Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Quality-quantity tradeoffs drive functional trait evolution in a model microalgal “climate change winner”

Rasmus T. Lindberg, View ORCID ProfileSinéad Collins
doi: https://doi.org/10.1101/819326
Rasmus T. Lindberg
University of Edinburgh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sinéad Collins
University of Edinburgh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sinéad Collins
  • For correspondence: s.collins@ed.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Phytoplankton are the unicellular photosynthetic microbes that form the base of aquatic ecosystems, and their responses to global change will impact everything from food web dynamics to global nutrient cycles. Some taxa respond to environmental change by increasing population growth rates in the short-term, and, based on this, are projected to increase in frequency over decades. To gain insight into how functional traits in these projected “climate change winners” change over different timescales, we evolved populations of microalgae in ameliorated environments for several hundred generations. While populations initially responded to environmental amelioration by increasing photosynthesis and population growth rates as expected, this response was not sustained. Instead, most populations evolved to allocate a smaller proportion of carbon to growth while increasing their ability to tolerate and metabolise reactive oxygen species (ROS). This diversion of fixed carbon from growth to catabolism underlies a quality-quantity tradeoff in daughter cell production which drives the evolution of population growth rates and of functional traits that underlie the ecological and biogeochemical roles of phytoplankton. There is intraspecific variation in the trait combinations that evolve, but all are consistent with mitigating ROS production and accumulation in ameliorated environments over hundreds of generations. This offers both an evolutionary and a metabolic framework for understanding how functional traits can change in primary producers projected to be “climate change winners”, and suggests that short-term population booms and associated trait shifts have the potential to be dampened or reversed if environmental amelioration persists.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted October 28, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Quality-quantity tradeoffs drive functional trait evolution in a model microalgal “climate change winner”
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Quality-quantity tradeoffs drive functional trait evolution in a model microalgal “climate change winner”
Rasmus T. Lindberg, Sinéad Collins
bioRxiv 819326; doi: https://doi.org/10.1101/819326
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Quality-quantity tradeoffs drive functional trait evolution in a model microalgal “climate change winner”
Rasmus T. Lindberg, Sinéad Collins
bioRxiv 819326; doi: https://doi.org/10.1101/819326

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4239)
  • Biochemistry (9171)
  • Bioengineering (6804)
  • Bioinformatics (24062)
  • Biophysics (12154)
  • Cancer Biology (9564)
  • Cell Biology (13825)
  • Clinical Trials (138)
  • Developmental Biology (7656)
  • Ecology (11736)
  • Epidemiology (2066)
  • Evolutionary Biology (15540)
  • Genetics (10670)
  • Genomics (14358)
  • Immunology (9511)
  • Microbiology (22901)
  • Molecular Biology (9129)
  • Neuroscience (49112)
  • Paleontology (357)
  • Pathology (1487)
  • Pharmacology and Toxicology (2583)
  • Physiology (3851)
  • Plant Biology (8351)
  • Scientific Communication and Education (1473)
  • Synthetic Biology (2301)
  • Systems Biology (6205)
  • Zoology (1302)