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ABSTRACT 25 

Protein synthesis is dysregulated in many diseases, but we lack a systems-level picture of how signaling 26 

molecules and RNA binding proteins interact with the translational machinery, largely due to 27 

technological limitations. Here we present riboPLATE-seq, a scalable method for generating paired 28 

libraries of ribosome-associated and total mRNA. As an extension of the PLATE-seq protocol, riboPLATE-29 

seq utilizes barcoded primers for pooled library preparation, but additionally leverages rRNA 30 

immunoprecipitation on whole polysomes to measure ribosome association (RA). We demonstrate the 31 

performance of riboPLATE-seq and its utility in detecting translational alterations induced by inhibition 32 

of protein kinases. 33 

 34 
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 37 

BACKGROUND 38 

The cellular responses to many physiologic stimuli require new programs of protein production. 39 

Transcriptional regulation allows direct control of gene expression over a broad dynamic range, but cells 40 

can often more rapidly adjust protein expression levels through translational control. Consequently, 41 

alongside transcription factors and their associated regulatory networks, there are mechanisms of 42 

modulating the translation of specific genes. mTOR is an important example of a translational regulator 43 

that integrates many potential extracellular signals to regulate cellular metabolism and protein 44 

synthesis. Activated through the PI3K/Akt/mTOR signaling axis, mTORC1 phosphorylates eIF4E inhibitors 45 

(4E-binding proteins, or 4E-BPs), which releases eIF4E and promotes formation of the eIF4F complex in 46 
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the initial steps of translational initiation1. The actions of mTORC1 are mediated in a sequence-specific 47 

manner by 5’ terminal oligopyrimidine (5’TOP) motifs, which are C/T-rich sequences in the 5’ UTRs of 48 

mTORC1 target transcripts2. The mTOR protein, the 4E-BP/eIF4E axis, and the 5’TOP tract-containing 49 

genes (TOP genes) constitute a basic translational regulatory network.  50 

Despite the attention garnered by profiling and modeling transcription control networks, less progress 51 

has been made in understanding systems-level translational control. This is in part due to technological 52 

limitations of current translational profiling protocols, which lack the scalability for coupling 53 

measurements of protein synthesis with a large number of perturbations. Early genome-wide studies of 54 

translational regulation combined polysome profiling and microarray analysis to quantify ribosome 55 

association on a gene-by-gene basis3. The combination of nuclease footprinting of ribosomes4 and deep 56 

sequencing led to the development of ribosome profiling, which refines translational profiling by 57 

resolving the positions of bound ribosomes throughout the transcriptome with single-nucleotide 58 

resolution5 More recent modifications expand on this concept, such as cell type specificity through 59 

recombinant tagging of ribosomes driven by cell type-specific markers (e.g. RiboTag)6,7, increased 60 

sensitivity via ligation-free ribosome profiling8, or targeted profiling in specific sub-cellular 61 

compartments9. Although these approaches are amenable to detailed mechanistic analysis of 62 

translational control in a small number of samples, they are prohibitively expensive and labor-intensive 63 

to scale for concurrent analyses of multiple perturbations across a larger sample set. The ideal 64 

technology for systems-level analysis would couple genome-wide perturbations to a genome-wide 65 

readout of translation, allowing direct observation of translational alterations in specific genes in 66 

response to a systematic screen of potential perturbations. 67 

Here we present riboPLATE-seq, a scalable method for generating paired libraries of ribosome-68 

associated and total RNA, which is based our recently reported Pooled Library Amplification for 69 

Transcriptome Expression (PLATE-seq) technology10. PLATE-seq allows highly-multiplexed RNA-seq, by 70 
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introducing sample-specific barcodes during reverse transcription to enable pooling of cDNA from 71 

multiple individual samples at an early stage of library preparation, reducing both reagent and labor 72 

costs. Furthermore, as PLATE-seq generates cDNA fragments strictly from the 3’ ends of intact, 73 

polyadenylated RNA via oligo-dT pulldown and priming, the resulting libraries saturate more rapidly 74 

than those with full gene body coverage. Consequently, PLATE-seq is advantageous over conventional 75 

RNA-seq in throughput of both library preparation and sequencing.  76 

We take advantage of riboPLATE-seq for parallel, genome-wide translational profiling in 96 samples, 77 

which would be technically challenging with conventional polysome or ribosome profiling. riboPLATE-78 

seq uses pan-ribosomal immunoprecipitation to isolate the ribosome-associated fraction of each species 79 

of polyadenylated transcript, enabling inferences regarding gene-specific translation akin to polysome 80 

profiling. Using PLATE-seq as a readout for ribosomal IP, riboPLATE-seq enables high-throughput 81 

translational profiling and screening of potential translational regulators. While riboPLATE-seq measures 82 

the abundance of ribosome-bound mRNA rather than nucleotide-resolved ribosome density (as in 83 

ribosome profiling), it is highly scalable, inexpensive, and seamlessly compatible with automated liquid 84 

handling. 85 

In this study, we use riboPLATE-seq to interrogate translational regulation mediated by the 86 

PI3K/Akt/mTOR and MAPK/ERK signaling pathways. By treating cells with inhibitory drugs targeting 87 

mTOR, PI3K, and MNK1 in a multi-well plate, we sought to uncover specific per-gene signatures of 88 

altered translation corresponding to loss of function in these kinases. Additionally, we tested pairwise 89 

combinations of these inhibitors to characterize their potential interactions. We also generated 90 

signatures of mTOR and MNK1 inhibition in ribosome profiling and RNA sequencing for comparison to 91 

established methods of interrogating translation. Importantly, ribosome profiling provides a measure of 92 

ribosome-mRNA association that is quantitatively distinct from that of riboPLATE-seq. The ratio of 93 

aligned reads in ribosome profiling over aligned reads in RNA-seq libraries obtained from the same 94 
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biological sample corresponds to the average number of ribosomes bound per individual transcript. In 95 

contrast, the ratio of aligned reads in riboPLATE-seq over normal PLATE-seq corresponds instead to the 96 

fraction of the total transcribed pool of transcripts bound by ribosomes.  97 

 98 

RESULTS 99 

riboPLATE-seq Technology 100 

riboPLATE-seq enables transcriptome-wide measurements of ribosome association in a multi-well plate 101 

format by combining pan-ribosomal immunoprecipitation (IP) with a low-cost technique for RNA-seq 102 

called PLATE-seq (Figure 1A). In PLATE-seq, we isolate polyadenylated RNA species with an oligo-d(T) 103 

capture plate, followed by incorporation of a well-specific barcode in poly(T)-primed reverse 104 

transcription. After mixing the barcoded cDNA libraries from each well of a plate, we conduct all 105 

subsequent library preparation steps on a single, pooled sample and sequence the resulting libraries to a 106 

modest depth (~4 million reads per well). Previous studies have used ribosome IP to isolate ribosome-107 

bound mRNA from specific cell types in vivo with the translating ribosome affinity purification (TRAP)11 108 

and RiboTag6 systems, relying on transgenic or recombination-driven epitope labeling of ribosomal 109 

proteins.  In riboPLATE-seq, we use a native epitope in the 5.8S rRNA for pan-ribosomal IP. By comparing 110 

transcript abundance as measured by PLATE-seq both with and without ribosomal IP, we can measure 111 

gene-specific ribosome association across the transcriptome. In this way, riboPLATE-seq can extend the 112 

scalability of PLATE-seq from transcriptional to translational profiling. 113 

To implement riboPLATE-seq, we divide polysome lysates from a multi-well plate experiment into two 114 

plates. We then subject one plate to indirect, pan-ribosomal IP on an automated liquid handling system 115 

with biotinylated anti-rRNA antibody y10b and streptavidin-coated magnetic beads. Finally, we generate 116 

PLATE-seq libraries from the immunoprecipitated polysomes from the first plate and total lysate from 117 
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the second plate as described previously. This design minimizes sample-to-sample noise due to batch 118 

effects by processing an entire plate as one batch, and simultaneous processing of a plate via automated 119 

liquid handling systems significantly reduces the time and effort required for processing large numbers 120 

of samples. Furthermore, per-sample reagent costs are substantially lower in PLATE-based library 121 

preparations. PLATE-seq generates 3’-end RNA libraries for under $6 per sample in reagents, while 122 

riboPLATE-seq requires additional expenses for automated ribosome IP totaling ~$7 per sample for 123 

reagents and disposables, all in 96-well plate format. A full riboPLATE-seq study performed on one 96-124 

well plate costs less than $20 in materials per sample to generate paired libraries of ribosome-125 

associated and total RNA, compared with $86 for ligation-free ribosome profiling and RNA sequencing.  126 

riboPLATE-seq Translational Profiling Screen 127 

To characterize the performance of riboPLATE-seq, we designed an experiment to identify the 128 

translational impact of inhibiting multiple components of mitogenic signaling in cancer cells. TS-543 129 

glioma neurospheres harbor an activating mutation in PDGFRA, leading to increased mitogenic signaling 130 

activity12 that exacerbates the effects of inhibiting these pathways. We treated cells seeded in a 96-well 131 

plate with inhibitors of the PI3K/Akt/mTOR and MAPK/ERK signaling axes for six hours (Figure 1B), as 132 

both pathways converge on the ribosome at eIF4E and are thought to influence the formation of the 133 

eIF4F complex. This complex, formed from the cap-binding protein eIF4E, the RNA helicase eIF4A, and 134 

the scaffold protein eIF4G, is required for cap-dependent translation initiation, and the association of 135 

eIF4E and eIF4G is a heavily regulated component of this process. PI3K activates AKT which 136 

phosphorylates mTOR, and activated mTOR facilitates eIF4F formation by phosphorylation of eIF4E-137 

interacting proteins (4E-BPs), which then release eIF4E1,2. Separately, the MAPK signaling cascade 138 

activates MNK1, which phosphorylates eIF4E directly, increasing its affinity for the 5’ m7G cap and 139 

stabilizing eIF4F13. By screening several members of these two pathways we sought to identify targets 140 

specific to each individual member and compare translational signatures between pathways. The drug 141 
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treatments in total consisted of two competitive mTOR inhibitors, PP242 and AZD-8055; an inhibitor of 142 

PI3K upstream of mTOR, BKM120; a specific inhibitor of MNK1/2 activity, MNK-i1; and 4EGi-1, a 4E-BP 143 

mimic that inhibits the association of eIF4E and eIF4G. We determined concentrations of these drugs 144 

from an examination of the literature, ensuring values near the half-maximum inhibitory concentrations 145 

(IC50) for the main substrates of the drugs in question: 625nM PP24214, 50nM AZD-805515, 1μM 146 

BKM12016, 100nM MNK-i117, and 50μM 4EGi-118. In order to analyze possible interactions between 147 

kinases, we also treated samples with pairwise combinations of PP242, BKM120, and MNK-i1. 148 

Previous studies of the effect of MAP kinase interacting kinases (MKNKs, a.k.a. MNKs 1/2) on 149 

translational regulation utilized small-molecule inhibitors of these proteins, notably the compound 150 

CGP5738019,20. However, this compound has been shown to be a nonspecific inhibitor of several 151 

unrelated kinases, with effects on eIF4F formation independent of its effects on MNKs. CGP57380 has 152 

low-micromolar IC50 values for MNK isoforms (0.87 μM/ 1.6μM for MNK1/MNK2, respectively) and 153 

significantly inhibits other kinases at these concentrations, including MKK1, CK1, and BRSK221. 154 

Additionally, CGP57380 concentrations below that which affects eIF4E phosphorylation may still 155 

decrease proliferation and survival, and an increase in eIF4E:4EBP binding occurs at concentrations 156 

below those impacting MNK1, indicating broad off-target effects impinging translational regulation22. 157 

Determination of the translational targets of MNK1 via ribosome or polysome profiling with this drug in 158 

prior work is complicated by this lack of specificity, especially with regards to off-target effects directly 159 

impacting translational machinery. In contrast, MNK-i1 has been recently identified as a highly specific 160 

MNK inhibitor, with IC50 values of 0.023 μM and 0.016 μM for MNK1 and MNK2 respectively, and blocks 161 

eIF4E phosphorylation without impacting other pathways converging on eIF4E22. We therefore sought to 162 

clarify the effect of MNK1 on translation with this novel inhibitor.  163 
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For comparison, we performed ribosome profiling and RNA-seq on TS-543 neurospheres treated with 164 

PP242 or MNK-i1 in identical regimens to the riboPLATE-seq study, in order to assess the similarity of 165 

translational perturbations detected across experiment types. As riboPLATE-seq measures the fraction 166 

of an expressed transcript associated with ribosomes (hereafter referred to as “ribosome association” or 167 

RA) and ribosome profiling/RNA-seq measure the average number of ribosomes bound per transcript 168 

(conventionally defined as “translation efficiency” or TE), we expected these two methods to give 169 

quantitatively distinct results while identifying similar sets of targets for these translational regulators. 170 

Performance of riboPLATE-seq 171 

First, we assessed the quality of the pooled ribosome-associated riboPLATE-seq and normal PLATE-seq 172 

libraries in terms of library complexity and saturation. Figures 2A and 2B show saturation curves for 173 

riboPLATE-seq and PLATE-seq, respectively, demonstrating the dependence of these libraries’ 174 

sensitivities on read depth. The two curves are comparable, with ~10-11K unique genes detected at 175 

saturating depth, though riboPLATE-seq requires about twice the number of aligned reads as PLATE-seq 176 

to achieve this saturation. As expected, PLATE-seq libraries contain more unique genes on average than 177 

riboPLATE-seq libraries despite a shallower sequencing depth. Asymmetric division of initial lysate 178 

volumes favoring ribosome IP over unmodified PLATE-seq (90%/10%) helped to combat this inherent 179 

inequality, generating sufficiently complex libraries in both cases. 180 

Figure 2C highlights the differences between riboPLATE-seq and PLATE-seq in terms of library 181 

complexity and sequencing depth, and compares these with libraries generated by ligation-free 182 

ribosome profiling and conventional RNA-seq. On average, riboPLATE-seq detects approximately 9,800 183 

unique genes in 1.4 million uniquely mapped reads, while PLATE-seq detects an average of 10,400 genes 184 

in 0.6 million reads per sample in this study. These measurements are comparable to the initial report 185 

characterizing PLATE-seq, in which Bush et al. detected an average of approximately 10,200 genes from 186 
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0.67 million uniquely mapped reads per sample10. In contrast, ligation-free ribosome profiling and total 187 

RNA sequencing libraries downsampled to the respective median read depths of riboPLATE-seq and 188 

PLATE-seq libraries still detect ~14,000 genes each, reflecting the inherent complexity of these libraries 189 

even at reduced sequencing depths (Additional File #1: Supplementary Figure S1). At full depth, 190 

ribosome profiling libraries detect an average of 14,000 genes per 2 million reads, while RNA-seq 191 

detects 15,000 genes in 1.6 million reads per sample. In summary, both riboPLATE-seq and PLATE-seq 192 

generate libraries of a lower overall complexity than ribosome profiling and RNA sequencing, and 193 

require substantially fewer reads to achieve saturation. 194 

To determine the specificity of pan-ribosomal IP for ribosome-bound RNA, we measured the depletion 195 

of RNA species for which we expected little or no ribosome association (RA) in the riboPLATE-seq vs 196 

PLATE-seq libraries. We measured depletion extrinsically, with respect to a set of polyadenylated spike-197 

in RNAs added after lysis, and intrinsically with respect to the set of highly-expressed, polyadenylated 198 

non-coding RNA transcripts (ncRNA) contained in the UCSC “known genes” RefSeq annotation. Figures 199 

2D-E summarize these two analyses.  200 

To assess the depletion of spike-in RNA in riboPLATE-seq, we added polyadenylated RNA standards 201 

(ERCC spike-ins) to half of the wells in a riboPLATE-seq experiment, after lysis but prior to ribosome IP. 202 

Figure 2D shows the distribution of the log2-ratio of spike-in abundance in riboPLATE-seq to PLATE-seq, 203 

demonstrating depletion of spike-ins associated with ribosomal IP across most wells. The wells exhibit a 204 

median 4.5-fold depletion ratio, and 31/48 wells exhibit 4-fold depletion or greater. However, two wells 205 

exhibit a modest (<2-fold) enrichment of spike-ins after ribosome IP, and the wide distribution of 206 

depletion log2-ratios ranges from 11 to 0.7 (equivalent to ~1.6-fold relative enrichment). Aside from 207 

potential non-specific pulldown of spike-ins, random re-initiation of free ribosomes on polyadenylated 208 

transcripts in lysate could result in their capture by ribosome immunoprecipitation, resulting in their 209 
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enrichment in riboPLATE-seq. This might be minimized in future riboPLATE-seq studies by inclusion of 210 

GDPNP in the lysis buffer. As GTP hydrolysis is required in both start site selection and subunit joining 211 

steps of 80S initiation complex formation, inclusion of a non-hydrolyzable GTP analogue such as GDPNP 212 

would prevent re-initiation of free ribosomes in lysate23. In summary, inclusion of ERCC RNA spike-ins 213 

provides a valuable, internal quality control measurement to check IP fidelity in riboPLATE-seq. 214 

As ribosome profiling has revealed low but significant levels of ribosome occupancy among ncRNA24, we 215 

sought to contrast ribosome association between ncRNA and mRNA transcripts with riboPLATE-seq. We 216 

expected noncoding transcripts to be generally depleted in our riboPLATE-seq libraries compared with 217 

PLATE-seq libraries from the same samples.  Indeed, we observed lower RA for the set of highly-218 

expressed ncRNA transcripts than mRNA within the same sample (Figure 2E). Examining the relationship 219 

between RA and  transcript abundance across ncRNA and mRNA gene sets also uncovered lower RAs for 220 

ncRNA than mRNA at all expression levels (Figure 2F), with similar patterns observed between 221 

translation efficiency (TE) and expression level in our ribosome profiling and RNA-seq data (Figure 2G). 222 

Combined with the observed spike-in depletion, our results are consistent with the depletion of RNA 223 

that is not bound to ribosomes by the pan-ribosomal immunoprecipitation implemented in riboPLATE-224 

seq.  225 

Pharmacological Screening of Mitogenic Signaling with riboPLATE-seq 226 

After establishing the performance of the riboPLATE-seq, we sought to characterize its ability to detect 227 

differential expression and RA. In principal component analyses (PCA) of the PLATE-seq and riboPLATE-228 

seq profiles, samples segregate according to the drug with which they were treated and related drugs 229 

co-cluster (Figure 3A, B). Principal component 1 (PC1) separates DMSO-treated controls from drug-230 

treated samples, and PC2 separates samples treated with one kinase inhibitor from those treated with 231 
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4EGi1 or a combination of kinase inhibitors. Combination-treated samples co-cluster more readily with 232 

each other than with any of their singularly-treated counterparts due to separation on PC2.  233 

We further calculated RA for all genes in all samples using riboPLATE- and PLATE-seq counts and 234 

differences in RA across the genome relative to DMSO-treated controls. PCA plots of RA and log-fold 235 

change in RA are shown in Figures 3C and 3D, respectively. In both, PC2 separates combination- and 236 

4EGi1-treated samples from singularly-treated samples (PP242, BKM120, MNK-i1, or AZD8055 alone), as 237 

it does in the previous plots in Figure 3A and 3B, while PC1 separates drugs by the number of genes 238 

displaying significant perturbations in RA compared with controls. In all plots, clusters of samples 239 

treated with singular drugs are organized in a manner consistent with their expected effects. Clusters 240 

corresponding to the three inhibitors of the mTOR signaling axis (PP242, BKM120, and AZD8055) nearly 241 

overlap in Fig. 3A and are very closely spaced in Fig. 3B, while MNK-i1-treated samples cluster more 242 

closely to the DMSO-treated controls, suggestive of weaker effects.  243 

This division between strong and weak inhibitors also appears in the RA-dependent plots in Figure 3C 244 

and 3D. In both, MNK-i1-treated samples have more negative PC1 values than any of those treated with 245 

mTOR axis inhibitors, while PP242-treated samples have the most positive PC1 values of any single 246 

kinase inhibitor. For PC2>0, the clusters corresponding to different singular kinase inhibitors are 247 

arranged in order of the number of significant RA perturbations they exhibit in comparison to DMSO 248 

controls (MNK-i1, AZD-8055, BKM120, then PP242; Spearman rank correlation p=0.0). Below the PC2=0 249 

line, clusters which correspond to combination and 4EGi-1 treatments are similarly arranged along PC1 250 

(4EGi-1, MNK-i1/BKM120, PP242/MNK-i1, PP242/BKM120; Spearman rank correlation p=0.0) (Table 2).  251 

riboPLATE-seq Differential Translation Efficiency Analysis 252 

In order to more rigorously analyze differential ribosome association as a function of drug treatment, we 253 

utilized DESeq2 to compare the replicates for each drug treatment to vehicle controls. We first identified 254 
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the total set of significantly differentially ribosome-associated genes across all singular drug treatments 255 

and generated a hierarchically-clustered heatmap of differential RA across conditions (Figure 4A). 256 

Signatures of differential RA due to treatment with PP242 (mTOR inhibitor), AZD8055 (mTOR inhibitor), 257 

and BKM120 (PI3K inhibitor), which target the PI3K/mTOR pathway, form a cluster in the column 258 

dendrogram. As expected, MNK-i1 and 4EGi-1 targets cluster separately. MNK-i1 targets MNK1 in a 259 

separate pathway converging on the ribosome at eIF4E, and 4EGi-1 is a broad inhibitor of eIF4E and cap-260 

dependent translation in general.  261 

The closely related differential-RA signatures for PP242, BKM120, and AZD8055 also include strong 262 

downregulation of the 5’TOP motif-containing genes, canonical translational targets of mTOR signaling, 263 

as indicated by the black tick marks in Figure 4A. In the rightmost two columns of Figure 4A, signatures 264 

of differential translation efficiency obtained via ribosome profiling and RNA-seq recapitulate the major 265 

patterns seen in differential RA. Both up- and down-regulated targets of PP242 are in good agreement 266 

between the two methods. The 5’TOP motif-containing genes exhibit low TE by ribosome profiling after 267 

PP242 treatment, whereas MNKi-1 treatment is far less effective on these genes based on ribosome 268 

profiling and leads to fewer differentially translated genes in general, consistent with riboPLATE-seq.  269 

We used gene set enrichment analysis (GSEA) to identify gene ontologies associated with differential 270 

ribosome association under each drug treatment (Fig. 4B), based on effect size of RA change associated 271 

with each drug. Across all drugs, all ontologies with low family-wise error rate (FWER<0.001) have 272 

negative normalized enrichment scores (NES), indicating a predominately inhibitory effect of these drugs 273 

on ribosome association. All treatments downregulate genes related to translation initiation and 274 

ribosomal components, as expected for inhibition of translation-activating signaling pathways. MNK-i1 275 

treatment inhibits these ontologies despite a relatively weak effect on the TOP motif-containing genes, 276 

suggestive of mTOR-independent inhibition of translation. Surprisingly, all kinase-dependent treatments 277 
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exhibit stronger, more consistent downregulation(s) of these genes than 4EGi-1; as this drug targets 278 

eIF4E directly, we expected TOP genes to be included in the set of its strongly-inhibited targets.   279 

Attenuation of Perturbations to Ribosome Association in Drug Combinations 280 

We expected that drug combinations would elicit greater changes in RA than the individual drug 281 

treatments alone. Specifically, we expected at least additivity if not outright synergy from simultaneous 282 

inhibition of the PI3K/Akt/mTOR and MAPK/ERK pathways, and a similar but perhaps less pronounced 283 

additivity of effects from inhibiting kinases in the same pathway (i.e. mTOR and PI3K). Surprisingly, we 284 

instead found a pattern of attenuation of the strongest effects of individual drugs when combined. 285 

Figure 5 compares the drug combination-treated samples to those treated with individual drugs, 286 

revealing attenuation of the strongest single-drug effects in combination. The volcano plots in Figure 5A-287 

C highlight the significantly downregulated targets of the three individual kinase inhibitors PP242, MNK-288 

i1, and BKM120, defined by thresholds on the significance and magnitude of RA change (FDR<0.01 and 289 

log-fold change in RA<-0.75, respectively). As a set, these genes exhibit comparatively diminished, less 290 

significant changes in ribosome association in combination-treated samples (Figure 5D-F), though drug 291 

combinations do not result in fewer significant RA changes overall (Table 2). The scatterplots in Figure 292 

5G-I emphasize this unexpected result of combining translation inhibitors by explicitly plotting changes 293 

in effect size for significant targets of individual drugs in combined treatments. Both positive and 294 

negative effects are diminished overall in each pairwise combination, though we observed less 295 

attenuation among individual targets of PP242 and BKM120 under combination treatment with 296 

PP242+BKM120 (Additional File #1: Supplementary Table 1).  297 

Motif-Based Target Classification in a Translation Control Network 298 

Finally, we displayed the results of our study in network form and mapped occurrences of a known 299 

translational cis-regulatory element, the 5’ TOP motif, across this network. Following the observation of 300 
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concordant regulation of canonical TOP genes in drug treatments impacting the mTOR signaling 301 

pathway, we first sought to expand the potential set of TOP genes within the strongly-perturbed genes 302 

in this study. We first obtained sets of canonical TOP genes and candidates containing previously 303 

uncatalogued 5’TOP tracts, a subset of which have known TOP-containing homologues in the mouse 304 

genome, from the comprehensive analysis of human transcription start sites performed by Yamashita et 305 

al25. This yielded a total set of 1,626 TOP gene candidates: within this set, 237 candidates have mouse 306 

homologues that are known TOP genes, and this subset overlaps substantially with the 83-member set 307 

of canonical TOP genes identified (54/83 mouse homologues/canonical TOP). We found these TOP 308 

candidates to behave similarly to canonical TOP genes in terms of perturbed RA. In the strip plots in 309 

Figure 6A, TOP genes and candidates within the significant targets (FDR<0.05) of each drug on the plate 310 

are color-coded, allowing comparison of their differential RA between conditions.  311 

 We then constructed a simple translational regulatory network from our riboPLATE-seq data and 312 

overlaid it with these canonical and novel TOP genes (Figure 6B). We considered the genes 313 

demonstrating significant reductions in RA due to treatment with PP242, MNK-i1, and BKM120 as the 314 

positive translational targets of mTOR, PI3K, and MNK1, respectively, as these drugs are specific 315 

inhibitors of these kinases. Here, we used a typical threshold for significance (FDR<0.05), but 316 

additionally required target genes to have at least 20 average normalized read counts across all samples.  317 

As expected, the targets of mTOR are enriched heavily for TOP genes and candidates. Nearly all known 318 

TOP genes and candidates with mouse homology, as well as a significant majority of remaining TOP gene 319 

candidates, are targets of mTOR. The largest fraction of each set is found in either the joint targets of 320 

mTOR and PI3K or the exclusive targets of mTOR. The largest set of targets belongs to mTOR (228 321 

exclusive/386 total), followed by PI3K (57 exclusive/213 total) and then MNK1 (21 exclusive/43 total), 322 

and TOP genes and candidates comprise a larger fraction of mTOR targets than PI3K or MNK1 targets. 323 
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The set of targets common to all three kinases is also highly enriched for curated and novel TOP genes 324 

(Fisher’s exact test p=0.00006), suggesting a subset of TOP genes impacted by MNK1, though this three-325 

way intersection is vastly smaller and less significantly-enriched for these genes than the two-way 326 

intersection of mTOR and PI3K targets (Fisher’s exact test p=6x10-24). Furthermore, the targets 327 

exclusive to either MNK1 or PI3K are not significantly enriched for TOP genes and candidates (Fisher’s 328 

exact test p=0.760 and p=0.219, respectively) in contrast to the exclusive targets of mTOR (p=5x10-8). 329 

Supplementary Table 2 details a more comprehensive statistical analysis of the network in Figure 6B, 330 

which considers TOP genes and candidates separately, while the calculations above consider enrichment 331 

across the combined set of genes and candidates (Additional File #1: Supplementary Table 2). This 332 

combined regulatory network suggests a relatively minor effect of MNK1 on TOP gene translation, and 333 

underscores the dependence of the effect of PI3K on TOP genes on mTOR downstream.  334 

 335 

DISCUSSION 336 

Ribosome association is frequently used to infer translational activity. This can be measured by sucrose 337 

gradient fractionation of intact RNA in polysome profiling, or of digested monosomes and their 338 

ribosome-protected footprints in ribosome profiling. Translation efficiency, defined as the rate of 339 

protein production per transcript, is approximated differently in these two methods. In polysome 340 

profiling, it is calculated as the ratio of transcripts that sediment in “heavy” vs “light” fractions, similar to 341 

the ratio of ribosome association in riboPLATE-seq. Ribosome profiling refines this measurement with its 342 

focus on ribosome footprints, calculating instead a per-transcript ribosome occupancy with additional 343 

information about position, regional density, and ribosome arrest26. riboPLATE-seq sacrifices the specific 344 

positional information provided by ribosome profiling for a general measurement of ribosome 345 

association, obtained by IP rather than sucrose gradient fractionation. With pooled library construction, 346 
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greater throughput is possible with riboPLATE-seq than with either ribosome profiling or polysome 347 

profiling.  348 

 349 

Though it is more scalable than ribosome profiling, riboPLATE-seq is not without limitations. The lack of 350 

resolution of individual ribosome positions means the method cannot resolve location-specific effects, 351 

such as the effect of ribosome association in 5’ leader sequences on translation in downstream coding 352 

sequences7. More generally, riboPLATE-seq is insensitive to translational regulation at the levels of 353 

elongation or termination due to its inability to distinguish active from stalled ribosomes, a limitation 354 

common to many ribosome-centric measurements27 including ribosome profiling.  355 

 356 

In this study, we interrogated translational regulation in mitogenic signaling pathways in cancer cells. 357 

Focal amplification of PDGFRA in TS-543 glioma neurospheres leads to constitutive activation of several 358 

members of these pathways, including ERK, Akt, and PI3K12. We observed the expected results of mTOR 359 

inhibition on translation with riboPLATE-seq, including decreased ribosome association with TOP genes, 360 

and further clarified targets for the kinases PI3K and MNK1. We found PI3K to target a subset of the TOP 361 

genes impacted by mTOR, without a strong impact on known TOP genes or candidate transcripts 362 

separate from that shared with mTOR. This suggests the effect of PI3K on the TOP genes may be wholly 363 

mediated by mTOR, consistent with the known organization of their signaling pathway. In contrast, 364 

treatment with either the highly-specific MNK inhibitor MNK-i1 or the eIF4E inhibitor 4EGi-1 did not 365 

significantly impact the TOP genes. Despite both drugs impacting the effector through which mTOR is 366 

thought to mediate TOP gene translation, eIF4E, off-target effects of commonly-used MNK inhibitors in 367 

past studies22 may have overemphasized previous observations to this effect, and potential off-target 368 

effects of 4EGi-128 complicate interpretation of its specific, eIF4E-dependent targets. 369 

 370 
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Pairwise combinations of inhibitors did not generate additive effects on ribosome association, instead 371 

triggering what we interpreted as compensatory regulation and attenuating the strongest effects of 372 

individual inhibitors. Surprisingly, combination treatment with PP242 and BKM120 attenuated their 373 

individual targets the least, despite the seeming redundancy of these drugs targeting the same pathway. 374 

Though still attenuated overall, a greater portion of the individual targets of PP242 and BKM120 were 375 

enhanced by combination treatment. This might suggest that PI3K inhibition does not saturate inhibition 376 

of its downstream effectors, including mTOR. These surprising findings highlight the utility of explicitly 377 

testing combined perturbations and the need for scalable measurement strategies like riboPLATE-seq. 378 

 379 

CONCLUSION 380 

This study serves as a proof-of-concept for larger-scale perturbation screens of potential translational 381 

regulators. Here, riboPLATE-seq revealed signatures of specific translational targets for kinases in related 382 

signaling pathways. Our results are consistent with the known structure of these pathways, including the 383 

previously established mechanism by which mTOR controls translation of the TOP motif-containing 384 

genes.  However, the majority of the ~500 known protein kinases remain unstudied at the level of 385 

translational regulation. The technology described here could enable a more comprehensive screen of 386 

protein kinases and/or RNA binding proteins, allowing inference of translational regulatory networks 387 

and de novo identification of regulatory motifs important to these networks that might be validated by 388 

high-resolution techniques like ribosome profiling and CLIP-seq. We anticipate that the ability to dissect 389 

these networks at scale will advance our understanding of translational regulation and the design of 390 

specific therapies for diseases involving aberrant translation. 391 

 392 

METHODS 393 
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Tissue Culture and Drug Treatment 394 

We seeded TS-543 neursopheres (passage #11) on a 96-well plate (Corning, #3799) at a density of 7,500 395 

cells per well (50,000 cells/mL) in 150uL NS-A complete medium (containing 10% v/v NeuroCult NS-A 396 

Proliferation Supplement, 20ng/mL EGF, 10ng/mL bFGF, and 2ug/mL heparin) (STEMCELL Technologies 397 

#05751). We incubated the plate of cells for 36 hours prior to the start of the experiment at 37°C and 5% 398 

CO2 in a tissue culture incubator. We separately prepared stock solutions of PP242 (Tocris, #4257), 399 

MNK-i1, NVP-BKM120 (Selleck, S2247), AZD8055 (Selleck, S1555), and 4EGi-1 (Tocris, #4800) in DMSO 400 

vehicle (Sigma, #472301). After dilution with NS-A basal culture medium (without supplement, 401 

cytokines, or heparin) (STEMCELL Technologies #05751), we administered the drugs or pure DMSO to 402 

the experimental and control wells, respectively, in 1uL doses. Final concentrations were 50nM 403 

AZD8055, 625nM PP242, 1μM BKM120, 100nM MNK-i1, and 50μM 4EGi-1, including in pairwise 404 

combination-treated samples. Drug treatment proceeded for 6 hours in the tissue culture incubator 405 

prior to lysis. 406 

Cell Lysis 407 

Following treatment, we centrifuged the plate of TS-543 for 7 minutes at 1800RPM on a Sorvall Legend 408 

XTR at room temperature and removed supernatants by aspiration. Placing the plate on ice, we 409 

resuspended the pelleted cells in each well in 30uL of polysome lysis buffer (20mM Tris-HCl, pH=7.4, 410 

250mM NaCl, 15 mM MgCl2),0.1mg/mL cycloheximide, 0.5% Triton X-100, 1mM DTT, 0.5U/mL 411 

SUPERase-In (ThermoFisher, AM2696), 0.024U/mL TURBO DNase (Life Technologies, AM2222), 1x 412 

Protease Inhibitor (Sigma, P8340)), mixed 5 times by pipetting, and rested the plate on ice for 5 minutes. 413 

We then centrifuged the plate for 5 minutes at 1400RPM at 4°C to remove bubbles before performing a 414 

quick freeze-thaw, placing the plate first in a -80°C freezer and then resting at room temperature for 5 415 

minutes each. Following an additional 10 minutes rest on ice, we viewed the plate under a microscope 416 

to check the extent of cell lysis. At this point, we added standard RNA spike-ins (ERCC Spike-In Mix #1, 1 417 
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uL/well of 1:5000 diluted stock) (Life Technologies, #4456740) to half of the wells for spike-in depletion 418 

experiments. We then prepared a new 96-well plate containing 3.5uL 2x TCL buffer (Qiagen, #1070498) 419 

per well, to which we transferred 3.5uL of lysate (approximately 10% total volume). 420 

Automated Pan-Ribosome Immunoprecipitation 421 

To the remaining lysate, we added 1 uL of SUPERase-in (ThermoFisher, AM2696) and 1 uL of biotinylated 422 

y10b antibody (ThermoFisher, MA516060) to each well, then sealed the plate and allowed it to incubate 423 

while gently shaking for 4 hours at 4°C. During this incubation, we washed 500uL of Dynabeads MyOne 424 

Streptavidin C1 streptavidin-coated magnetic beads (ThermoFisher, #65001) 3 times with polysome 425 

wash buffer (20mM Tris-HCl (pH 7.4), 250mM NaCl, 15mM MgCl2, 1mM DTT, 0.1mg/mL cycloheximide, 426 

0.05% v/v Triton X-100), using 1mL per wash and resuspending in 500uL. We added 5uL of washed 427 

beads to each well, then incubated while gently shaking at 4°C for an additional hour.  After this short 428 

incubation, we placed the plate on a magnet, removed and reserved supernatants, and washed the 429 

wells 3 times with 200uL per well of polysome wash buffer supplemented with 1uL/mL SUPERase-in on 430 

the Biomek 4000 automated liquid handling system. 431 

Following the final wash, we resuspended the beads in 15uL of ribosome release buffer (20mM Tris-HCl 432 

(pH 7.4), 250mM NaCl, 0.5% Triton X-100, 50mM EDTA) per well. During a 15-minute incubation at 4C 433 

on a Peltier module, with continuous pipet mixing on the Biomek 4000 in order to maximize elution, we 434 

distributed 15uL of 2x TCL buffer to each well of a new 96-well plate. Finally, we replaced the sample 435 

plate on the magnet and transferred eluants to the TCL-containing plate. 436 

PLATE-seq Library Preparation and Sequencing 437 

The plates of ribosome-associated and previously reserved total lysate in TCL buffer were submitted to 438 

the Columbia Genome Center for processing by the previously-described PLATE-seq method of RNA-seq 439 

library preparation10, which involves poly-A selection of transcripts, incorporation of sequence barcodes 440 
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in poly(T)-primed reverse transcription, and pooling for subsequent library preparation steps, generating 441 

a single 3’-end RNA-seq library from each 96-well plate. We pooled total and ribosome-associated 442 

PLATE-seq libraries and sequenced the combined libraries on the Illumina NextSeq 550 with a 75-cycle 443 

high-output kit. With paired-end sequencing, the first read corresponds to the 3’ end of a transcript, and 444 

the second read contains the barcode identifying the library in which the read was obtained.  445 

Ribosome Profiling and RNA Sequencing 446 

We seeded TS-543 neurospheres in a 6-well plate at a starting density of 50,000 cells/mL in 2 milliliters 447 

of NS-A complete medium per well, and allowed the plate to rest for 36 hours. After preparing PP242 448 

and MNK-i1 solutions in DMSO as above, we treated two wells each with 625nM PP242, 1.0μM MNK-i1, 449 

or DMSO vehicle for 6 hours in the tissue culture incubator. Following treatment, we transferred 450 

samples to 15mL conical vials for centrifugation at 640 RCF for 7 minutes, then removed supernatants 451 

and added 400 uL polysome lysis buffer (recipe above). After mixing by rapid pipetting, we transferred 452 

samples to 1.8mL microcentrifuge tubes, rested them on ice for 5 minutes, and triturated by 5 passages 453 

through a 23-gauge needle. Following a clarifying spin of 11K RCF for 10 minutes at 4C on a benchtop 454 

centrifuge, we transferred supernatants to a new set of microcentrifuge tubes and discarded pellets. 455 

Finally, we prepared ligation-free ribosome profiling and total RNA-seq libraries from these clarified 456 

polysome lysates following the instructions provided with their respective kits (smarter-seq smRNA-seq 457 

kit, Takara-Clontech; NEBnext Ultra-Directional II), augmented with our previously-published ligation-458 

free ribosome profiling protocol8. We sequenced 6 ribosome profiling libraries or up to 12 RNA-seq 459 

libraries in one NextSeq 550 high-output 75-cycle kit.  460 

Both PLATE-seq and ligation-free ribosome profiling library preparation protocols are available on our 461 

laboratory website29. 462 

Read Alignment and Data Analysis 463 
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Using a custom pipeline, we first trim reads of trailing polyA sequence and adapters with fastx-clipper30 464 

(fastx-toolkit v0.0.14), then align the multiplexed reads to the hg19 assembly of the human genome and 465 

known RNA spike-in sequences with STAR v2.4.0. We then demultiplex the aligned reads to their original 466 

riboPLATE- or PLATE-seq libraries according to their barcodes (available in BarcodesHiSeq.txt). We use a 467 

similar pipeline to process and align ribosome profiling and RNA sequencing libraries. Additional 468 

processing steps are required for ribosome profiling in order to trim polyA tails and adapters with 469 

fastx_trimmer30, then remove ribosomal RNA-aligned reads with bowtie231 (v2.1.0). We use 470 

featureCounts32 (from Subread v1.4.6) to count the number of fragments aligned to each gene in each 471 

library, counting all exon-aligned reads as valid.  472 

Definition of Gene Sets of Interest 473 

As PLATE- and riboPLATE-seq depend on isolation of RNA by poly(T) pulldown, they can only be used to 474 

measure polyadenylated transcripts. We defined a set of questionably-polyadenylated transcripts by the 475 

union of the set of non-polyadenylated and variably-polyadenylated genes identified in a screen of 476 

polyadenylation status across the transcriptome33. We removed these genes from consideration in our 477 

study to leave only consistently polyadenylated transcripts. We additionally obtained a set of known 5’ 478 

terminal oligopyrimidine motif-containing genes (TOP genes), as well as novel TOP candidates with and 479 

without known TOP-containing analogues in mice, from a comprehensive search of transcription start 480 

sites25.   481 

Regularized Logarithm Normalization and Outlier Removal 482 

After subsetting the count matrices for all libraries to remove counts for reads aligned to non-483 

polyadenylated and spike-in transcripts, we constructed an overall count matrix of all 192 libraries for all 484 

96 samples. We loaded this matrix into DESeq2 with corresponding column data describing the sample 485 

ID, library type (ribo or RNA PLATE-seq), and drug treatment for each library. We then used the 486 
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regularized logarithm function in DESeq2 with default parameters to obtain a variance-stabilized, log-487 

scale transformation of raw counts for all libraries.  488 

We used this transformed count matrix to perform two-dimensional principal component analyses (PCA) 489 

in Python, utilizing the scikit-learn package for analysis and matplotlib for visualization. We removed a 490 

total of 15 outliers from the PCA plots of ribosome-associated RNA, total RNA, and rlog-ribosome 491 

association, which we defined as the log-difference between the two measurements (rlog(riboPLATE)-492 

rlog(PLATE)). We then constructed a reduced matrix of raw counts corresponding to the remaining 81 493 

samples (see Table 1) and again performed rlog normalization on this matrix in DESeq2. We used this 494 

final matrix of rlog-normalized counts for non-outlier samples, as well as the raw count version of this 495 

matrix, for RNA quality control and principal component analyses in Figures 2 and 3, respectively. 496 

Differential count analysis in DESeq2 497 

We performed differential expression and differential ribosome association analyses using the DESeq2 498 

package in R34. First we constructed a column data table identifying the sample ID, drug treatment, and 499 

library type (riboPLATE vs PLATE) for each library. After loading this table and the raw count matrix for 500 

non-outlier samples, we performed simultaneous analyses for all drug treatments vs DMSO-treated 501 

controls using the following design formula: 502 

design = ~condition + condition:ind.n + condition:type 503 

In this design formula, condition refers to drug treatment status, type refers to riboPLATE-seq or PLATE-504 

seq library preparation, and ind.n corresponds to sample ID nested within condition, in accordance with 505 

the DESeq2 vignette35 (section Group-specific condition effects, individuals nested within groups). Pairing 506 

of riboPLATE- and PLATE-seq libraries from the same sample in this way allows DESeq2 to correct for 507 

sample-to-sample noise while calculating group-wise effects of drug treatment. 508 
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After setting PLATE-seq as the reference level for library type and DMSO as the reference level for drug 509 

treatment condition, we executed the DESeq2 function using fitType=local, then retrieved results for 510 

each drug treatment and comparison of interest. For differential ribosome association, we used function 511 

calls of the following format: 512 

res <- results(dds, name=paste0(“typeribo.condition”,cond)) 513 

Where dds is the DESeqDataSet object and cond is any of the drug treatments. The interaction between 514 

library type and drug treatment is equivalent to the calculation of ribosome association (RA). For 515 

differential expression, we considered only changes in gene abundance between PLATE-seq libraries 516 

independent of riboPLATE-seq. This required function calls of the following format: 517 

res <- results(dds, name=paste0(“condition”,cond)) 518 

Where dds is the DESeqDataSet object and cond is any of the drug treatments. This isolates the main 519 

effect of drug treatment, defined across total RNA PLATE-seq libraries only. 520 

For ribosome profiling and RNA sequencing, we followed a similar workflow, utilizing a design formula 521 

without sample pairing: 522 

design = ~condition + type + condition:type 523 

where condition corresponds to drug treatment (MNKi1, PP242, or DMSO) and type corresponds to 524 

RNA-seq vs ribosome profiling. We then set the base level of type to RNA and the base condition to 525 

DMSO, and executed DESeq2 with fitType=local. Finally, we retrieved results specific to the 526 

interaction effect, here equal to the calculated change in translation efficiency (TE) as a result of drug 527 

treatment, with the following two function calls: 528 

res_242 <- results(dds, name = “typeribo.conditionPP242”) 529 

res_MNK <- results(dds, name = “typeribo.conditionMNKi1”) 530 
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Identification of Perturbed Gene Ontologies by Gene Set Enrichment Analysis 531 

We constructed ranked lists for gene set enrichment analysis (GSEA) using the results of these 532 

differential expression and ribosome association analyses. We first removed any gene with invalid 533 

results reported by DESeq2 in any drug-vs-control comparison (i.e. genes with assigned p-value ‘NA’) 534 

from consideration. Next, we created a ranked list of genes for each drug treatment, using each gene’s 535 

log-fold change in RA as a rank statistic. We then performed a preranked GSEA on the C5 collection of 536 

gene ontology terms against these ranked lists, using the Preranked option in the GSEA-P desktop 537 

application36, with default parameters and scoring method set to ‘classic’.  538 

Network Visualization 539 

To create a basic network, we interpreted the abundant genes exhibiting highly significant reductions in 540 

RA under treatment with kinase inhibitors (FDR<0.01, baseMean>=20) as positive targets of the kinases 541 

in question. We loaded these gene sets into CytoScape37 (v2.7.1) as individual networks for each kinase, 542 

merged the three networks, and used the yFiles38 Organic automatic layout to organize the resulting 543 

merged network. We then color-coded the sets of canonical and novel TOP motif-containing genes 544 

present in the network, based on the lists obtained from Yamashita et al25. 545 

Data Visualization and Code 546 

We generated plots and diagrams using matplotlib (v3.0.2) and Jupyter Notebook (v5.0.0)39,40. Our 547 

analyses use NumPy41 (v1.13.3) for data manipulation, SciPy42 (v0.14.0) for statistical tests, scikit-learn43 548 

(v0.19.1) for PCA. We additionally generated strip plots and heatmaps using Seaborn44 (v0.9.0) in 549 

Python.  550 

 551 

 552 
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 553 

Figure 1: Overviews of the protocol and experimental design of the study performed. A) Schematic 554 

diagram of the riboPLATE-seq protocol, from lysis in a multi-well plate to pooled library preparation. The 555 

right-hand side mirrors the original PLATE-seq protocol. In this workflow, an oligo-dT-grafted plate 556 

captures polyadenylated RNA that can be reverse-transcribed with barcoded adapters, generating a 557 

plate of cDNA that may be pooled for library construction. The left side incorporates a pan-ribosome IP 558 

before PLATE-seq pooling and library preparation, generating instead a pooled library of ribosome-559 

associated RNA. B) Simplified structure of the signaling pathways under study and the specific protein 560 

targets considered. The PI3K/AKT/mTOR signaling axis at left converges with the MAPK/ERK pathway at 561 

right on eIF4E, early in the process of ribosome assembly (green box). The figure also outlines the 562 

inhibitors used in this study and their specific targets within these pathways. NVP-BKM120 is a PI3K 563 

inhibitor (blue), both AZD-8055 and PP242 are mTOR inhibitors (pink and red, respectively), MNK-i1 is a 564 

MNK1 inhibitor (green), and 4EGi-1 is a direct eIF4E inhibitor (black).  565 
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  567 

Figure 2: RNA-seq quality control in riboPLATE-seq. A-B) Library saturation strip plots for ribosome-568 

associated (riboPLATE-seq) and total RNA (PLATE-seq) libraries in this study. In each, the Y axis shows 569 

the number of unique genes detected in each sample at each subsampled read depth on the X axis, 570 

excluding libraries smaller than the subsampling depth. With ~10-11,000 unique genes detected, 571 

riboPLATE-seq and PLATE-seq are comparably saturated. C) Scatter plots emphasizing the relationship 572 

between library size and complexity across library types. The Y axis represents the number of unique 573 

genes detected within a library; the X axis represents its size in summed gene counts. PLATE-seq and 574 

riboPLATE-seq are very similarly distributed, with PLATE-seq generating slightly more complex, smaller 575 

libraries than riboPLATE-seq, while ribo- and RNA-seq generate larger, more complex libraries. D) 576 

Depletion of RNA spike-ins due to ribosome IP for 48 spike-in-containing samples. Depletion is 577 

calculated per-sample as the log2-ratio of the sum of all spike-in-aligned counts in the riboPLATE-seq 578 
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library over the same sum in the sample’s paired PLATE-seq library, using counts-per-million 579 

normalization (CPM). Most libraries show significant depletion of spike-ins after IP (median log2 ratio -580 

2.16; Wilcoxon signed-rank test p=1.97*10-9). E) Ribosome association (RA) of noncoding RNA (ncRNA, 581 

blue) vs mRNA (orange) across sample wells in riboPLATE-seq. RA is calculated as the ratio of rlog-582 

normalized riboPLATE- to PLATE-seq counts for each gene in each sample well; distributions are 583 

calculated over annotated genes with more than 100 raw counts across 96 PLATE-seq libraries. ncRNA 584 

are depleted from riboPLATE- relative to PLATE-seq, with significantly lower RA than mRNA (mean RA -585 

0.09 for mRNA vs -0.34 for ncRNA; Mann-Whitney U test p=7.28*10-16) F,G) Scatterplots of rlog-RA (F) 586 

and TE (G) as functions of transcript abundance in DMSO-treated controls, determined by PLATE-seq or 587 

total RNA-seq aligned counts. In both, points represent noncoding (blue) or messenger (orange) RNAs, 588 

with abundance on the X axis and RA or TE on the Y axis. In riboPLATE-/PLATE-seq and to a lesser extent 589 

in ribo-/RNA-seq, ncRNA exhibit lower RA and TE than comparably abundant mRNA.  590 
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 591 

Figure 3: Two-component Principal Component Analysis (PCA) of rlog-normalized riboPLATE-seq count 592 

data, color-coded by drug treatment. A) ribosome-associated RNA PLATE-seq (riboPLATE-seq), B) 593 

expressed RNA/conventional PLATE-seq, C) riboPLATE-seq rlog ribosome association (RA, riboPLATE-seq-594 

PLATE-seq), D) difference in rlog-RA between each sample and the average across DMSO-treated 595 

samples. For RA-dependent measurements in (C,D), the domain of the PCA was restricted to the genes 596 

with significant changes in RA reported by DESeq2 for any drug treatment relative to DMSO, with an 597 

additional abundance threshold (FDR<0.01, baseMean>=20; 872 genes total). Drug treatments elicit 598 
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changes consistent enough to yield clustering behavior among samples treated with the same drug in all 599 

four analyses, as well as co-clustering of related drug treatments (e.g. BKM120, PP242, and AZD8055). 600 

Separation is also apparent between combination treatments and their constituent, individual drugs in 601 

each plot.  Additionally, in (C,D), the average PC1 coordinate value of a cluster appears correlated with 602 

the number of significant perturbations in RA detected for that cluster’s drug vs DMSO, though this 603 

relationship does not extend across the horizontal line PC2=0 (Spearman rank correlation coefficients ρ 604 

= 1.0, p=0.0 across subgroups; ρ = 0.97, p=3.3*10-5 for RA and ρ = 0.90/p=0.002 for lfcRA considering all 605 

samples). 606 

 607 

Figure 4: Translational signatures of drug treatments observed with riboPLATE-seq and comparison to 608 

ribosome profiling/RNA-seq. A) Hierarchically-clustered heatmap of log-fold change in RA for each drug 609 

treatment vs DMSO, calculated by DESeq2. The Y axis is comprised of a restricted set of genes exhibiting 610 

significant differences in RA due to drug treatment (p<0.01), with greater than 20 mean normalized 611 

counts per sample (baseMean>20, calculated by DESeq2 to account for sequencing depth), across the 612 
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set of drugs on the X axis. The column dendrogram demonstrates the greatest similarity in effect among 613 

the three inhibitors of the PI3K/Akt/mTOR signaling axis, with lesser correlations to MNK-i1 and 4EGi-1. 614 

At right, not included in the dendrogram, are signatures of differential translation efficiency (TE) across 615 

this same set of genes, generated via ribosome profiling and RNA sequencing of PP242-, MNK-i1-, and 616 

DMSO-treated samples. PP242 generates a strong signature with correlation across RA and TE regimes 617 

(Spearman ρ=0.76, p=5.00*10-90); by contrast, the signature for MNK-i1 treatment is weak and poorly 618 

correlated across datatypes (Spearman ρ=0.089, p=0.055). In the rightmost column, the canonical 619 

terminal oligopyrimidine motif-containing genes (TOP genes) present in the Y axis gene set are identified 620 

with tick marks, showing consistent downregulation of these genes in RA and TE under treatment with 621 

PI3K/Akt/mTOR axis inhibitors. B) Heatmap of GSEA normalized enrichment scores (NES) of highly 622 

significant differentially-enriched gene ontology terms from the MSigDB C5 collection (biological 623 

process, molecular function, and cellular component). The Y axis consists of a highly conservative set of 624 

gene ontology terms identified as significantly differentially enriched in RA (GSEA FWER<0.001) due to 625 

treatment with any of the drugs on the X axis. At this level of significance, all NES are negative, 626 

indicating downregulation of their associated gene ontologies. Downregulated ontologies are also 627 

largely concerned with translational machinery, the ribosome, and protein synthesis in general, 628 

reflective of the translation-inhibitory principal effects of the drugs used. 629 
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 630 

Figure 5: Effects of drug treatments in combination. A-C) plots of the per-gene changes in RA for PP242, 631 

BKM120, and MNK-i1 treatments vs DMSO, calculated by DESeq2. In each, the Y axis corresponds to 632 

significance and the X axis is effect size in terms of log-fold change in RA, with green dotted lines to 633 

represent the thresholds of p=0.01 and lfcRA<-0.75. Genes meeting both thresholds are color-coded red 634 

or blue, and represent the major inhibitory targets of these individual drugs. D-F) Volcano plots of the 635 

three pairwise combinations of the drugs in A-C, highlighting the specific targets of the individual drugs. 636 

In each, these specific targets have largely shifted down and rightward, indicating less significant and 637 

smaller perturbation in RA of these targets in combination. G-I) Scatterplots comparing the effect under 638 

single-drug treatment and the difference between combination and single-drug effects for the same 639 

target sets from (A-C). These plots show the relationship between initial effect size under single drug 640 

treatment and the degree of attenuation or amplification in this effect under combined treatment, 641 
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excluding targets that change sign (Additional File #1: Supplementary Table 1 for details). The majority 642 

of targets fall in the first and third quadrants of each plot, indicating attenuation of most targets, though 643 

a greater fraction of targets in quadrants 2 and 3 for the combination of PP242+BKM120 suggests 644 

additivity in some of their effects. The plots additionally demonstrate a consistent pattern of increased 645 

attenuation (e.g. increased differences between combination and singular effect size) with increasing 646 

single-treatment effect size (ρ = -0.48, p = 1.9*10-32 for PP242+BKM120; ρ = -0.63, p = 9.7*10-15 for 647 

PP242+MNK-i1;  ρ = -0.55, p = 5.2*10-45 for BKM120+MNK-i1). 648 
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 649 

Figure 6: Network visualization of RA perturbations and association with known regulatory motifs. A) 650 

TOP genes and candidates significantly perturbed in RA by drug treatments. Strip plots along the X axis, 651 

labeled for each drug treatment in our riboPLATE-seq study, contain log-fold changes in RA (Y axis) for 652 

the genes exhibiting significant RA perturbations (FDR<0.05) under each treatment relative to DMSO 653 
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controls, excluding non-TOP-containing genes. TOP candidates behave similarly to canonical TOP genes, 654 

exhibiting decreased RA under treatment with mTOR axis inhibitors (PP242, AZD8055, BKM120) while 655 

MNK-i1 and 4EGi-1 elicit fewer significant alterations in these sets. B) Network representation of targets 656 

of mTOR, PI3K, and MNK1, interpreted as the sufficiently-abundant genes exhibiting significant 657 

decreases in RA under treatment with PP242, BKM120, and MNK-i1, respectively (FDR<0.05, baseMean 658 

> 20). Targets are color-coded to identify them as canonical 5’TOP motif-containing genes (green), TOP 659 

gene candidates with known mouse homologues (blue) or no known homology (purple), or genes with 660 

no known TOP motif (gray). The mTOR-exclusive targets are enriched for TOP genes and candidates 661 

(Fisher’s exact test p=4.92*10-8), as are the common targets of mTOR and PI3K (p=5.74*10-24) and the 662 

targets common to all three kinases (Fisher’s exact test p=5.88*10-5). In contrast, MNK1 targets very few 663 

genes, and proportionally fewer of them are TOP genes or candidates (Fisher’s exact test on MNK1-664 

exclusive targets p=0.760). Detailed analysis of TOP gene enrichment provided in Supplementary Table 2 665 

(Additional File #1: Supplementary Table 2). 666 

 667 

Drug Treatment Total Samples Remaining Samples (outliers removed) 

AZD8055 6 5 

BKM120 6 4 

DMSO 48 40 

MNK-i1 6 6 

4EGi-1 6 5 

PP242 6 5 

MNK-i1+BKM120 6 5 

PP242+MNK-i1 6 5 
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PP242+BKM-120 6 6 

Table 1: Experimental group sizes and outlier removal. The left column describes the total number of 668 

samples of each drug treatment condition on the plate, while the right column describes the number of 669 

samples remaining after trimming PCA outliers. 670 

 671 

Drug (riboPLATE-seq) lfcRA<0 lfcRA>0 

PP242 400 320 

BKM120 216 88 

AZD8055 155 61 

MNK-i1 45 29 

4EGi-1 107 30 

PP242+BKM120 524 604 

PP242+MNK-i1 313 174 

MNK-i1+BKM120 244 110 

   

(ribo-seq/RNA-seq) lfcTE<0 lfcTE>0 

PP242 1560 1481 

MNK-i1 1254 1109 

Table 2: Significant perturbations (FDR<0.05) in ribosome association (RA) and translation efficiency 672 

(TE) as a function of drug treatment, calculated with DESeq2, separated by direction of effect. The first 673 

eight rows pertain to riboPLATE-seq data and calculated changes in RA, while the last two relate to 674 

ribosome profiling/RNA-sequencing and calculated changes in TE. The first column represents the 675 
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number of genes exhibiting significant decreases in RA/TE (log-fold change in RA/TE < 0), while the 676 

second column represents increases in RA/TE (lfcRA/lfcTE > 0).  677 
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