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Methods 
Establishing MeCP2 Binding  
Position Weight Matrix 

A PWM represents the motifs most likely to be bound by a TF allowing for redundancy in 

binding site specificity. PWMs are generated by combining experimental data for TFs binding 

DNA sequences (Stormo et al., 1986) and provides an in silico approach to predict binding 

sites for a specific TF. One limit of PWMs is the discrimination of true binding sites from non-

binding sites as each nucleotide probability at nucleotide position is calculated independently 

from its neighbour (Pan and Phan, 2008). PWM sequence motifs can occur repeatedly across 

the genome, representing true binding sites or sites bound by chance. This poses a challenge 

in TF binding site analysis and the traditional PWM-only filter require additional information 

to improve discrimination.  

We used a PFM for MeCP2 from the Cistrome database (http://cistrome.org) based on SELEX 

experiments carried out by Klose and colleagues (Klose et al., 2005). We used the Biostrings 

package in RStudio version 1.1.463, to convert the MeCP2 PFM into a PWM that could be 

used to identify the MeCP2 binding motif along a sequence of DNA (Fig. 1a). Klose and 

colleagues identified preferred sequences for MeCP2 binding through methyl-SELEX (Klose et 

al., 2005) and validated with genes known to be bound by MeCP2, Bdnf and Dlx6 in the 

promoter and core gene regions. 

 

PWM Scanning 
Positive and Negative Chip-Seq Control Datasets 

We retrieved MeCP2 potential target genes from ChIP-Seq data Cistrome Data Browser 

(http://cistrome.org/db/). We used ChIP-Seq data from a study by Maunakea and colleagues 

(Cistrome ID 34392) (Maunakea et al., 2013). We used IMR-90 foetal lung myofibroblast data 

from this study as our positive control dataset. Putative target genes on Cistrome are already 

scored by the Binding and Expression Target Analysis package indicating the regulatory 

potential as a putative target (Wang et al., 2013).  

For our positive controls, we generated sequence datasets for the top 100, 200 and 300 genes 

bound by MeCP2 from the IMR-90 foetal lung myofibroblast ChIP-Seq data, ranked by 

Cistrome BETA scoring. For our negative controls, we randomly selected and size-matched 

genes from the same ChIP-Seq data with a score of 0. We define the promoter sequences as 

being 1000bp upstream of the transcription start site and we retrieved these promoters in 

RStudio from the UCSC Genome Browser (https://genome.ucsc.edu/) using the GRCh37/hg19 

human reference genome. We tested each sequence for the presence of the MeCP2 PWM. 

For every PWM match, a score is given from 1-100%. This score represents how the sequence 

being matched is different from a random sequence. 

Guanine-Cytosine nucleotide content (GC%) was previously established to be important in 

MeCP2 binding in vivo (Rube et al., 2016). For every PWM match, we generated a sequence 

to include the 15bp PWM match sequence and 100bp flanking sequences, and we calculate 

the GC for these 215bp sequences.  
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Fig. 4 Overview of Matrix-GC procedure to detect MeCP2 transcription factor binding sites in silico. The Matrix-GC procedure is 

a combination of an MeCP2 position weight matrix and DNA sequence GC%, and was validated through positive and negative 

random sampling control using data from (Maunakea et al., 2013). The performance of Matrix-GC was evaluated through ROC 

curves. Matrix-GC was applied to the promoters of candidate genes across neurological and neuropsychiatric disorders to give 

an output list of putative genes bound by MeCP2 from each disorder. 

 

Receiver Operating Characteristics Curve 

In order to determine the ideal PWM threshold for MeCP2 motif binding, we graphed a ROC 

for all datasets. We set the minimum PWM score at 5% and stratified results based on PWM 

scores at increasing increments of 5%. For bootstrapping analysis, we generated 10 random 

samples of 100, 200 and 300 negative control genes. Taking the average values, we plotted 

the ROC curve alongside the positive controls. Additionally, we evaluated ROC curves at 

various sequence GC%. The AUC was calculated as a measure of performance relative to a 

random classifier (AUC = 0.5) that is represented by the line x = y (Figure 2). 

 

Brain Disorders Dataset Collection 

For the analysis of MeCP2 interaction in different disorders, we used datasets for different 

neuropsychiatric and neurological disorders gathered from multiple studies including GWAS, 

meta-analysis of GWAS, and literature reviews (Table 3). We exclude the extended major 

histocompatibility complex region from the SCZ dataset as it spans several hundred genes and 

potentially introduces noise into our analysis (Pardiñas et al., 2018). Additionally, the previous 

comprehensive gene map was described in 2004 and excluded RNA genes (Horton et al., 

2004). For the SFARI dataset (Abrahams et al., 2013) Gene Scoring - which assesses the 

strength of evidence presented for a candidate ASD gene - we considered categories S 

(syndromic), 1 (high confidence genes) and 2 (strong candidate genes). 
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For SCZ associated genes, we used genes identified by GWAS studies. Rare variants are also 

implicated in SCZ aetiology, however only few reliable candidates have been identified until 

now: studies looking at rare single nucleotide variants require larger samples to meet power 

requirements as rare risk loci often occur at low frequencies. The study of CNVs can 

potentially identify single genes which are rare variants for SCZ, but CNVs at implicated loci 

can span several genes and brings into question which gene contributes to the phenotype. At 

the moment the few candidate rare variants in SCZ have been confirmed with sequencing. 

Neurexin 1 is a well-known CNV in SCZ (Marshall et al., 2017) and is also largely associated 

with ASD (Kim et al., 2008). To date, SETD1A is the only genome-wide significant rare variant 

discovered by whole exome sequencing (Singh et al., 2016). It proves difficult to find SCZ-

exclusive rare variants and to this effect, we do not consider SCZ CNVs in our study. 
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Disorder  Source Journal Data Type 

Neuropsychiatric 

Autism (ASD) Grove et al., 2019 Nature Genetics Meta-analysis of GWAS 

Autism (SFARI) SFARI GENE  Database 

Schizophrenia GWAS 

(SCZ) Pardiñas et al., 2018 Nature Genetics GWAS 

Attention deficit 

hyperactivity disorder 

(ADHD) 

Hayman and 

Fernandez, 2018 Frontiers in Psychiatry 

Review of GWAS, copy 

number variant, and 

candidate gene association 

studies 

Major depressive 

disorder (MDD) Howard et al., 2019 Nature Neuroscience Meta-analysis of GWAS 

Anorexia Duncan et al., 2017 

American Journal of 

Psychiatry GWAS 

Neurological 

Parkinson’s disease (PD) Chang et al., 2017 Nature Genetics Meta-analysis of GWAS 

Alzheimer’s disease (AD) Lambert et al., 2013 Nature Genetics Meta-analysis of GWAS 

Huntington’s disease 

(HTT) Moss et al., 2017 The Lancet Neurology GWAS 

Multiple sclerosis (MS) Bashinskaya et al., 2015 Human Genetics GWAS review 

Amyotrophic lateral 

sclerosis (ALS) 

van Rheenen et al., 

2016 Nature Genetics GWAS 

Epilepsy Abou-Khalil et al., 2018 Nature Communication Meta-analysis of GWAS 
Table 3 List of neuropsychiatric and neurological diseases used in the present study. 

 

Enrichment and Network Analyses 
We employed Gene Ontology and pathway overrepresentation analysis to define functional 

aspects of the disease gene datasets and identify any terms or pathways that were 

significantly enriched in these datasets. We carried out Gene Ontology enrichment analysis 

using GOrilla (http://cbl-gorilla.cs.technion.ac.il/). We discovered over-represented Gene 

ontology terms by analysing disorder genes versus the background set which ignores ranking. 

We consider the background set of genes as being the entire genome minus the genes of 

interest. To perform pathway enrichment analysis within the various gene sets, we input 

genes as Ensembl identifiers with a selected p-value threshold of 0.05. For pathways analysis 

we used the ReactomePA package from Bioconductor 

(https://bioconductor.org/packages/release/bioc/html/ReactomePA.html) and we input 

Entrez identifiers into the function call enrichPathway and selected a p-value cut-off value of 

0.05, controlling for false discovery rate (“fdr”). For network analysis we used Cytoscape 

application version 3.7.1 and we visualised proteomics data from STRING (http://string-

db.org ) using the stringAPP plugin version 1.4.2 (http://apps.cytoscape.org/apps/stringapp). 

We input Ensembl identifiers to identify any protein-protein interactions, either directly or 

indirectly. We applied a confidence cut-off value of 0.4 with 0 additional interactors and 
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applied the NetworkAnalyzer function in the StringAPP for network analysis and the edges 

were treated as undirected. We designated hub proteins as having a node degree of ≥ 10.  

 

One possible caveat in using this approach is the different number of genes present in the 

datasets considered, and the limited number of genes in several disorders (anorexia, epilepsy, 

HTT) as these datasets have lower statistical power when it comes to enrichment and network 

analysis. Hence the network and enrichment component of the study has a natural bias 

toward the disorders with more genes. To minimise the intrinsic biases of enrichment and 

network analysis we used random controlled datasets with the same number of genes used 

as input. For control enrichment and network analyses, we generated 10 random samples of 

genes from the genome and run them through the enriched analysis. The size of the controls 

datasets was the same as the corresponding input for each disorder. 
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