
 

RFEX: Simple Random Forest Model and Sample Explainer for non-Machine Learning 

experts 

D. Petkovic
,1
, A. Alavi, D. Cai, J. Yang, S. Barlaskar  

Computer Science Department, San Francisco State University 

1600 Holloway Ave, San Francisco, CA 94132, USA 
1
SFSU COSE Computing for Life Sciences, 1600 Holloway Ave., San Francisco, CA 94132 

email: Petkovic@sfsu.edu  

Machine Learning (ML) is becoming an increasingly critical technology in many areas.  However, 

its complexity and its frequent non-transparency create significant challenges, especially in the 

biomedical and health areas. One of the critical components in addressing the above challenges is 

the explainability or transparency of ML systems, which refers to the model (related to the whole 

data) and sample explainability (related to specific samples). Our research focuses on both model 

and sample explainability of Random Forest (RF) classifiers. Our RF explainer, RFEX, is designed 

from the ground up with non-ML experts in mind, and with simplicity and familiarity, e.g. 

providing a one-page tabular output and measures familiar to most users. In this paper we present 

significant improvement in RFEX Model explainer compared to the version published previously, a 

new RFEX Sample explainer that provides explanation of how the RF classifies a particular data 

sample and is designed to directly relate to RFEX Model explainer, and a RFEX Model and 

Sample explainer case study from our collaboration with the J. Craig Venter Institute (JCVI).  We 

show that our approach offers a simple yet powerful means of explaining RF classification at the 

model and sample levels, and in some cases even points to areas of new investigation. RFEX is 

easy to implement using available RF tools and its tabular format offers easy-to-understand 

representations for non-experts, enabling them to better leverage the RF technology.  
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1.  Introduction 

Machine Learning (ML) is becoming an increasingly critical technology in many areas 

(biomedicine, health, autonomous driving cars, business, loan approvals, law enforcement, 

distribution of government and health services, news filtering etc.). However, its complexity and 

its frequent “non-transparency“ create challenges in ensuring its proper, ethical, unbiased, 

technically and legally transparent (explainable) operations. This is especially of importance in the 

biomedical and health areas where ML may have direct and serious impact on human life and 

related products and services as well as on general adoption of these technologies [1,2,3]. Issues 

related to the use and problems with ML (including trust of users and adopters) are gaining not 

only attention from technical and academic community but also from business, public media, as 

well as regulatory and political organizations. One of the critical components in addressing the 

above challenges is the explainability or transparency of ML systems. At a high level, 

explainability properties of ML systems allow humans (experts and non-experts) to gain insights 

into how ML systems make their decisions.  ML explainability can be model based, where it offers 

insights on how the ML system works as a whole on a collection of data (e.g. whole training 

database) and sample based, where it offers insights into how the ML system classifies a specific 

data sample. The latter has been shown to be critical in determining user trust of non-ML experts 

who are often the key adopters of this technology [10]. ML explainability is also an essential 
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component of powerful “user in the loop” model of understanding, tuning, debugging, deploying 

and maintaining ML systems [4,26]. ML explainers can be agnostic to ML methods or ML 

specifics. ML systems that are explainable may achieve many benefits such as: increasing user 

trust; improvement in quality control and maintenance; legal transparency, and they may even 

offer new insights into the analyzed domain. The need for explainability does not exclude 

usefulness of black box models since they are always tried first and serve among other things to 

point to ultimate achievable accuracy and as such are part of the adoption decision process [9]. 

Note that some ML methods like Neural Networks and Deep Learning are inherently difficult to 

explain, while some like tree-based ones are more amenable to explanations. The academic 

community is addressing this issue with more research, dedicated programs and collaborations. A 

number of dedicated conferences and workshops on this topic have been held e.g. [8] including at 

PSB [6,7]. Government funding agencies are promoting research in this area (e.g. DARPA XAI 

initiative [4]) and think tanks and even companies are producing guidance for  better and more 

ethical use of ML and Artificial Intelligence (AI), notable being Asilomar AI Principles [5] whose 

recommendations  have recently been  endorsed by CA Legislature. One of the most well-known 

ML explainer is LIME [11,12] which is agnostic to ML algorithms and provides explanation 

information based on analysis and approximations using  “black box” ML system response to a set 

of individual samples.  ML (and its explainability) has also been used in genetic research to 

automatically develop information for classification for ontology databases and for quality control 

of data extracted by gene sequencing [21,22, 27]. “User in the loop” paradigm for improvement of 

ML systems are gaining attention  [4] with a good example in [26]  where authors demonstrate 

benefits of this approach (they call it “explanatory debugging”) to improving the quality of ML 

solution and increasing user trust, with explainability as its very important component. Jointly 

with Stanford Bioengineering we have been working for a number of years in applying ML to 

biomedical problems [16,17,18] and naturally we got involved in ML explainability, especially of 

well known Random Forest (RF) ML method [13]. We originally developed RF Explainability 

Enhancement pipeline (RFEX) as RF Model explainer and applied it to Stanford FEATURE data 

[16] where we also performed usability experiment with 13 users and demonstrated that RFEX 

increased their understanding of RF classification. In this paper we present several key 

contributions: a) significant improvements in RFEX Model explainer compared to the previously 

published version [16]; b) a new RFEX Sample explainer which provides simple explanation of 

how RF classifies a particular data sample and is designed to directly relate to RFEX Model 

explainer; and c) an RFEX Model and Sample explainer case study on the data and findings from 

J. Craig Venter Institute (JCVI) and Allen Institute for Brain Science [21,22,27] and on the 

Stanford FEATURE data described in [16].  

2.  Our approach to Random Forest Model and Sample Explainability - RFEX 

A number of researchers have leveraged RF’s ability to determine feature importance for 

addressing the explainability challenge or to transform RF into sets of rules, as covered in [16] and 

also applied in e.g. [21, 22]. Our RFEX approach is novel in the following: a) it goes far beyond 

simple ranking of features and provides many other measures to enhance RF explainability (e.g. 

tradeoffs vs. accuracy, ranking of feature combinations, feature interactions via feature cliques); b) 

provides RF Model as well as Sample explainers; and c) offers a very simple output report with 

components familiar to our target users, who are often non-ML experts. RFEX is designed to work 

only with RF, hence it is a direct method. All estimates of accuracy (e.g. in using subsets of 
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features) are direct e.g. computed using RF “engine” hence are not approximated. RF is widely 

used, powerful (as evaluated in [14]), well supported with tools (e.g. [15]) and inherently 

explainable. It is based on sets of ntree decision trees (forest of trees) voting together to determine 

sample classification. The parameter cutoff is chosen for voting threshold and determines RF 

sensitivity. RF has a built in approximately 1/3 cross validation error estimate (OOB) in that 

samples used for training of each tree are not used for accuracy estimation. In each tree, RF makes 

decisions on one feature at a time (optimal one from randomly selected mtry subset of all features, 

with replacement) effectively producing box like decision surfaces parallel with feature axes. This 

is amenable to explanations and consistent with applying range tests on individual features, 

similarly as common practice of evaluating individual tests in biomedicine. For the main 

classification accuracy measure, to be more precise in case of imbalanced data, we use standard F1 

score computed as 2*(recall*precision)/(recall + precision). RF has several built in feature 

importance (ranking) measures and we use the MDA (Mean Decrease in Accuracy) perturbation 

measure [13, 15].  We address the most common case of binary classification.  

 

Specific RFEX design goals were developed in consultation and conversations with our target 

users namely domain experts (but not ML experts) attempting to use ML technologies and were 

initially evaluated in [16] with 13 users. RFEX design goals include: a) user centered design: we 

specifically focused on developing explainers that are driven by the specific needs of our intended 

users; and b) simplicity and familiarity: we enforced simplicity and familiarity with common ways 

and measures our users analyze the data such as medical tests e.g. we enforced one page limit and 

a tabular feature-oriented format for RFEX reports with components easily understood by our 

target users. These goals enable effective leveraging of powerful “human in the loop” concept for 

explainable AI as outlined in [4,26] where RFEX serves as “user interface” between ML and the 

users. Following the principles of User Centered Design, we first asked who our persona is, e.g. 

what are their goals, skills, pain points, frustrations, how do they expect/like to receive the results 

of explainability, and what questions they would like answered from ML explainers. Our typical 

persona is the domain expert, often the key decision maker for adoption of ML, with basic 

knowledge of statistical measures and familiar with typical formats of medical tests where a report 

contains a list of tests (analogous to features in ML), each usually with ranges or values expected 

for + or – cases. Their familiarity with the inner workings of ML systems is low to moderate only. 

Often they have their own set of test cases not used for ML training, which they use to establish 

trust (hence importance of ML Sample explainers as noted in [10]).  They often have specific 

explainability questions (EQ) summarized below, where EQ 1-5 refer to ML Model and EQ 6-7 

refer to ML Sample explainability: 
1. What is the best accuracy achieved by the chosen ML method? (This is, in essence, the first and 

basic question addressed by most ML systems, black box or explainable)?   

2. Which features (preferably small manageable number) are most important for predicting the class 

of interest (this questions is critical in reducing complexity of the problem space)? 

3. What are basic statistics/ranges and separation of feature values between those for + and – class?  

4. What is the tradeoff  between using a subset of features and the related accuracy? 

5. Which groups of features work well together? 

6. Why was my sample classified incorrectly or correctly? Was it a “reliably” classified/misclassified 

sample or “marginal”? 

7. Which features or factors contributed to incorrect classification of the sample?  
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2.1.  RFEX Model Explainer 

RFEX Model Explainer presented in this paper is a significant improvement of the original RFEX 

approach published in [16]. It provides one page RFEX Model Summary table using the following 

seven steps (steps 1-3 are the same as in [16], steps 4-7 are new). These steps directly answer 

users’ model explainability questions 1-5 as outlined above but use some novel, more standard and 

institutive measures than the original RFEX. 
1. RF base accuracy: We train the RF classifier on a full training database using all features to 

establish baseline (ultimate) RF accuracy and optimal RF parameters e.g. ntree, mtry and cutoff 

using standard best practices for RF optimization. The accuracy measure we use is the F1 score. 

2. Feature Rank: We rank features by their predictive power using Mean Decrease in Accuracy 

(MDA) measured from the trained RF classifier in Step 1. This step answers questions on which 

factors (features) are most important and how they rank in terms of their predictive power in RF 

classification. In the case of unbalanced training data (e.g. number of + class samples is 10% or 

less than – class samples), we recommend the use of class specific MDA (separate rankings for + 

and – class denoted by MDA+ and MDA-) which, in our experiments, clearly showed different 

ranking [16, 23] and is provided by the R toolkit [15].   

3. Cumulative F1 score: We provide tradeoffs between using subsets of top ranked features (up to the 

topK) and RF accuracy by computing “cumulative F1 score” for each combination of top ranked 

2, top ranked 3,…top ranked topK features (in each step we perform full optimization/training of 

the RF). We chose topK threshold such that the cumulative F1 score for topK features is close 

enough to base F1 score using all features (from Step 1). It is of significance that in multiple 

experiments we have done [16, 23, 24], a  topK of only 2-6% of the total number of features 

produced over 90% of the accuracy achieved by using all features.  This step drastically reduces 

complexity and dimensionality to about 10 topK features and allows RFEX summary reports to fit 

on one page, an important requirement for ease of use and simplicity.  

4. AV/SD; [MAX,MIN] (class specific feature value ranges): To determine basic feature value 

statistics/ranges (e.g. presence or absence of a “signal” or a property, level of gene expression), we 

use common measures of average, standard deviation (AV/SD) and [MIN,MAX] range for feature 

values of + and - class, for each feature. This replaces feature Directionality (DIR) from [16] as a 

more direct, precise and familiar measure  

5. Cohen Distance: To determine separation of feature values for + and – class for each feature, a 

common question from our target users, we converged on Cohen Distance (we prefer this vs. 

Mann-Whitney-Wilcox test due to the problem with p values for large data sets being very low and 

the property of Cohen Distance to indicate the degree of separation vs. only confirming the 

hypothesis [19]). Cohen Distance between feature values of two populations e.g. of + and – class 

is:  

             Cohen Distance = ABS(AV+ -  AV-)/SD                                                   (1) 

 

where AV+ is the average of feature values for the positive class; AV- is the average of feature 

values for the negative class; and SD is the larger standard deviation of the two feature value 

populations. As noted in [19], Cohen Distance of less than 0.2 denotes a small; from 0.2 to 0.5 

denotes a medium; from 0.5 to 0.8 a large, and above 1.3 a very large distance. 

6. Cliques of N features: To determine feature interaction or most predictive groups of N features 

(clique of N)  from the topK features (or sometimes from the 2*topK to increase the coverage), we 

perform full RF training for each combination (clique) and, for each, record their best F1 score. We 

show top (usually 10) cliques (e.g. list of features) with the best F1 scores. Our users were mainly 

interested in cliques of 3 and 4. Note that this exhaustive search is possible given the drastic feature 

reduction performed in Step 3. This measure replaces Mutual Feature Interaction (MFI) from [16] 
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as a more accurate and intuitive measure computed directly using actual RF accuracy results. Note 

that top ranked N features may not necessarily form the best cliques of N. 

7. RFEX Model Summary. We collect the data as a one page tabular view comprising of:  a) a base 

RF accuracy data (from Step 1), e.g. F1 score, optimal ntree, mtry, cutoff; and b) an RFEX Model 

summary table with rows consisting of the topK features sorted by MDA (MDA+ for imbalanced 

training  data  case) and columns as in Steps 2-6 above, similar in format to common medical test 

reports. An example of RFEX Model Summary Table is shown in the case study in section 3.  
 

RFEX Model Explainer summary is then used as explainability information on how RF works on 

the training data as a whole and can be used as a component of an “explanatory debugging” ML 

user interface as advocated in [26]. 

2.2. RFEX Sample Explainer 

The RFEX sample explainability approach is designed with the target user in mind for situations 

when, for example, they want to check the RF classification results on a sample or feature level 

for a sample for which they know the ground truth, critical in forming users’ trust in ML systems 

[10]. Other use cases are in quality control (as in [22]) or editing of training data where one wants 

to delete samples of marginal “quality” in order to perform better ML training. RFEX Sample 

explainer consists of:  

 RFEX Sample Explainability Data consisting of several global sample level types of 

information: a) CORRECT_CLASS: Correct (ground truth) class label of tested sample known 

or assumed by the domain expert; b) RF_CLASS_LABEL: Sample class label determined by 

RF; and c) VOTE_FRACTION: Fraction of RF trees (relative to ntree of trained classifier) 

voting for the CORRECT_CLASS, e.g. the ground truth class of the sample, using trained RF 

from Step 1 in section 2.1 in predict mode, with all the features. VOTE_FRACTION, when 

compared to the cutoff of the trained RF, helps user assess if the classification was done 

“reliably” or was “marginal” or wrong, and is provided in R [15].  

 RFEX Sample Summary Table shows, in a one page summary, how particular features (topK 

features from RFEX Model Summary) contribute to RF decisions on tested samples. The nine  

columns of the RFEX Sample Summary table show all the information for easy analysis (the 

first five columns are the same as in RFEX Model Summary for easy reference) and are: 

Feature Rank; Feature Name; Feature MDA rank; Feature AV/SD for positive class; 

[Min,Max]; Feature AV/SD for negative class; [Min,Max]; Feature Value of Tested Sample; 

Sample Cohen Distance to + class  measured as difference between sample feature value and 

average of feature values for + class, normalized by standard deviation [19]; Sample Cohen 

Distance to – class; and K Nearest Neighbor Ratio defined as: 

 K Nearest Neighbor (KNN) ratio - this measure looks at K nearest neighbors to current feature 

value and measures the fraction of those that belong to CORRECT_CLASS. It complements the 

Sample Cohen Distances in that it is more local and rank based, as well as non-parametric, and 

consistent with the ways RF forms decision tree boundaries.  For K, we recommend 20% of the 

number of samples of the smaller class. 

 

Examples of RFEX Sample Summary tables from our case study are shown in Tables 2 - 4. As 

with RFEX Model Summary, RFEX Sample summary is designed to facilitate “human in the 

loop” process by providing an easy-to-use format to help users in identifying problematic samples 

(e.g. outliers) and their problematic features. Domain experts then may follow with their domain 
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knowledge for final decision making (e.g. keep the sample, reject it, drop some features).  Users 

can interpret RFEX Sample summary by first analyzing its global data, referring to sample as a 

whole e.g. VOTE_FRACTION, to get an indication of how close or far from the vote cutoff the 

sample was (was it a “reliable or high confidence” classification or a “marginal” one). Other 

global measures or metrics of sample “quality” to be checked from RFEX Sample Summary table 

include: a) average of Sample Cohen Distances to the correct class (expected to be small e.g. 1 or 

less for reliably classified samples); b) average of Sample Cohen Distances to the incorrect class 

(expected to be larger, e.g. above 2); and c) average KNN, expected to be above 0.4 for reliably 

classified samples.  To identify specific features that may have caused marginal sample quality 

(e.g. are “out of range”), one may apply measures as above to each feature, and possibly adjust the 

decision by feature importance (MDA rank). One can easily derive a set of rules using the above 

measures to interactively or automatically identify bad samples and/or bad features (similar to the 

tests on RF metrics developed in [22]). 

For RFEX Model and Sample explainer implementation, we use RF implemented in R because it 

is well supported and provides all the measures and features we need [15]. All RFEX steps can 

easily be automated in the form of a pipeline of processing steps, leveraging available RF toolkits 

like [15], as we demonstrated in the RFEX Model toolkit [20]. The RFEX output is in a standard 

and familiar tabular CSV format, which can be further customized as well as processed with 

“filtering” rules that are domain specific. 

3. Application of RFEX to human nervous system cell type clusters from gene expressions 

using data from J. Craig Venter Institute and Allen Institute for Brain Science 

In this case study we collaborated with the team of Dr. R. Scheuermann from J. Craig Venter 

Institute (JCVI), and used data (“JCVI data” in this paper) produced in a collaboration between 

JCVI and the Allen Institute for Brain Science as published in [21,27] to test and verify our RFEX 

methods.  The goals of our case study were two-fold: a) investigate if RFEX Model Summary 

reflects information published in [21,27] in a correct and easy to use way, and b) use RFEX 

Sample explainer to identify samples and features that are possibly “out of range” and may need 

to be removed from the training set for quality control purposes (only based on the data not 

domain knowledge), an important use case in ML research and also done in [22]. JCVI data was 

an excellent test case for our evaluation since it contained some level of ground truth (e.g. 

identified most important gene markers for certain cell cluster types as in [21,27]), developed 

using domain-specific knowledge as well as RF methods. The matrix of gene expression values 

from single nuclei samples derived from human middle temporal gyrus (MTG) layer 1 forms the 

features for RF classification (610 of them), and groups them by 16 different cell type clusters, 

which constitute the classes for RF classification.  The goal of researchers in [21,27] was to use 

RF analysis to identify small sets of gene markers (3-5) that define various cell type clusters and 

with this to contribute to the Cell Ontology (CL) database. They performed RF analysis to identify 

key gene sets that predict cell types, which served as ground truth information for our case study. 

We, as in [21,27], transformed the problem of 16 class classification into a set of 16 binary 

classifications, where all classes of non interest were grouped into the – class and the one cell type 

cluster (class of interest) was considered the + class.   We analyzed several cell type clusters and 

in this paper we show RFEX analysis of cell type cluster e1.  Cluster for cell type e1 had 299 
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positive samples and 572 negative (non-e1) samples, and 610 features (gene expression levels), 

and thus offered a relatively balanced data set. In [21], cluster e1 is defined as “A human middle 

temporal gyrus cortical layer 1 excitatory neuron that selectively expresses TESPA1, LINC00507 

and SLC17A7 mRNAs, and lacks expression of KNCP1 mRNA”.  

 

RFEX Model based explainer shown in Table 1 yielded results very consistent with the analysis in 

[21,27] and importantly pointed out some directions for further study. The whole analysis of 

RFEX explainability has been performed by using only one page RFEX Model Summary from 

Table 1, an important goal of the RFEX approach. To measure base RF accuracy with all 610 gene 

features (explainability question EQ 1), we performed a grid search using a range of RF 

parameters and obtained a very high F1 score of 0.995 with ntree = 1000, mtry = 50, cutoff of 0.7 

for + class, 0.3 for – class  (high accuracy RF classification for e1 cluster was also confirmed in 

[21, 22,27]).  RFEX Model Summary Table 1 was then generated with only 8 topK ranked 

features achieving accuracy of F1 = 0.992, very close to the accuracy using all 610 features 

(F1=0.995), hence over 98% feature dimensionality reduction with practically no loss of accuracy. 

Cumulative F1 score also shows tradeoffs in using subset of features vs. achievable accuracy (EQ 

2, 4).  Importantly, the RFEX Model Summary table ranking (derived from 5 runs of RF and 

averaged)  shows stable (low standard deviation) ranking [23] with the top 3 ranked genes 

precisely matching  the e1 cluster definition from [21] (TESPA1, LINC005007, SLC17A7), with 

KNCNIP1, also mentioned in [21], ranked fifth (EQ 2).  Stable MDA rankings were also by 

themselves one “confidence” indicator of whether RF was able to train well [23]. Furthermore, by 

observing AV/SD of class specific feature values in Table 1, one can easily find information about 

levels of gene expression e.g. top 3 ranked genes show high expressions (high AV for + class 

feature values, low AV for - class) and KCNIP1, quoted as predictive for its lack of expression in 

[21], shows low AV value for the + class vs. high AV for the – class (EQ 3). Cohen Distance 

values confirm that all features show good separation between + and – classes (average Cohen 

Distance of 0.94), and notably this separation is highest for highly ranked features (EQ 3). Cliques 

information measuring which groups of 3 features offer best prediction (3 was recommended for 

e1 in [21]), show 10 best cliques of 3 in the last column of Table 1 (EQ 5). Best cliques are 

dominated by TESPA1 and include highly ranked genes, but notably not all from the top 8 ranked 

ones. Interestingly and significantly, RFEX Model Summary Table 1 also pointed to some 

unexpected results that should be investigated, thus opening the possibility of gaining new 

knowledge from this kind of explainability analysis. First, there is number of highly ranked gene 

markers not mentioned in [21,27], with the most notable one, TBR1, also appearing in many 

cliques of 3 in Table 1. TBR1 raised interest for further study by our JCVI colleagues. As a quick 

check we used our gene interaction search and visualization tool GeneDive [25] and found that 

there are some published interactions between SLC17A7 and TBR1. We also achieved similarly 

consistent results for cell type cluster i1 [23]. 

 

In the second part of our case study on the JCVI data, we used our newly developed RFEX 

Sample Summary for a common case of quality control similar to [22]. We evaluated if it can help 

users identify samples that are “marginal” or “outliers”, and hence not recommended for use in 

ML training, as well as to identify which specific features among the topK highly ranked ones 

contributed to this.  While in [22] this analysis is based partially on the use of domains specific 

information e.g. from the data extraction methods together with tests on derived RF metrics, our 
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analysis is strictly based on RFEX Sample Summary data and not on any domain knowledge.  

From the JCVI e1 training data, we chose two possibly “edge” samples using VOTE_FRACTION 

as a first metric:  a) Sample 1 – reliably classified (good) e1 cluster sample – with 

VOTE_FRACTION of 100% of trained RF trees using RF prediction engine on all 610 features 

treating this sample as a new sample; and b) Sample 2 – possibly “marginal or outlier” e1 cluster 

sample, with the least VOTE_FRACTION of 80% of trained RF trees.  RFEX Sample Summary 

for Sample 1 is shown in Table 2, and for Sample 2 is shown in Table 3. Visual observation and 

simple analysis of Tables 2 and 3 (as recommended at the end of section 2) clearly points to 

differences between these samples (EQ 6).  At the sample (global) level, the average of Cohen 

Distances to + class feature value population was 0.73 for Sample 1 and 0.74 for sample 2, but the 

average of Cohen Distances to - class samples was 8.66 for Sample 1 and only 3.16 for Sample 2. 

Importantly, average KNN ratio for Sample 1 was 0.93 (most neighbors of tested sample were of 

correct + class) but only 0.53 for Sample 2. These findings indicate much poorer “separation” of 

feature values for marginal Sample 2. Tables 2 and 3 also allow easy identification of specific 

features (genes) causing this marginalization using rules recommended at the end of section 2 (EQ 

7). In Table 3 we marked with *** five such features (2,3,4,7,8) identified by: a) being closer to 

the wrong class (indicated by their Sample Cohen Distance values being smaller for the – class 

than to the correct + class), as well as b) having very low KNN (e.g. <0.4). To verify our 

hypothesis that the above five features (out of 610 features) are responsible for this sample 

receiving low votes and that lower VOTE_FRACTION indicates presence of ”out of range” 

features” we replaced them with their respective average values for the + class and observed 

considerable increase of the VOTE_FRACTION from 80% to 93.7%.  To further verify RFEX 

Sample Explainer and calibrate the “out of range” tests above, we also performed tests on Stanford 

FEATURE data [16] containing as features 480 electrochemical properties around molecular 

locations with target classes as functional sites (+) and non-functional sites (-). For functional 

model ASP_PROTEASE.4.ASP.OD1, the training data contained 1585 + (site) samples denoting 

active functional sites, and 48577 – (non-site) samples.  RF was able to achieve F1 score of 0.999 

[16]. RFEX Sample Summary in Table 4 shows data for a marginal + class sample (one receiving 

the smallest number of trained RF tree votes among all + samples), which had 

VOTE_FRACTION of 70%. Data for this sample show a very similar “pattern” as for JCVI data, 

with the average of Sample Cohen Distances to + class of 3.0, average of Sample Cohen Distances 

to the - class of 1.15 (e.g. sample features are closer to the wrong – class than the + class) and 

average KNN of 0.097, all well below expected values for “good” samples. As a reference, for the 

+ sample in this database, with VOTE_FRACTION of  100%, the average of Sample Cohen 

Distances to + class  was 0.36, average of Sample Cohen Distances to the -  class  was 2.68, and 

average KNN was 0.47. Similar tests as for JCVI data on individual features of FEATURE 

marginal sample identified all eight of them being “out of range”. To measure relation of 

VOTE_FRACTION to the presence of “out of range features” we “corrupted” good sample’s top 4 

feature values by replacing them with respective averages of feature values for – (wrong) class and 

got significant drop in VOTE_FRACTION from 1.0 to 0.74.  

4.  Discussion  

In this paper we presented novel RFEX Model and Sample explainers for RF classifier.  RFEX is 

designed from the ground up with non-ML experts in mind, and with simple and familiar formats 

and components e.g. providing one-page tabular outputs and measures familiar to most users. In 
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this paper we presented: a) significant improvements in RFEX Model explainer compared to the 

previously-published version; b) a new RFEX Sample explainer that provides explanations of how 

RF classifies a particular data sample and designed to directly relate to the RFEX Model 

explainer; and c) an RFEX Model and Sample explainer case study on the data and findings from 

J. Craig Venter Institute (JCVI) and Allen Institute for Brain Science.  In our case study we 

demonstrated that RFEX showed correct and useful results in a format that is simple and familiar 

to our target users, as well as helped to explain RF classification at overall model as well as at 

sample and feature level, important functions for increasing users’ trust and for quality control in 

ML training. We also showed that RFEX could even identify some new areas (e.g. genes) for 

further investigation. RFEX is easy to implement using available RF toolkits as we demonstrated, 

and its one page tabular format offers easy to understand representation for non-experts.  Future 

work includes more testing of RFEX with users and on data where sufficient ground truth 

(including at sample and feature level) is available, and completing full function RFEX Model and 

Sample Jupyter based toolkit. 

Table 1: RFEX Model Summary table for JCVI data - e1 cluster. Base RF accuracy using all features is               

F1=0.995, for ntree = 1000, mtry = 50 and cutoff (0.3, 0.7) 

Feature 

index  

Feature 

name 

MDA 

value 

Cumulative 

F1 score 

 

AV/SD 

e1 class; 

[MIN,MAX] 

AV/SD 

non e1 class; 

[MIN,MAX] 

 Cohen Distance 

 

Top 10 cliques of 3 features 

1 TESPA1  18.8 N/A 363.5/266 

[0, 1836] 

3.9 /29 

[0,423] 

1.35 -[TESPA1, SLC17A7, ZNF536] 

 

-[TESPA1, KCNIP1, TBR1] 

 

-[TESPA1, SLC17A7, TBR1] 

 

-[TESPA1 , ZNF536, TBR1] 

 

-[TESPA1, SLC17A7, PROX1] 

 

- [TESPA1, GAD2.1, TBR1] 

 

-[TESPA1, GAD2, TBR1] 

 

-[TESPA1, ADARB2.AS1, TBR1 

 

-[TESPA1, PROX1, TBR1] 

 

-TESPA1, TBR1, PTCHD4] 

 

2 LINC00507 

 

16.5 0.980 234/203 

[0,1646] 

1.8/15 

[0,288] 

1.14 

3 SLC17A7 

 

16.3 0.9816 82.8 / 77 

[0,498] 

1.1 / 11 

[0,246] 

1.06 

4 LINC00508 

 

12.8 0.9799 97.4/108 

[0,727] 

0.6/4.8 

[0,96] 

0.9 

5 KCNIP1 

 

12.7 0.9866 1.0 /2.8 

[0,43] 

310.6 /377 

[0,2743] 

0.82 

6 NPTX1 

 

12.5 0.9901 142/176 

[0,1241] 

3/21 

[0,301] 

0.79 

7 TBR1 

 

12.3 0.9917 34/57 

[0,413] 

0.4/4.1 

[0,67] 

0.59  

8 SFTA1P 

 

12.1 0.9917 108/119 

[0,629] 

1.1/15 

[0,234] 

0.9  

 

 

 

 

 

 

 

 

    

   Table 2: RFEX Sample Summary for JCVI data, Sample 1 – “good” sample, VOTE_FRACTION 100% 
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Feature 

Rank 

 

Feature 

name 

Feature 

MDA 

rankings 

 

Feature  

AV/SD for 

 e1 (+) Class; 

Range  

[Min,Max] 

Feature  

AV/SD for 

non-e1 (-)  

Class; 

Range 

[Min,Max] 

Feature 

Value of 

tested 

sample 

 

Sample  

Cohen  

Distance  

To  

e1 class 

Sample  

Cohen 

 Distance  

To  

Non e1 class 

K Nearest 

Neighbor  

ratio 

 

1 TESPA1  18.8 363.5/266 

[0, 1836] 

3.9 /29 

[0,423] 

125.5 

 

0.89 4.2 57/60 

2 LINC00507 

 

16.5 234/203 

[0,1646] 

1.8/15 

[0,288] 

  

   68.4 

 

0.82 4.4 56/60 

3 SLC17A7 

 

16.3 82.8 / 77 

[0,498] 

1.1 / 11 

[0,246] 

209.9 

 

1.65 18.9 59/60 

4 LINC00508 

 

12.8 97.4/108 

[0,727] 

0.6/4.8 

[0,96] 

14.1 

 

0.77 2.8 49/60 

5 KCNIP1 

 

12.7 1.0 /2.8 

[0,43] 

310.6 /377 

[0,2743] 

0 0.36 0.82 57/60 

6 NPTX1 

 

12.5 142/176 

[0,1241] 

3/21 

[0,301] 

214.9 

 

0.41 10.1 56/60 

7 TBR1 

 

12.3 34/57 

[0,413] 

0.4/4.1 

[0,67] 

81.3 

 

0.83 19.7 58/60 

8 SFTA1P 

 

12.1 108/119 

[0,629] 

1.1/15 

[0,234] 

126.5 

 

0.16 8.36 56/60 

 

Table 3: RFEX Sample Summary for JCVI data, Sample 2 – “marginal” sample, VOTE_FRACTION 80%. Possibly   

problematic features are  marked *** 

Feature 

Rank 

 

Feature 

name 

Feature 

MDA 

rankings 

 

Feature  

AV/SD for 

 e1 (+) Class; 

Range  

[Min,Max] 

Feature  

AV/SD for 

non-e1 (-)  

Class; 

Range 

[Min,Max] 

Feature 

Value of 

tested 

sample 

 

Sample  

Cohen  

Distance  

To  

e1 (+) class 

Sample  

Cohen 

 Distance  

To  

Non e1 (-) class 

K Nearest 

Neighbor 

ratio 

 

1 TESPA1  18.8 363.5/266 

[0, 1836] 

3.9 /29 

[0,423] 

601 0.89 20.6 60/60 

2 *** LINC00507 

 

16.5 234/203 

[0,1646] 

1.8/15 

[0,288] 

2 1.14 0.01 4/60 

3 *** SLC17A7 

 

16.3 82.8 / 77 

[0,498] 

1.1 / 11 

[0,246] 

1 1.06 0.009 11/60 

4 *** LINC00508 

 

12.8 97.4/108 

[0,727] 

0.6/4.8 

[0,96] 

1 0.89 0.08 31/60 

5 KCNIP1 

 

12.7 1.0 /2.8 

[0,43] 

310.6 /377 

[0,2743] 

1 0 0.82 51/60 

6 NPTX1 

 

12.5 142/176 

[0,1241] 

3/21 

[0,301] 

78 0.36 3.57 58/60 

7*** TBR1 

 

12.3 34/57 

[0,413] 

0.4/4.1 

[0,67] 

0 0.6 0.1 31/60 

8 *** SFTA1P 

 

12.1 108/119 

[0,629] 

1.1/15 

[0,234] 

2 0.89 0.06 9/60 

 

 

 

 
 

 

 

Table 4. RFEX Sample Summary from FEATURE data [16] for ASP_PROTEASE.4.ASP.OD1 for a marginal sample 

of + class, with VOTE_FRACTION of 70%. Possibly problematic features are marked with ***.  
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