round of cascading failures. The average numbers

of nodes failed in the second round caused by the removal of essential (c) and cancer genes

(d) are respectively higher than that of removing the non-essential and non-cancer genes,

explaining why the coupled case performs better in prioritizing essential and cancer genes.

In addition, the densities of (e) essential and (f) cancer genes among the top n genes

ranked by influence scores (red diamonds) are higher than that ranked by out-degrees

(black circles). For the genes of the same influence scores or of the same out-degrees, we

randomly put their orders 100 times, and compute the average densities. It indicates that

the influence scores perform better than out-degrees in uncovering the connections between

network topology and biological mechanisms.
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FIG. 3: Targeting dyslipidemia-related genes (red boxes) causes more damages to the

metabolic network than the degree-preserved random attacks (blue boxes). (top) Fraction

of functional nodes after the perturbations for several values of remaining fraction ps of

metabolic disease genes and threshold proportion fP2M (a metabolite fails if more than

fP2M fraction of supporting proteins fail); (bottom) p-values of the Mann-Whitney test

between the distributions of functional node set sizes in the targeted and random case.

Lower values indicate a higher degree of damage to the network.
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FIG. 4: Comparing the robustness of the real biological multilayer networks (filled

symbols) and randomized models (unfilled symbols). Higher values means higher

robustness of the system. The real model has comparable robustness as a. the model that

disassortatively randomized in the gene regulatory network, and higher robustness than b.

the model that assortatively randomized in the gene regulatory network. Here the result in

the metabolic layer is evaluated by setting the threshold fP2M = 0.7, and the results under

other threshold values are shown in c, where RO
Meta and RCRN−Rand

Meta respectively represent

the integral size of functional metabolic network in the real and randomized models, with p

varing from 0 to 1. If the value RO
Meta −RCRN−Rand

Meta are larger than zero under different

threshold, it means that the real model is more robust than the assortatively randomized

model (GRN-Assort). The real metabolic layer has comparable robstness with the

disassortatibely randomized model (GRN-DisAssort), since RO
Meta −RCRN−Rand

Meta are near

zero under different threshold. d. the real model is also more robust than the randomized

model were the gene-protein connections are assortatively rewired.
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FIG. 5: The final functional node sizes in the multilayer molecular networks after

randomly removing 1− p fraction of genes from the gene regulatory network. The gene

regulatory network (GRN) in a is the general one, and those in b, c and d are the

tissue-specific ones. The PPI and metabolic networks in these four panels are the same

and a metabolite fail when all of its supports fail, that is fP2M = 1. The theoretical results

(solid lines) match the simulation results (symbols).
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