1	
2	
3	Carbon metabolism, transcriptome and RNA editome in developmental
4	paths differentiation of Coprinopsis cinerea
5	
6	Yichun Xie, ^a Jinhui Chang, ^a Hoi Shan Kwan ^{a#}
7	
8	Running head: C. cinerea developmental paths differentiation
9	
10	^a School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories,
11	Hong Kong SAR, China
12	
13	#Address correspondence to Hoi Shan Kwan, hoishankwan@cuhk.edu.hk.

15 Abstract

The balance and interplay between sexual and asexual reproduction is one of the most 16 attractive mysteries in fungi. The choice of developmental strategy reflects the ability of 17 18 fungi to adapt to the changing environment. However, the evolution of developmental paths and the metabolic regulation during differentiation and morphogenesis are poorly understood. 19 Here, we monitor the carbohydrate metabolism and gene expression regulation during the 20 early differentiation process from the "fungal stem cell", vegetative mycelium, to the highly 21 22 differentiated tissue/cells, fruiting body, oidia or sclerotia, of a homokaryotic fruiting Coprinopsis cinerea strain A43mut B43mut pab1-1 #326, uncovering the systematic changes 23 during morphogenesis and the evolutionary process of developmental strategies. Conversion 24 between glucose and glycogen and conversion between glucose and beta-glucan are the main 25 carbon flows in the differentiation processes. Genes related to carbohydrate transport and 26 metabolism are significantly differentially expressed among paths. RNA editing, a novel 27 layer of gene expression regulation, occurs in all four developmental paths and enriched in 28 cytoskeleton and carbohydrate metabolic genes. It is developmentally regulated and 29 30 evolutionarily conserved in basidiomycetes. Evolutionary transcriptomic analysis on four developmental paths showed that all transcriptomes are under purifying selection, and the 31 more stressful the environment, the younger the transcriptome age. Oidiation has the lowest 32 value of transcriptome age index (TAI) and transcriptome divergence index (TDI), while 33 fruiting process has the highest of both indexes. These findings provide new insight to the 34 regulations of carbon metabolism and gene expressions during fungal developmental paths 35 differentiation. 36

38 Importance

39	Fungi is a group of species with high diversity and plays essential roles to the ecosystem. The
40	life cycle of fungi is complex in structure and delicate in function. Choice of developmental
41	strategies and internal changes within the organism are both important for the fungus to fulfill
42	their ecological functions, reflecting the relationship between environment and the
43	population. This study put the developmental process of vegetative growth, sexual and
44	asexual reproduction, resistant structure formation of a classical model basidiomycetes
45	fungus, C. cinerea, together for the first time to view the developmental paths differentiation
46	process with physiology, transcriptomics and evolutionary prospects. Carbohydrate assays
47	and RNA-seq showed the changes of the fungus. Our results fill the gaps on gene expression
48	regulation during the early stage of developmental paths differentiation, and expand our
49	understanding of the evolutionary process of life history and reproductive strategy in fungi.
50	Keywords
51	Developmental paths, carbon metabolic flux, transcriptome, RNA editing,
52	phylotranscriptomic

54 Introduction

55 The life cycle of fungi is one of the most delicate and mysterious development blueprints in the living world. Basidiomycetes, a group of advanced fungi, could diverge themselves into 56 different developmental paths under specific environment (1-3). Triggering by the changes of 57 environmental and internal physiological conditions, organism undergoes particular path and 58 reaches the developmental destiny of forming asexual spores (oidia), sexual spores (basidia), 59 monocellular or multicellular resting structures (chlamydospores and sclerotia) (4-7). 60 *Coprinopsis cinerea* is a model basidiomycete fungus which has multiple developmental 61 paths and has well annotated genome of strain Okayama-7 #130 and strain A43mut B43mut 62 pab1-1 #326 released (8, 9). C. cinerea can form several types of specialized reproductive 63 structures to disperse and survive, according to the environmental conditions. Beginning from 64 65 vegetative mycelium, the fungus goes along the developmental path of fruiting, oidiation or sclerotia formation (Fig. 1). During the differentiation process, several developmental 66 changes occur in the organism, including regulations on gene expression, redistribution of 67 chemicals, and specification on morphology (10–12). Fruiting body is a highly differentiated 68 multicellular structure which forms during the sexual reproductive process (9). When the 69 fungus is under nutrient depletion and exposing to low temperature and light-dark cycle, 70 71 vegetative mycelium would undergo sexual reproduction. Hyphal knots develop from the aggregation of hyphae, they differentiate into fruiting body primordium, and finally become 72 the mature fruiting body. During the maturation, basidiospores are produced by basidia in the 73 cap and released as the cap autolyze. Oidia are asexual spores that form in favorable 74 environment with light. C. cinerea can produce tremendous amount of oidia in a day. 75

However, oidia are short-lived and fragile in stressful environment (13). Sclerotia are 76 persistent resting structures that developed under continuous dark (14). They are multicellular 77 78 structures in round shape, with internal medulla tissue and external rind tissue (15). The 79 whole sclerotia are pigmented and in brown color (16). In fungi, carbon metabolism is important to the differentiation process and complex 80 morphogenesis. The transition from vegetative mycelia to each developmental destiny 81 requires the core role of carbohydrate metabolism (17). Carbon metabolic flux describes the 82 turn-over rate of molecules in carbon metabolic pathways. Such flux is regulated by enzymes 83 and metabolic flux analysis (MFA) is important for metabolic adaptation studies (18-20). 84 Through the carbon metabolic flux, materials and energy exchange between the organism and 85 the environment, and they transfer within the organism and converse into different forms. 86 Moreover, the construction of complex multicellular structure requires the conversion among 87 different forms of carbohydrates (17, 21, 22). In the vegetative growth stage, mycelia intake 88 simple sugar and synthesize glycogen (23–25). During the fruiting bodies or sclerotia 89 formation, glycogen is transported from mycelium to newly-formed structures. It is broken 90 91 down into glucose, and depleted along the maturation (25, 26). Beta-glucan is reserved in aging multicellular structures, such as fruiting bodies and sclerotia (5, 27, 28). Enzymes 92 involved in fungal cell wall remodeling are up-regulated during the fruiting process (29–31). 93 Despite carbohydrate metabolism has essential roles on differentiation and morphogenesis, 94 how the transition is induced remains unclear. 95 RNA editing is regarded as a novel layer in gene expression regulation of fruiting body 96

97 development (32). It is a kind of co-/post-transcriptional modification on RNA sequence,

98	which can rewrite the genetic information in DNA at RNA level (33). By recoding the RNA
99	sequence, RNA editing gives higher flexibility and more probability to transcriptome and
100	proteome (34). Recently, several studies have been done in fungi, focusing on stage-specific
101	and substrate-specific RNA editing events. Three ascomycetes, Fusarium graminearum,
102	Neurospora crassa and Neurospora tetrasperma, have conserved stage-specific A-to-I RNA
103	editing events during sexual reproduction (35). Developers of FairBase summarized the A-to-
104	I RNA editing events in fungi, and emphasized that all these events are stage-specific and
105	related to sexual reproduction (36). However, all 6 species included in FairBase are
106	ascomycetes, and the A-to-I RNA editing preference in reported basidiomycetes are weak.
107	Among the basidiomycetes, Ganoderma lucidum has stage-specific RNA editing events
108	during fruiting body formation and 5 brown rot wood-decay fungi have substrate-specific
109	RNA editing events (37, 38). These 6 species possess all types of RNA editing and with site
110	densities much lower than those ascomycetes case studies.
111	The four developmental paths, namely vegetative growth, fruiting, oidiation and sclerotia
112	formation, make C. cinerea able to adapt to divergent environment. Although the fruiting
113	process have been studied and well described with transcriptomic and proteomic methods,
114	our knowledge on oidia and sclerotia formation remains on single gene level (9, 39–42). The
115	strain #326 used in this study is a homokaryotic strain with mutations in both mating type
116	factor A and B (43). It shows the special feature of clamp formation and fruiting without
117	mating, and possesses the ability of oidia and sclerotia formation, which gives us a chance to
118	investigate developmental paths differentiation in C. cinerea with a clear genetic background.
119	For the first time, we i) described carbon metabolic flux of four developmental paths; ii)

figured out carbohydrate metabolism and energy production and conversion genes that are intensively regulated during morphogenesis; iii) clarified the evolutionary features of transcriptome profiles and explained the origin of developmental paths and adaptation to the environment; iv) uncovered the RNA editome in developmental paths differentiation. Our results enable us to have better understanding on the origin and regulation of developmental paths differentiation in advanced fungi.

126 **Results**

127 Temperature and light affect the divergence of developmental paths

To investigate the effect of environmental conditions on diverging the developmental paths, 128 C. cinerea A43mut B43mut pab1-1 #326 cultures were treated with different combinations of 129 temperature and light (Fig. 1). A 5 mm diameter mycelial punch was inoculated to each 130 cellophane covered YMG agar plate (0.4% yeast extract, 1% malt extract, 0.4% glucose and 131 132 1.5% agar, 36 g medium per 90 mm diameter petri dish). The 5.5 days incubation in 37 °C with continuous dark allowed fully growth of vegetative mycelium. Fruiting body initials and 133 mature fruiting bodies were seen on cultures after exposing to three and eight 12 h:12 h light-134 135 dark cycles in 28 °C, respectively. Oidia formation was highly induced under continuous light compared to continuous dark in 37 °C (P < 0.001, N = 6, Fig. S1a), with approx. 10⁹ oidia per 136 plate on day 5.5. Mycelial growth rate had no significant difference between two conditions 137 (P > 0.05, Fig. S1b). Sclerotia were firstly observed on day 14, after the undisturbed 138 incubation in 37 °C with continuous dark. On day 21, $4.37 \pm 0.69 \times 10^4$ sclerotia were found 139 per plate. 140

141 Carbon metabolic flux differs among developmental paths

142 To evaluate the carbon metabolic flux in C. cinerea, cultures of four developmental paths were sampled on two time points, developing colonies (marked as a) or developed colonies 143 144 (marked as b), with 5 biological replicates (Fig. 1). Neither hyphal knot nor sclerotia can be found on the developing colonies (time point a). Each sugar content was determined using 145 chemical assays and measured by dry weight. Different types of carbohydrate were 146 accumulated along the developmental paths (Fig. 2 and Table S1). During the vegetative 147 148 growth process, glycogen was strongly accumulated to approx. 400 mg/g (dry weight, same below) in the hyphae and broken down when the colony was matured and shifted to the 149 reproductive growth, reflecting the storage function of glycogen in fungal development. For 150 vegetative mycelium, glucose content increased as colony grown and reached the peak of 151 266.16 ± 33.34 mg/g in fully grown mycelium. Mature colonies contain 1.5 times more beta-152 glucan than the growing ones. On the contrary, during oidiation, glucose content remains 153 relatively constant at below 200 mg/g. Beta-glucan content was 100 ~ 150 mg/g less in oidia 154 than vegetative mycelium. Moreover, the amount of total sugar was also less in oidia-forming 155 156 colonies (60-70 % of dry weight) than vegetative growth colonies (75-85 % of dry weight), suggesting that more non-sugar compounds, such as proteins and lipids, are produced during 157 oidiation. Sugars, proteins and lipids that are synthesized in hyphae could be transferred and 158 stored in oidia, preparing for the rapid germination in the surrounding favorable sediment. 159 As nutrients in the sediment deplete, the colony turns to develop sexual reproductive 160 structures or persistent resting structures according to the temperature and illumination. Being 161 induced by low temperature and 12 h:12 h light-dark cycle, colonies with fully grown 162

mycelia entered the sexual reproductive path and formed hyphal knots. During the transition, 163 glucose content dropped down while glycogen content slightly increased. Beta-glucan took 164 165 up more than one third of dry weight in the fruiting colony. When the colony is trapped in high temperature and dark environment, sclerotia are developed as persistent resting 166 167 structure. Compare to vegetative mycelium, contents of monosaccharide, disaccharide and 168 glycogen continuously dropped down in sclerotia, beta-glucan accumulated and took up over 50 % of the dry weight. In sclerotia, beta-glucan not only function as structuring constituent, 169 but also the main type for carbon storage. 170

171 Transcriptome analysis on developmental paths differentiation

To figure out the black box behind the carbon metabolic flux in developmental paths 172 differentiation, we studied the transcriptome of oidia and sclerotia formation process in C. 173 174 *cinerea* for the first time, together with the fruiting process. Samples of developing colonies (time point a) were selected for RNA extraction, and RNA-seq was performed in biological 175 triplicates. Sample and data quality were listed in supplementary method (text S1). Pearson's 176 177 correlation r² value for replicates were between 0.9615 to 0.9883 (Fig. 3a), and Spearman's correlation ρ^2 value were range from 0.9661 to 0.9841 (Fig. 3b). Among these developmental 178 179 paths, oidia showed the highest similarity to mycelium, and other paths were strongly 180 different from each other.

181 In this study, 10082 genes were detected to have expression in at least one developmental

path, all of them can be matched with gene ID from strain Okayama-7 for further analysis (8,

- 183 9). Taking gene expression levels in vegetative mycelium as references, 3962 differentially
- 184 expressed genes (DEGs) were detected in other three paths and assigned to 6 groups (3 paths

185	with up-/down-regulation). Hyphal knot and sclerotia possessed larger amount of DEGs, with
186	1142 and 2065 up-regulated genes and 1011 and 1009 down-regulated genes, respectively
187	(Fig. 3c). In oidia, only 175 genes were up-regulated, while 460 genes were down-regulated.
188	76 up-regulated and 171 down-regulated genes were shared by other three paths (Fig. 3d).
189	Most DEGs displayed the fold change within 1/30 to 30 (Fig. 3e).

190 Metabolic-related genes are differentially expressed in different developmental paths

191 To have a closer look on the transition of expression profiles in the developmental process, we performed Gene ortholog (GO) term and EuKaryotic Orthologous Groups (KOG) term 192 193 enrich analysis according to the DEG groups. KOG enrichment profile showed a strong shift of gene set usage during the development of hyphal knot and sclerotia, while little regulations 194 were performed during oidia formation (Fig. 4). Similar to the result of KOG enrichment, GO 195 196 enrichment analysis present significant turn over on gene expression in hyphal knot (Fig. S2a). During hyphal knot formation, genes related to "biological processes" and "cellular 197 component" were being down-regulated globally. Along the oidiation process, small number 198 199 of DEGs were called and the functional enrichment was weak. These results show the high similarity on expression profiles of vegetative growth and oidiation. In sclerotia, down-200 201 regulated genes were enriched in molecular function group, indicating the lower metabolic 202 rate at the sclerotia forming stage.

Functional analysis based on KOG terms reveals that down-regulated genes in both hyphal knot and sclerotia paths were enriched on energy production and conversion function. In sclerotia, genes with function of cell wall/membrane/envelope biogenesis, carbohydrate transport and metabolism and amino acid transport and metabolism were significantly up-

207	regulated. GO term enrich analysis showed a significant enrichment on carbohydrate
208	metabolic process and hydrolase activity of knot up-regulated, sclerotia up-regulated and
209	oidia down-regulated genes. Expression level of "glucosidase" and "carboxy lyase activity"
210	genes were up-regulated during hyphal knot and sclerotia development, while remained
211	steady during oidia formation (Fig S3a). The shift on transcriptome indicates the re-
212	distribution of materials and energy to fulfill the fruiting requirements. These results suggest
213	that the determination of developmental paths is related to the internal regulation on
214	carbohydrate metabolism and energy production and conversion.
215	Gene expression in carbohydrate metabolic pathway explains carbon metabolic flux
216	Up-regulated genes in hyphal knot and sclerotia were significantly and strongly enriched on
217	carbohydrate metabolic pathways (Fig. S2b). Here, we put the carbohydrate content assay
218	results and gene expression results together (Fig. 5). Compare to vegetative mycelium,
219	glycogen phosphorylase and glucoamylase were up-regulated in all three reproductive
220	structure forming paths (Fig. S3b). These enzymes catalyze glycogen into glucose-1-P and
221	free glucose, providing materials and energy for the formation of complex reproductive
222	structures. The higher expression level of glycogen degrading enzymes, the lower glycogen
223	content in the culture.
224	Unlike in the favorable environment that oidia are formed, during the fruiting process and
225	sclerotia forming process, not only the glycogen catabolism, but also the metabolism of beta-
226	glucan and trehalose increased. Higher relative expression level on beta-glucan synthase and
227	beta-glucanase indicates the stronger carbon flow that run into beta-glucan anabolism during
228	sclerotia formation. Such prediction coincided with the observation of stronger beta-glucan

229 accumulation in sclerotia than hyphal knot. Although trehalose only took a tiny part of the dry weight in our study on C. cinerea, it is regarded as a carbon reserve and stress protectant in 230 231 filamentous fungi, and found accumulating in resting cells such as spores and sclerotia (44, 45). Up-regulation on gene expression of trehalose phosphatase and trehalose phosphate 232 233 synthase matched with the trehalose content in hyphal knot higher than sclerotia and oidia. 234 Depletion of trehalose content in the latter developmental stages might be caused by the coexpression of trehalase. Up-regulation on both anabolism and catabolism of beta-glucan and 235 trehalose suggest the high intensity of cell wall remodeling and complexity of multicellular 236 237 structure formation (Fig. S4). In short, our sampling time point can represent the turning point of developmental differentiation. Conversion between glucose and glycogen and 238 239 conversion between glucose and beta-glucan are the main carbon flows in the differentiation processes. The carbon metabolic flux can be explained on transcriptome level. 240

Transcriptome age index and transcriptome divergence index profiles in developmental paths differentiation

To understand the transcriptome of developmental paths differentiation with evolutionary 243 perspectives, we used transcriptome age index (TAI) and transcriptome divergence index 244 (TDI) to estimate the evolutionary age and selective pressure of each developmental path 245 (46–48). TAI and TDI was calculated based on either phylostrata (PS) or dN/dS ratio, and 246 expression level of genes; the lower the TAI, the evolutionarily older the transcriptome: the 247 lower the TDI with value less than 1, the stronger the force of purifying selection (48). The 248 distributions of PS and dN/dS ratio of expressed genes in this study are shown in Fig. S6. We 249 figured out that oidiation process expresses the evolutionarily oldest genes, next comes 250

251 sclerotia, and vegetative mycelium and hyphal knot express the evolutionarily younger genes. All four developmental paths suffer from the strong selection force on the transcriptome. 252 253 Oidia transcriptome emitted the strongest signal of purifying selection, and hyphal knot showed the weakest (Fig. 6a). Thus, oidia is the most conserved developmental path and 254 255 fruiting process is evolutionarily young and divergent. Among the ten phylostrata, PS 1-2 are defined as old genes and PS 3-10 are defined as young 256 genes (48). Genes in PS 1-2 are in charge of basic cellular functions of eukarvotic cells. 257 Intermediate phylostrata (PS 3-9) correspond to the divergence from fungi to Agaricales 258 (gilled mushroom). Those genes mainly function on signal transduction and developmental 259 regulation, and they involve in the extracellular structure formation, defense, transcription, 260 RNA processing and modification, carbohydrate transportation and metabolism processes 261 (Fig. S5). 262 Protein coding genes that first emerged in domain Eukaryota (PS 2), Fungi (PS 3) and C. 263 cinerea (PS 10) contributed most to the TAI profile (Fig. 6b). Among four developmental 264 paths, oidia had high expression level of old genes (PS 1 and PS 2) and young gene group PS 265 3 and PS 5, but low expression level of other younger genes of PS 6-10 (Fig. 6c). On the 266 contrary, hyphal knot displayed high expression level on PS 5-9, the gilled mushroom-267 specific genes, but low expression level in PS 1-3. Vegetative mycelium had high expression 268

level of PS 9-10. Genes from these two phylostrata are Agaricales-specific or *C. cinerea*

- 270 unique genes. These young genes display the functional enrichment on defense and
- 271 carbohydrate binding. In sclerotia, most of the metabolic processes slowed down under stress.
- 272 Sclerotia got the lowest expression level of old genes and relatively lower expression level of

273	young genes. The highest expression ratio of old genes to young genes occurred in oidia,
274	followed by mycelium and hyphal knot, and sclerotia had the lowest ratio of zero (Fig. 6d).
275	Interestingly, such ranking coincided with the evaluation on growing environment, from the
276	most temperate to the most stressful. All these results indicate that oidiation, the asexual
277	reproductive process, is generated from the common ancestor of eukaryota and conserved in
278	current living organisms; while fruiting, the sexual reproductive process, is highly specific
279	and evolutionarily adaptive.

280 **RNA editing events happened in all developmental paths**

In this study, a total of 245 RNA editing sites and 819 RNA editing events were identified in 281 282 4 developmental paths. The RNA editome in developmental paths differentiation of C. *cinerea* is strongly different from those Ascomycetes fungi. The majority of RNA editing 283 284 events had editing levels < 20 % (Fig. 7a), and the editing level remained constant and relatively low (Fig. 7b). T-to-C substitution took up over 55 % of the editing events (Fig. 7c). 285 107, 111, 101 and 171 editing sites were detected in mycelium, hyphal knot, oidia and 286 sclerotia, respectively (Fig. 7d). In C. cinerea, 44.1 % the RNA editing sites were annotated 287 to the intergenic region and only 30.4 % are in the coding sequence (CDS, Fig. 7e). RNA 288 editing events tend to appear on genes that are evolutionarily old and under strong purifying 289 290 selection (Fig. S6).

To validate the RNA editing events, a selection of candidate sites was chosen to be amplified and sequenced using Sanger method. Site scaffold 131:54938 was found edited in 9 of 12

biological samples, with editing level of 3 - 70 %. Clear signal of double peaks showing T-to-

294 C editing can be observed in 6 samples and the intensity of signals were consistent to the

RNA-seq results (Fig. 7f and Table S2). Single sequencing signal peak was observed in DNA
and predicted unedited samples. This editing site is on a hypothetical protein (CC1G_15451),
and it is a synonymous variant on the transcript that codes alanine.

298 Potential impact of RNA editing on gene expression regulation

RNA editing site-containing genes were grouped according to their editing impact annotation 299 and performed KOG enrichment analysis (Fig. S7). 31 and 40 RNA editing sites in CDS can 300 cause either synonymous or nonsynonymous changes of the protein sequence. Six editing 301 sites can generate splicing variants and transcript length variants (Table 1). Four of these 302 editing containing genes, including anthranilate phosphoribosyltransferase, manganese 303 superoxide dismutase, glyoxalase I and DNA-directed RNA polymerase II, only have single 304 copy in the genome and all with unique function. 305 MicroRNAs could mediate post-transcriptional gene expression regulation by base pairing 306 307 their seed region (2-7 nt at the 5'-end) to the UTR (49). RNA editing in 3' UTR can create or 308 destroy the microRNA recognition sites, resulting in the changes of mRNA degradation and translational repression (50). 35 micro-RNA like RNA (milRNA) had been predicted in C. 309 310 cinerea strain #326 and 7 of them were validated by reverse transcription-gPCR (Lau et al,

unpublished data). Among 48 editing sites that locate in 3' UTR, 18 of them were predicted

to interact with the known milRNA (Table 2). The T-to-C editing event at 3' UTR of thiamine

biosynthetic bifunctional enzyme (scaffold_76:107237, CC1G_03317) could cause binding

loss of validated milRNA cci-milR-32-3p and cci-milR-33-3p, and binding gain of predicted

- 315 milRNA cci-milR-32-5p. Another T-to-C editing event at 3' UTR of glyceraldehyde-3-
- 316 phosphate dehydrogenase (scaffold_77:35473, CC1G_09116) would create the milRNA

317 recognition site for the validated milRNA cci-milR-22.

318 **Discussion**

As a model mushroom-forming fungus, fruiting process of C. cinerea is well studied 319 physiologically and genetically. In this study, we monitor the early developmental process of 320 three destinies, fruiting, oidiation and sclerotia formation, with the reference of vegetative 321 mycelium. Carbohydrate assays and high-throughput sequencing results all indicate the 322 essential role of carbon metabolic flux in fungal morphogenesis. RNA editing, a co-/post-323 transcriptional modification which could rewrite the information in RNA, also prefers 324 carbohydrate transport and metabolism transcripts. Evolutionary transcriptome analysis 325 reveals the origin and selection of dispersal and survival strategies of C. cinerea (Fig. 8). 326 Fruiting plays a pivotal role in fungal life cycle and attracts research attention (17, 51, 52). 327 But we also need to know the role of oidiation and sclerotia formation in optimizing the 328 329 dispersal and survival fitness of fungi under divergent environmental conditions (53). In this 330 study, the most optimal to the most stressful environment for fungal development are ranked as the incubation conditions of oidiation, vegetative growth, fruiting and sclerotia formation. 331 332 Nutrient, temperature and light are three critical environmental factors for the fruiting body development in mushroom-forming fungi (51). Light indicates open space to the fungi. In 333 ascomycetes, light inhibits sexual reproduction but induces asexual development and produce 334 335 tremendous amount of conidia (54). In C. cinerea, the combination of rich nutrient, optimum temperature and illumination results in the high production of genetically identical asexual 336 spores, the oidia (40). Oidia contain ready-to-use materials for the rapid gemination, and with 337 338 little resistant protective structures (55). Its high sensitivity to environmental stress will

339	restrict the dispersal of fungi (56). Oidiation process is energy-efficient but has little genetic
340	flexibility. Oidia disperse rapidly in rare environments. The lack of light indicates the lack of
341	open air (57). Under such circumstances, to grow connected hyphae, instead of releasable
342	oidia, would be a more promising way to expand the habitat. When nutrient depletes, fungi
343	changes their developmental strategies for long-distance dispersal and long-term survival (2,
344	16, 58). Fruiting and sclerotia formation are both energy consuming processes because of the
345	difficulty in forming highly organized multicellular structure (59). Thus, environmental stress
346	like nutrient depletion is essential for the induction of fruiting and sclerotia formation.
347	Basidiospores and sclerotia possess thicker resistant layer than oidia and hyphae, and both of
348	them are able to travel in distance and last for years (56, 60). Comparing to glycogen, beta-
349	glucan is much difficult to be used or digested by other organisms. Storing beta-glucan as the
350	carbon source for future usage is an energy-efficient choice in basidiospores and sclerotia
351	(61–63). Like oidia, sclerotia also have little genetic flexibility. On the contrary,
352	basidiospores benefit from the sexual propagation and high genotypic plasticity (64, 65).
353	Thus, basidiospores would adapt to the new habitat more successfully.
354	Evolutionary transcriptomic analysis has been performed in animal and plant embryogenesis
355	and fungal fruiting (48, 66). The phylotranscriptomic hourglass pattern across kingdom
356	illustrates the occurrence of complex multicellularity. Our results uncovered the correlation of
357	environmental stress, developmental destinies and gene evolution in the life history of C .
358	cinerea. Oidiation appears in highly favorable environment, genes express in this process are
359	mainly those common to all eukaryotes and they are under strong purifying selection.
360	Regulation on gene expression ensure the unspecified process of oidia formation to be

361 performed accurately and sufficiently. Vegetative mycelium grows in changeable environment and it is in charge of primary occupation of new habitat. The Agaricales-specific 362 363 and species unique genes are very likely to benefit the fungus on niche segmentation and adapting to the complex and changing environment during vegetative growth (38, 67, 68). 364 High expression on species-specific genes and relative lower selective pressure of purifying 365 366 selection enable mycelium to minimize the interspecific competition and improve fitness (69). Hyphal knots display similar transcriptome age as vegetative mycelium, but the former 367 has higher transcriptome divergence. These indicate that the developmental process of 368 fruiting body is relatively conserved, but genes of specific biological functions got diversity 369 across genus (17, 48). Sclerotia function as the persistent resting structure which would need 370 to suffer the extreme stressful environment (58). The relative old transcriptome age and 371 372 strong purifying selection force of sclerotia suggest the common demand of overcoming stress and the importance of keeping such function in the genome for fungal species (70–72). 373 The expression profile with phylostrata also indicates that the sclerotia formation process is 374 375 highly divergent and with little similarity among different fungi (58, 70, 72). As a special kind of transcriptional modification, RNA editing has been widely found in all 376 domains of life and showed significant impacts on diverging the transcriptome and proteome 377 (73–76). In fungi, developmentally regulated for sexual reproduction and evolutionarily 378 conserved across genus are two main patterns of RNA editing events (35, 37, 38). Our results 379 show that RNA editing not only occurs in fruiting, but also other developmental paths. 380

381 Similar to the stage-specific and substrate-specific RNA editing studies on basidiomycetes,

382 editing events in *C. cinerea* regulate the genes in carbohydrate metabolism and cell structure

383	formation (37, 38). All these results emphasize the functional similarity of RNA editing in
384	regulating carbohydrate metabolism, and further, the essential role of carbon metabolism in
385	fungal development. RNA editing show preference on genes that are old and under high
386	purifying selection, revealing the special roles of RNA editing on providing plasticity to the
387	transcriptome (34).
388	The profile of RNA editome of <i>C. cinerea</i> is similar to the previous studies in
389	basidiomycetes, showing weak A-to-I editing preference (37, 38, 77). However, the number
390	of called RNA editing events is significantly less. Moreover, compare to a basidiomycetes G.
391	lucidum and two ascomycetes, F. graminearum and N. crassa, that over 60 % of the RNA
392	editing sites are predicted to be in the CDS (35, 37, 78), only around 30 % of the RNA editing
393	sites are in CDS in C. cinerea. Despite the differences of species from distant order, we refer
394	that the low editing density is caused by the usage of a homokaryotic strain, also by the much
395	stricter filtering parameters. In addition, we resequenced the genome of strain #326 as a
396	reference to exclude false positive events introduced by inaccuracy in genome assembly and
397	genome variants. We have blast out 3 adenosine deaminases acting on tRNA (ADATs)
398	homologs in the genome, but no adenosine deaminases acting on RNA (ADARs) homolog
399	(37, 78). The mechanism of RNA editing in C. cinerea remains unknown.

400 **Conclusions**

401 Responding to the environmental conditions, *C. cinerea* follows different developmental

402 paths including vegetative growth, oidiation, fruiting and sclerotia formation. In these paths,

- 403 genes are differentially expressed and RNA editing occurred. Carbohydrate metabolism is
- 404 strictly regulated and differs dramatically. Glycogen is produced as storage carbon source to

provide energy in the early developmental stages. Stored glycogen is converted into beta-405 glucan during fruiting or sclerotia formation. Carbon metabolic flux is regulated to fulfill the 406 407 demands of short-term usage and long-term survival adapting to the specific environmental conditions. Phylotranscriptomic analysis showed that oidiation happens in favorable 408 409 environments, and has the oldest transcriptome age and the lowest transcriptome divergence. 410 Developmental paths of fruiting and sclerotia formation that occur in stress environments have evolutionarily younger genes expressed, and display younger transcriptome age and 411 higher transcriptome divergence. Editome analysis showed that RNA editing occurs in all 412 413 developmental paths and is developmentally regulated. RNA editing appears to regulate carbohydrate metabolism genes at both transcriptional and post-transcriptional levels. These 414 415 events provide more plasticity to the transcriptome and show preferences on conserved genes. 416 In short, the differentiation of developmental paths in C. cinerea is regulated transcriptionally and post-transcriptionally, with major changes in carbon metabolic flux. 417

418 Materials and methods

419 Strain

The homokaryotic fruiting strain *C. cinerea* #326 (A43mut B43mut pab1-1) was grown at 37 °C on solid YMG medium for 5 days before reaching the edge of the 90 mm petri dish to obtain the working stock plates. Culture condition, growth rate measurement, and sample collection for carbohydrate content determination and RNA sequencing are described in supplementary methods (Text S1).

425 **RNA-seq library preparation and sequencing**

RNA with three biological replicates of each path were proceeded to RNA-seq. About 5 µg of 426 total RNA for each sample was sent to the Beijing Genomics Institute (BGI, Shenzhen, 427 428 China) for library construction and sequencing. The unstranded RNA library was prepared using TruSeq RNA Sample Prep Kit v2 (Illumina, USA), and sequenced with Illumina 429 HiSeq® 4000 at the 2×150 bp paired-end read mode. In silico analysis on transcriptome, 430 including reads alignment, DEG detection, functional classification and phylotranscriptomic 431 analysis, is described in supplementary methods (Text S1). RNA editing sites was called by 432 REDItools v1.0.4 (79), parameters used are also listed in supplementary methods (Text S1). 433 DNA extraction and genome resequencing 434 Genomic DNA was extracted from vegetative mycelium of C. cinerea using DNeasy Plant 435 Mini Kit (Oiagen, Germany), DNA sequencing library was prepared with insert size of 270 436 bp and sequenced with Illumina HiSeq® 4000 at the 2×150 bp paired-end read mode. 9.2 437 million clean reads and 1.38 billion clean bases were obtained. Reads were aligned to the 438 reference genome of C. cinerea strain #326 released in Genome portal of Joint Genome 439 Institute (https://mycocosm.jgi.doe.gov/Copci AmutBmut1/Copci AmutBmut1.home.html) 440 using Bowtie2 (80). 441

442 **qRT-PCR validation**

Quantitative real-time PCR (qRT-PCR) was used to validate the RNA-seq results. cDNA was
synthesized from total RNA with anchored-oligo(dT)₁₈ primer and random hexamer primer
using Transcriptor First Strand cDNA Synthesis Kit (Roche, Germany). The template-primer
mix was denaturized at 65 °C, and the RT reaction was incubated as follows: 10 min at 25 °C,

447	30 min at 55 °C and 5 min at 85 °C. 1 μg of RNA was input into each 20 μl RT reaction.
448	Several genes were selected, and the expression was quantitatively measured using
449	SsoAdvanced TM Universal SYBR® Green Supermix (Bio-Rad, USA) with Applied
450	Biosystems TM 7500 fast Real-Time PCR System (Applied Biosystems, USA). PCR reactions
451	were performed as the following program: 30 sec at 95 °C, followed by 40 cycles 15 sec at
452	95 °C and 30 sec at 60 °C, instrument default setting on melt-curve analysis. 18S is used as
453	the internal control. Primer used in this study are listed in supplementary methods (Text S1).
454	Validation of RNA editing sites
455	PCR amplification of RNA editing containing sequence were performed by using cDNA and
456	gDNA as templates with KAPA HiFi HotStart ReadyMix PCR kit (Roche, Germany) and the
457	following program: 95 °C for 3 min, followed by 30 cycles 98 °C for 20 sec, 65 °C for 20
458	sec, and 72 °C for 15 sec, and 72 °C for 1 min. PCR products are detected on 1.5 % agarose
459	gel and purified with MEGA quick-spin Plus Fragment DNA Purification Kit (MEGA,
460	Korea). Sanger sequencing of PCR products were performed by BGI.
461	Data availability
462	Sequencing data of this study have been submitted to the NCBI Sequence Read Archive
463	(SRA, <u>http://www.ncbi.nlm.nih.gov/sra</u>) under BioProject accession numbers PRJNA573619
464	and PRJNA573620.
465	Acknowledgements
466	We would like to thank Dr. Hajime Muraguchi for kindly sharing the C. cinerea strain #326

467 with us. We would also like to thank Xuanjin Cheng and Man Kit Cheung for the fruitful

bioRxiv preprint doi: https://doi.org/10.1101/819201; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 468 discussion.
- 469 This work was supported by the RGC General Research Fund (GRF 14116916 and GRF
- 470 14103817) provided by the Research Grants Council of HKSAR, PRC. The funders had no
- role in study design, data collection and interpretation, or the decision to submit the work for
- 472 publication.
- 473

bioRxiv preprint doi: https://doi.org/10.1101/819201; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

References

475	1.	Raudaskoski M. 2015. Mating-type genes and hyphal fusions in filamentous
476		basidiomycetes. Fungal Biol Rev 29:179–193.
477	2.	Halbwachs H, Simmel J, Bässler C. 2016. Tales and mysteries of fungal fruiting: How
478		morphological and physiological traits affect a pileate lifestyle. Fungal Biol Rev 30:36-
479		61.
480	3.	Sipos G, Prasanna AN, Walther MC, O'Connor E, Balint B, Krizsan K, Kiss B, Hess J,
481		Slot J, Riley R, Boka B, Rigling D, Barry K, Lee J, Mihaltseva S, Labutti K, Lipzen A,
482		Waldron R, Moloney N, Sperisen C, Kredics L, Vagvolgyi C, Patrigniani A, Fitzpatrick
483		D, Nagy I, Doyle S, Anderson JB, Grigoriev I V., Guldener U, Munsterkotter M, Varga
484		T, Nagy LG. 2017. Genome expansion and lineage-specific genetic innovations in the
485		world's largest organisms (Armillaria). Nat Ecol Evol 1:1931–1941.
486	4.	Kües U. 2000. Life history and developmental processes in the basidiomycete Coprinus
487		cinereus. Microbiol Mol Biol Rev 64:316–53.
488	5.	Gomez-Zavaglia A, Shaohua S, Zeng F, Zhu W, Zhang S, Hu B, Wei W, Xiong Y, Peng
489		F, Yu Y, Zheng Y, Chen P. 2016. <i>De novo</i> analysis of <i>Wolfiporia cocos</i> transcriptome to
490		reveal the differentially expressed carbohydrate-active enzymes (CAZymes) genes
491		during the early stage of sclerotial growth. Front Microbiol 7:83.
492	6.	Rodenburg SYA, Terhem RB, Veloso J, Stassen JHM, van Kan JAL. 2018. Functional
493		analysis of mating type genes and transcriptome analysis during fruiting body
494		development of Botrytis cinerea. MBio 9:e01939-17.

- 495 7. Erental A, Dickman MB, Yarden O. 2008. Sclerotial development in *Sclerotinia*496 *sclerotiorum*: awakening molecular analysis of a "Dormant" structure. Fungal Biol Rev
 497 22:6–16.
- Stajich JE, Wilke SK, Ahrén D, Au CH, Birren BW, Borodovsky M, Burns C, Canbäck 498 8. B, Casselton LA, Cheng CK, Deng J, Dietrich FS, Fargo DC, Farman ML, Gathman AC, 499 Goldberg J, Guigó R, Hoegger PJ, Hooker JB, Huggins A, James TY, Kamada T, Kilaru 500 S, Kodira C, Kües U, Kupfer D, Kwan HS, Lomsadze A, Li W, Lilly WW, Ma L-J, 501 Mackey AJ, Manning G, Martin F, Muraguchi H, Natvig DO, Palmerini H, Ramesh MA, 502 Rehmeyer CJ, Roe BA, Shenoy N, Stanke M, Ter-Hovhannisyan V, Tunlid A, 503 Velagapudi R, Vision TJ, Zeng Q, Zolan ME, Pukkila PJ. 2010. Insights into evolution 504 of multicellular fungi from the assembled chromosomes of the mushroom *Coprinopsis* 505 cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A 107:11889–94. 506 Muraguchi H, Umezawa K, Niikura M, Yoshida M, Kozaki T, Ishii K, Sakai K, Shimizu 9. 507 M, Nakahori K, Sakamoto Y, Choi C, Ngan CY, Lindquist E, Lipzen A, Tritt A, Haridas 508 S, Barry K, Grigoriev I V., Pukkila PJ. 2015. Strand-specific RNA-seq analyses of 509 fruiting body development in Coprinopsis cinerea. PLoS One 10:e0141586. 510 10. Nunes LR, Costa de Oliveira R, Leite DB, da Silva VS, dos Reis Marques E, da Silva 511 Ferreira ME, Ribeiro DCD, de Souza Bernardes LA, Goldman MHS, Puccia R, 512 513 Travassos LR, Batista WL, Nóbrega MP, Nobrega FG, Yang D-Y, de Bragança Pereira
- 514 CA, Goldman GH. 2005. Transcriptome analysis of *Paracoccidioides brasiliensis* cells
- 515 undergoing mycelium-to-yeast transition. Eukaryot Cell 4:2115–28.

516	11.	Fu Y, Dai Y, Yang C, Wei P, Song B, Yang Y, Sun L, Zhang Z-W, Li Y. 2017. Comparative
517		transcriptome analysis identified candidate genes related to Bailinggu mushroom
518		formation and genetic markers for genetic analyses and breeding. Sci Rep 7:9266.
519	12.	Wen J, Zhang Z, Gong L, Xun H, Li J, Qi B, Wang Q, Li X, Li Y, Liu B. 2019.
520		Transcriptome changes during major developmental transitions accompanied with little
521		alteration of DNA methylome in two Pleurotus species. Genes (Basel) 10:465.
522	13.	Dörnte B, Kües U. 2012. Reliability in transformation of the basidiomycete Coprinopsis
523		cinerea. Curr Trends Biotechnol Pharm 6:340–355.
524	14.	Srivilai P, Loutchanwo P. 2009. Coprinopsis cinerea as a model fungus to evaluate genes
525		underlying sexual development in basidiomycetes. Pakistan J Biol Sci 12:821-835.
526	15.	Watanabe T, Tagawa M, Tamaki H, Hanada S, Watanabe T, Tagawa ÁM, Tamaki ÁH,
527		Hanada ÁS. 2011. Coprinopsis cinerea from rice husks forming sclerotia in agar culture.
528		Mycoscience 52:152–156.
529	16.	Moore D, Jirjis RI. 1976. Regulation of sclerotium production by primary metabolites
530		in <i>Coprinus cinereus</i> (= <i>C. lagopus</i> sensu lewis). Trans Br Mycol Soc 66:377–382.
531	17.	Krizsán K, Almási É, Merényi Z, Sahu N, Virágh M, Kószó T, Mondo S, Kiss B, Bálint
532		B, Kües U, Barry K, Cseklye J, Hegedüs B, Henrissat B, Johnson J, Lipzen A, Ohm RA,
533		Nagy I, Pangilinan J, Yan J, Xiong Y, Grigoriev I V, Hibbett DS, Nagy LG. 2019.
534		Transcriptomic atlas of mushroom development reveals conserved genes behind
535		complex multicellularity in fungi. Proc Natl Acad Sci U S A 116:7409–7418.
536	18.	Daran-Lapujade P, Jansen MLA, Daran J-M, van Gulik W, de Winde JH, Pronk JT. 2004.

537		Role of transcriptional regulation in controlling fluxes in central carbon metabolism of
538		Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279:9125–38.
539	19.	Carreira R, Evangelista P, Maia P, Vilaça P, Pont M, Tomb J-F, Rocha I, Rocha M. 2014.
540		CBFA: phenotype prediction integrating metabolic models with constraints derived from
541		experimental data. BMC Syst Biol 8:123.
542	20.	Lagziel S, Lee WD, Shlomi T. 2019. Studying metabolic flux adaptations in cancer
543		through integrated experimental-computational approaches. BMC Biol 17:51.
544	21.	Traven A, Jänicke A, Harrison P, Swaminathan A, Seemann T, Beilharz TH. 2012.
545		Transcriptional profiling of a yeast colony provides new insight into the heterogeneity
546		of multicellular fungal communities. PLoS One 7:e46243.
547	22.	Busch S, Braus GH. 2007. How to build a fungal fruit body: from uniform cells to
548		specialized tissue. Mol Microbiol 64:873–876.
549	23.	Andoh T, Hirata Y, Kikuchi A. 2000. Yeast Glycogen Synthase Kinase 3 Is Involved in
550		Protein Degradation in Cooperation with Bul1, Bul2, and Rsp5. Mol Cell Biol 20:6712-
551		6720.
552	24.	Bidochka MJ, Low NH, Khachatourians GG. 1990. Carbohydrate storage in the
553		entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 56:3186-90.
554	25.	Brunt IC, Moore D. 1989. Intracellular glycogen stimulates fruiting in Coprinus cinereus.
555		Mycol Res 93:543–546.
556	26.	Jirjis RI, Moore D. 1976. Involvement of glycogen in morphogenesis of Coprinus
557		cinereus. J Gen Microbiol 95:348–352.

558	27.	Qin J, Wang G, Jiang C, Xu J-R, Wang C. 2015. Fgk3 glycogen synthase kinase is
559		important for development, pathogenesis, and stress responses in Fusarium
560		graminearum. Sci Rep 5:8504.
561	28.	Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Li C, Wang L, Guo X, Sun Y, Luo H,
562		Li Y, Song J, Henrissat B, Levasseur A, Qian J, Li J, Luo X, Shi L, He L, Xiang L, Xu
563		X, Niu Y, Li Q, Han M V, Yan H, Zhang J, Chen H, Lv A, Wang Z, Liu M, Schwartz DC,
564		Sun C. 2012. Genome sequence of the model medicinal mushroom <i>Ganoderma lucidum</i> .
565		Nat Commun 3:913.
566	29.	Sakamoto Y, Nakade K, Konno N. 2011. Endo-β-1,3-glucanase GLU1, from the fruiting
567		body of Lentinula edodes, belongs to a new glycoside hydrolase family. Appl Environ
568		Microbiol 77:8350–4.
569	30.	Fukuda K, Hiraga M, Asakuma S, Arai I, Seikikawa M, Urashima T. 2008. Purification
570		and characterization of a novel Exo- β -1,3-1,6-glucanase from the fruiting body of the
571		edible mushroom Enoki (Flammulina velutipes). Biosci Biotechnol Biochem 72:3107-
572		3113.
573	31.	Wang J, Zhang W, Zhou Y, Yuan S, Liu Z. 2015. Purification, characterization and
574		synergism in autolysis of a group of $1,3-\beta$ -glucan hydrolases from the pilei of
575		Coprinopsis cinerea fruiting bodies. Microbiology 161:1978–1989.
576	32.	Nowrousian M. 2018. Genomics and transcriptomics to study fruiting body development:
577		An update. Fungal Biol Rev 32:231–235.

578 33. Horton TL, Landweber LF. 2002. Rewriting the information in DNA: RNA editing in

579	kinetoplastids and	myxomycetes. Curr C	Dpin Microbiol 5:620–6.
-----	--------------------	---------------------	-------------------------

- 580 34. Liscovitch-Brauer N, Alon S, Porath HT, Elstein B, Unger R, Ziv T, Admon A, Levanon
- 581 EY, Rosenthal JJC, Eisenberg E. 2017. Trade-off between transcriptome plasticity and
- genome evolution in cephalopods. Cell 169:191-202.e11.
- 583 35. Liu H, Li Y, Chen D, Qi Z, Wang Q, Wang J, Jiang C, Xu J-R. 2017. A-to-I RNA editing
- is developmentally regulated and generally adaptive for sexual reproduction in
 Neurospora crassa. Proc Natl Acad Sci 114:E7756–E7765.
- 586 36. Liu J, Wang D, Su Y, Lang K, Duan R, Wu YF, Ma F, Huang S. 2019. FairBase: a
 587 comprehensive database of fungal A-to-I RNA editing. Database (Oxford) 2019.
- 37. Zhu Y, Luo H, Zhang X, Song J, Sun C, Ji A, Xu J, Chen S. 2014. Abundant and selective
 RNA-editing events in the medicinal mushroom *Ganoderma lucidum*. Genetics
 196:1047–1057.
- Wu B, Gaskell J, Zhang J, Toapanta C, Ahrendt S, Grigoriev I V., Blanchette RA,
 Schilling JS, Master E, Cullen D, Hibbett DS. 2019. Evolution of substrate-specific gene
 expression and RNA editing in brown rot wood-decaying fungi. ISME J 13:1391–1403.
- Sign 39. Kim J-S, Kwon Y-S, Bae D-W, Kwak Y-S, Kwack Y-B. 2017. Proteomic analysis of
 Coprinopsis cinerea under conditions of horizontal and perpendicular gravity.
 Mycobiology 45:226.
- Kertesz-Chaloupková K, Walser PJ, Granado JD, Aebi M, Kü Es U, KerteszChaloupkova K, Walser PJ, Granado JD. 1998. Blue light overrides repression of asexual
 sporulation by mating type genes in the basidiomycete *Coprinus cinereus*. Fungal Genet

601	41.	Kuè Es U, Granado JD, Hermann R, Boulianne RP, Kertesz-Chaloupkovaâ K, Aebi M.
602		1998. The A mating type and blue light regulate all known differentiation processes in
603		the basidiomycete Coprinus cinereus. Mol Gen Genet 260:81-91.
604	42.	Moore D. 1981. Developmental genetics of Coprinus cinereus: Genetic evidence that
605		carpophores and sclerotia share a common pathway of initiation. Curr Gentics 3:145-
606		150.
607	43.	Swamy S, U I. 1984. Morphogenetic effects of mutations at the A and B incompatibility
608		factors in Coprinus cinereus. J Gen Microbiol 130:3219-3224.
609	44.	Thevelein JM. 1984. Regulation of trehalose mobilization in fungi. Microbiol Rev
610		48:42–59.
611	45.	Jorge JA, Polizeli M de LT., Thevelein JM, Terenzi HF. 2006. Trehalases and trehalose
612		hydrolysis in fungi. FEMS Microbiol Lett 154:165–171.
613	46.	Domazet-Lošo T, Tautz D. 2010. A phylogenetically based transcriptome age index
614		mirrors ontogenetic divergence patterns. Nature 468:815-818.
615	47.	Quint M, Drost H-G, Gabel A, Ullrich KK, Bönn M, Grosse I. 2012. A transcriptomic
616		hourglass in plant embryogenesis. Nature 490:98-101.
617	48.	Cheng X, Hui JHL, Lee YY, Law PTW, Kwan HS. 2015. A "developmental hourglass"
618		in fungi. Mol Biol Evol 32:1556–1566.
619	49.	Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell

620	136:215–233.

621	50.	Eisenberg E, Levanon EY. 2018. A-to-I RNA editing — immune protector and
622		transcriptome diversifier. Nat Rev Genet 19:473–490.
623	51.	Sakamoto Y. 2018. Influences of environmental factors on fruiting body induction,
624		development and maturation in mushroom-forming fungi. Fungal Biol Rev 32:236–248.
625	52.	Kües U, Navarro-González M. 2015. How do Agaricomycetes shape their fruiting
626		bodies? 1. Morphological aspects of development. Fungal Biol Rev 29:63-97.
627	53.	Cooke WB. 1951. Ecological life history outlines for fungi. Ecology 32:736–748.
628	54.	Fuller KK, Loros JJ, Dunlap JC. 2015. Fungal photobiology: visible light as a signal for
629		stress, space and time. Curr Genet 61:275–288.
630	55.	Polak E, Hermann R, Kües U, Aebi M. 1997. Asexual sporulation in Coprinus cinereus:
631		Structure and development of oidiophores and oidia in an Amut Bmut homokaryon.
632		Fungal Genet Biol 22:112–126.
633	56.	Norros V, Karhu E, Nordén J, Vähätalo A V, Ovaskainen O. 2015. Spore sensitivity to
634		sunlight and freezing can restrict dispersal in wood-decay fungi. Ecol Evol 5:3312–3326.
635	57.	Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R. 2010. Fungi, hidden
636		in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585-610.
637	58.	Coley-Smith JR, Cooke RC. 1971. Survival and germination of fungal sclerotia. Annu
638		Rev Phytopathol 9:65–92.

639 59. Waters H, Butler RD, Moore D. 1975. Structure of aerial and submerged sclerotia of

640 *Coprinus lagopus*. New Phytol 74:199–205.

- 641 60. Golan JJ, Pringle A. 2017. Long-distance dispersal of fungi, p. 309–333. *In* The Fungal
 642 Kingdom. American Society of Microbiology.
- 643 61. Schreiner KM, Blair NE, Levinson W, Egerton-Warburton LM. 2014. Contribution of
- fungal macromolecules to soil carbon sequestration, p. 155–161. *In* Soil Carbon.
 Springer International Publishing, Cham.
- 646 62. Caldwell BA. 2005. Enzyme activities as a component of soil biodiversity: A review, p.
- 647 637–644. *In* Pedobiologia. Urban & Fischer.
- 648 63. Sollins P, Homann P, Caldwell BA. 1996. Stabilization and destabilization of soil
 649 organic matter: Mechanisms and controls. Geoderma 74:65–105.
- 650 64. Wallen RM, Perlin MH. 2018. An overview of the function and maintenance of sexual
 651 reproduction in dikaryotic fungi. Front Microbiol. Frontiers Media SA.
- 652 65. Heitman J. 2015. Evolution of sexual reproduction: A view from the fungal kingdom
 653 supports an evolutionary epoch with sex before sexes. Fungal Biol Rev. Elsevier.
- 654 66. Drost H-G, Gabel A, Grosse I, Quint M. 2015. Evidence for active maintenance of
 655 phylotranscriptomic hourglass patterns in animal and plant embryogenesis. Mol Biol
 656 Evol 32:1221–31.
- 657 67. Ah-Fong AMV, Kagda MS, Abrahamian M, Judelson HS. 2019. Niche-specific
 658 metabolic adaptation in biotrophic and necrotrophic oomycetes is manifested in
 659 differential use of nutrients, variation in gene content, and enzyme evolution. PLOS
 660 Pathog 15:e1007729.

661	68.	Naranjo-Ortiz MA, Gabaldón T. 2019. Fungal evolution: major ecological adaptations
662		and evolutionary transitions. Biol Rev 94:brv.12510.

- 663 69. Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G, de Vienne DM, Rodríguez de
- la Vega RC, Branco S, Giraud T. 2014. Fungal evolutionary genomics provides insight
- into the mechanisms of adaptive divergence in eukaryotes. Mol Ecol 23:753–773.
- 666 70. Calvo AM, Cary JW. 2015. Association of fungal secondary metabolism and sclerotial
 667 biology. Front Microbiol 6:62.
- 668 71. Hoshino T, Xiao N, Tkachenko OB. 2009. Cold adaptation in the phytopathogenic fungi
 669 causing snow molds. Mycoscience 50:26–38.
- 670 72. Willetts HJ, Bullock S. 1992. Developmental biology of sclerotia. Mycol Res 96:801–
 671 816.
- 672 73. Yablonovitch AL, Deng P, Jacobson D, Li JB. 2017. The evolution and adaptation of A673 to-I RNA editing. PLOS Genet 13:e1007064.
- 674 74. Song C, Sakurai M, Shiromoto Y, Nishikura K. 2016. Functions of the RNA editing
 675 enzyme ADAR1 and their relevance to human diseases. Genes (Basel) 7:129.
- 75. Zhou F, Lou Q, Wang B, Xu L, Cheng C, Lu M, Sun J. 2016. Altered carbohydrates
 allocation by associated bacteria-fungi interactions in a bark beetle-microbe symbiosis.
- 678 Sci Rep 6:20135.
- 679 76. Licht K, Jantsch MF. 2016. Rapid and dynamic transcriptome regulation by RNA editing
 680 and RNA modifications. J Cell Biol 213:15–22.

681	77.	Wu B, Gaskell J, Held BW, Toapanta C, Vuong T, Ahrendt S, Lipzen A, Zhang J,
682		Schilling JS, Master E, Grigoriev I V, Blanchette RA, Cullen D, Hibbett DS. 2018.
683		Substrate-specific differential gene expression and RNA editing in the brown rot fungus
684		Fomitopsis pinicola. Appl Environ Microbiol 84:e00991-18.
685	78.	Liu H, Wang Q, He Y, Chen L, Hao C, Jiang C, Li Y, Dai Y, Kang Z, Xu JR. 2016.
686		Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes. Genome
687		Res 26:499–509.
688	79.	Picardi E, Pesole G. 2013. REDItools: High-throughput RNA editing detection made
689		easy. Bioinformatics 29:1813–1814.
690	80.	Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat
691		Methods 9:357–359.

692

694 Tables

- Table 1. RNA editing events result in splicing variants and transcript length variants.
- Table 2. Interaction between RNA editing sites and milRNA. * for RT-qPCR validated
- 697 milRNA.
- 698 Figures
- 699 Fig 1. Developmental paths of *Coprinopsis cinerea* and experimental design. Mycelial punch
- was inoculated to each cellophane covered YMG plate and then incubated under different
- 701 environment. Time scale bars indicate days post inoculation (dpi) and light exposure
- 702 (white) or dark incubation (black) of each developmental process. Arrows indicate
- sample collection of time point a (before structure formation, developing colony, orange)
- and b (structure formed, developed colony, green).
- Fig 2. Carbohydrate content in different developmental paths. Error bar showing the standard
 deviation of 5 biological replicates. Statistic results present in Table S1.
- Fig 3. Transcriptome profiles of four developmental paths. (a-b) Hierarchical clustering of
- 708 RNA samples using FPKM values with Pearson's correlation (a) and Spearman's
- correlation (b). (c) Number of DEGs between vegetative mycelium and other three
- developmental paths. (d) Venn diagram showing the DEGs shared by different
- 711 developmental paths. (e) Volcano plots showing distributions of DEGs, taking gene
- r12 expression levels in vegetative mycelium as reference, grey dots showing non-DEGs.
- 713 Fig 4. KOG enrichment analysis on DEGs on reproductive development. Number of
- annotated genes are listed below. Number beside KOG terms indicates number of genes

715	being annotated to the node in the genome. Ratio is calculated by annotated genes of
716	specific KOG term in each DEG group over annotated genes of specific KOG term in the
717	genome background. Enrichment groups with Benjamini and Hochberg method (BH)
718	adjusted p value ≤ 0.20 are shaded in red to blue color, others are in grey.
719	Fig 5. Gene expression level reflects the carbohydrate metabolic flux. Spider plots show
720	content of different type of carbohydrate, arrows indicate the conversion from substrate
721	to product. Thickness of the arrow indicates relative value of expression level of enzyme
722	coding gene. Red arrows indicate up-regulation of expression level compare to
723	vegetative mycelia, green arrows indicate down-regulation (none), and blue arrows
724	indicate that the expression level is not significantly changed.
725	Fig 6. Evolutionary transcriptome profiles of developmental paths. (a) TAI and TDI values of
726	different developmental paths. TAI quantifies the mean evolutionary age of a
727	transcriptome. The lower the TAI, the evolutionarily older the transcriptome; TDI
728	quantifies the mean selection force acting on a transcriptome. The lower the TDI, the
729	
	stronger the force of purifying selection, giving its value less than 1. Error bars showing
730	stronger the force of purifying selection, giving its value less than 1. Error bars showing 95 % confidence interval estimated by bootstrap sampling for 1000 times. Lowercase
730 731	
	95 % confidence interval estimated by bootstrap sampling for 1000 times. Lowercase
731	95 % confidence interval estimated by bootstrap sampling for 1000 times. Lowercase letters showing TAI/TDI values that are significantly different among developmental
731 732	95 % confidence interval estimated by bootstrap sampling for 1000 times. Lowercase letters showing TAI/TDI values that are significantly different among developmental paths in multiple comparisons ($p < 0.05$). (b) Contribution of each PS to the TAI: PS 3 >
731732733	95 % confidence interval estimated by bootstrap sampling for 1000 times. Lowercase letters showing TAI/TDI values that are significantly different among developmental paths in multiple comparisons (p < 0.05). (b) Contribution of each PS to the TAI: PS 3 > PS 2 > PS 10 > PS 7 > PS 6 > PS 9 > PS 4 \approx PS 5 > PS 1 > PS 8. (c) Relative expression

of PS 1 and PS 2 in sclerotia are the same and equal to 0	737	of PS 1	and PS	2 in	sclerotia a	are the	same and	equal	to 0	
---	-----	---------	--------	------	-------------	---------	----------	-------	------	--

738	Fig 7. Properties of RNA editing sites and RNA editing events. (a) Histogram showing
739	editing the frequency of 819 RNA editing events. (b) The number of each type of RNA
740	editing events per million mapped reads in different developmental stages. (c) Box plots
741	showing RNA editing levels of RNA editing events in different developmental paths. (d)
742	Venn diagram showing the number of RNA editing sites shared by different
743	developmental paths. (e) The distribution of 245 RNA editing sites. (f) Sanger
744	sequencing validates T-to-C RNA editing events on scaffold_131:54938 (- strand), blue
745	arrow indicates editing site.
746	Fig 8. Properties of developmental paths differentiation in C. cinerea.
747	Supplementary materials
748	Supplementary text
749	Text S1. Supplementary methods.
750	Supplementary tables
751	Table S1. Carbohydrate content in different developmental paths. Multiple comparison results
752	are shown with groups.
753	Table S2. Validation of RNA editing events with Sanger sequencing. RNA editing candidate
754	scaffold_131:54938 (- strand), T-to-C editing show in red box. * for RNA editing events
755	being significantly observed.

756 Supplementary figures

757	Fig S1.Growth status of colonies. oidia production (a) and mycelium growth (b) when
758	incubated in 37 °C with continuous light or continuous dark.

759	Fig S2. GO (a) and KEGG (b) enrichment analysis on DEGs on reproductive development.
760	Number of annotated genes are listed below each DEG group. Number beside GO terms
761	indicates number of genes being annotated to the node in the genome. Ratio is calculated
762	by annotated genes of specific GO term in each DEG group over annotated genes of
763	specific GO term in the genome background. Enrichment groups with Benjamini and
764	Hochberg method (BH) adjusted p value ≤ 0.20 are shaded in red to blue color, others are
765	in grey.
766	Fig. S3. (a) Log ₂ FPKM of genes on starch and sucrose metabolism pathway cci00500. (b)
767	qPCR validation of gene expression on carbohydrate metabolic pathway related genes.
768	Fig S4. Log ₂ fold change values of genes related to KOG group of (a) carbohydrate transport
769	and metabolism; (b) energy production and conversion; (c) mycelial structure formation.
770	Fig. S5. KOG enrichment analysis (a) and GO enrichment analysis (GO term level 3, b) of
771	phylostrata. Number below each PS shows number of annotated genes in specific PS.
772	Number beside KOG/GO terms indicates number of genes being annotated to the node in
773	the genome. Ratio is calculated by genes of specific PS annotated to the KOG/GO term
774	over annotated genes of specific PS. For GO enrichment, ratio ≥ 0.1 are plotted.
775	Enrichment groups with Benjamini and Hochberg method (BH) adjusted p value ≤ 0.20
776	are shaded in red to blue color, others are in grey.

Fig S6. Evolutionary transcriptome and RNA editome profiles of C. cinerea development.

38

778	Distribution of Phylostrata (a) and dN/dS ratio (b) of all expressed genes (upper panel)
779	and RNA editing site containing genes (lower panel). Red dot line showing the mean.
780	RNA editing site containing genes are evolutionarily older in the genome. (c) and (d)
781	shows percentage of RNA editing containing genes in each phylostrata or dN/dS group.
782	Fig S7. KOG enrichment analysis of RNA editing sites. 245 editing sites in total. Number
783	before each annotation category shows number of RNA editing sites with specific
784	functional annotation predicted by snpEff. Number beside KOG terms indicates number
785	of genes being annotated to the node in the genome. Ratio is calculated by genes of
786	specific functional category annotated to the KOG term over annotated genes of specific
787	KOG term in the genome background. Enrichment groups with Benjamini and Hochberg
788	method (BH) adjusted p value ≤ 0.20 are shaded in red to blue color, others are in grey.
700	

Table 1. RNA editing events result in splicing variants and transcript length variants.

RNA editing position	Editing impact	Annotation	Okayama-7 #130 ID
scaffold_250:38334	Splice acceptor variant and intron variant	Anthranilate phosphoribosyltransferase	CC1G_02982
scaffold_194:26812	Splice region variant and intron variant	DNA-directed RNA polymerase II	CC1G_02497
scaffold_42:66264	Splice region variant	Manganese superoxide dismutase	CC1G_03559
scaffold_124:43286	Splice region variant	Glyoxalase I	CC1G_02307
scaffold_239:36981	Splice region variant	Hypothetical protein	CC1G_12295
scaffold_78:81092	Stop gained	Trp-Asp repeats containing protein	CC1G_03748

Table 2. Interaction between RNA editing sites and milRNA. * for RT-qPCR validated milRNA.

RNA editing		milRNA binding	
position	Lost	Gain	Remains
scaffold_105:15293		cci-milR-38-5p	
scaffold_118:64567	cci-milR-33-3p*		cci-milR-27
scaffold_118:64602	cci-milR-21a-5p,		
	cci-milR-21b-5p		
scaffold_13:185033	cci-milR-28	cci-milR-33-5p	
scaffold_23:18866			cci-milR-18,
			cci-milR-33-3p*
scaffold_23:198001			cci-milR-25,
			cci-milR-32-3p*,
			cci-milR-33-3p*
scaffold_3:265899			cci-milR-32-3p*
scaffold_302:10673	cci-milR-33-5p,		
	cci-milR-35		
scaffold_320:19744			cci-milR-25
scaffold_340:18068	cci-milR-33-5p		
scaffold_343:9606			cci-milR-17*
scaffold_390:3277			cci-milR-33-3p*,
			cci-milR-33-5p
scaffold_412:12417			cci-milR-30
scaffold_71:107334			cci-milR-19-3p
scaffold_73:108325	cci-milR-23		
scaffold_76:107237	cci-milR-32-3p*,	cci-milR-32-5p	
	cci-milR-33-3p*		
scaffold_76:45473/6		cci-milR-27	
scaffold_77:35473		cci-milR-22*	

Fig 1. Developmental paths of *Coprinopsis cinerea* and experimental design. Mycelial punch was inoculated to each cellophane covered YMG plate and then incubated under different environment. Time scale bars indicate days post inoculation (dpi) and light exposure (white) or dark incubation (black) of each developmental process. Arrows indicate sample collection of time point a (before structure formation, developing colony, orange) and b (structure formed, developed colony, green).

Fig 2. Carbohydrate content in different developmental paths. Error bar showing the standard deviation of 5 biological replicates. Statistic results present in Table S1.

Fig 3. Transcriptome profiles of four developmental paths. (a-b) Hierarchical clustering of RNA samples using FPKM values with Pearson's correlation (a) and Spearman's correlation (b). (c) Number of DEGs between vegetative mycelium and other three developmental paths.
(d) Venn diagram showing the DEGs shared by different developmental paths. (e) Volcano plots showing distributions of DEGs, taking gene expression levels in vegetative mycelium as reference, grey dots showing non-DEGs.

Fig 4. KOG enrichment analysis on DEGs on reproductive development. Number of annotated genes are listed below. Number beside KOG terms indicates number of genes being annotated to the node in the genome. Ratio is calculated by annotated genes of specific KOG term in each DEG group over annotated genes of specific KOG term in the genome background. Enrichment groups with Benjamini and Hochberg method (BH) adjusted p value ≤ 0.20 are shaded in red to blue color, others are in grey. bioRxiv preprint doi: https://doi.org/10.1101/819201; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig 5. Gene expression level reflects the carbohydrate metabolic flux. Spider plots show content of different type of carbohydrate, arrows indicate the conversion from substrate to product. Thickness of the arrow indicates relative value of expression level of enzyme coding gene. Red arrows indicate up-regulation of expression level compare to vegetative mycelia, green arrows indicate down-regulation (none), and blue arrows indicate that the expression level is not significantly changed.

Fig 6. Evolutionary transcriptome profiles of developmental paths. (a) TAI and TDI values of different developmental paths. TAI quantifies the mean evolutionary age of a transcriptome. The lower the TAI, the evolutionarily older the transcriptome; TDI quantifies the mean selection force acting on a transcriptome. The lower the TDI, the stronger the force of purifying selection, giving its value less than 1. Error bars showing 95 % confidence interval estimated by bootstrap sampling for 1000 times. Lowercase letters showing TAI/TDI values

that are significantly different among developmental paths in multiple comparisons (p < 0.05). (b) Contribution of each PS to the TAI: PS 3 > PS 2 > PS 10 > PS 7 > PS 6 > PS 9 > PS $4 \approx PS 5 > PS 1 > PS 8$. (c) Relative expression level of genes from each PS across developmental paths. (d) Mean relative expression level of old genes (PS 1-2) and young genes (PS 3-10) over developmental paths. Relative expression level (RE) of PS 1 and PS 2 in oidia are the same and equal to 1, RE of PS 1 and PS 2 in sclerotia are the same and equal to 0.

Fig 7. Properties of RNA editing sites and RNA editing events. (a) Histogram showing editing the frequency of 819 RNA editing events. (b) The number of each type of RNA editing events per million mapped reads in different developmental stages. (c) Box plots showing RNA editing levels of RNA editing events in different developmental paths. (d) Venn diagram showing the number of RNA editing sites shared by different developmental paths. (e) The distribution of 245 RNA editing sites. (f) Sanger sequencing validates T-to-C RNA editing events on scaffold_131:54938 (- strand), blue arrow indicates editing site.

bioRxiv preprint doi: https://doi.org/10.1101/819201; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig 8. Properties of developmental paths differentiation in C. cinerea