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Abstract

Protein-protein interactions (PPIs) play a critical role in virtually all cellular processes.
Their context-dependent characterization is thus a key objective of proteomic research.
We and others have previously shown that chromatographic fractionation of native
protein complexes (e.g. through size-exclusion chromatography, SEC) can be effectively
combined with high-throughput, bottom-up mass-spectrometry-based proteomics (e.g.
data-independent acquisition-based SWATH-MS), to support proteome-wide
characterization of protein complexes.

To enable qualitative and quantitative comparison of the proteome organization
encoded in these datasets, across multiple experimental conditions, scalable and robust
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analysis strategies are required. To address this need, we developed the Size-Exclusion
Chromatography Algorithmic Toolkit (SECAT), a novel network-centric strategy for the
quantitation of protein complex profiles. SECAT elucidates proteins and their
context-specific PPIs in terms of both abundance and connectivity. We validate
algorithm predictions using publicly available datasets and compare them to established
strategies to demonstrate that SECAT represents a more scalable and effective
methodology to assess protein-network state, obviating the need to infer individual
protein complexes. Further, by comparing PPI-networks in interphase and mitotic HeLa
cells, we demonstrate SECAT’s ability to provide novel insight about context-specific
molecular mechanisms that differentiate cellular states.

Introduction

Living cells depend on a large number of coordinated and concurrent biochemical
reactions. Most of these are catalyzed and controlled by macromolecular entities of
well-defined subunit composition and 3D structure, a notion that has been captured by
the term “modular cell biology” by Hartwell and colleagues [1]. The vast majority of
these modules consist of or contain protein complexes. It is thus a basic assumption of
the modular cell biology model that alterations in protein complex structure,
composition and abundance will alter the biochemical state of cells. Elucidating protein
complexes and their organization in extended protein-protein interaction (PPI) networks
is, therefore, of paramount importance for both basic and translational research.

Traditionally, the composition and structure of protein complexes has been
determined by two broad, complementary approaches, structural biology and interaction
proteomics. Structural biology encompasses a suite of powerful tools to characterize
individual, purified or reconstituted protein complexes at high resolution, including at
the individual atomic coordinates level. High resolution structures have provided a
wealth of functional and mechanistic insights into biochemical reactions [2]. However,
they have been solved for only a few hundred human protein complexes and the number
of cases where the structure of protein complexes is assessed across different functional
states is even lower. This is contrasted by the observation that in protein cell extracts,
under mild lysis conditions, approximately 60% of proteins and total protein cell mass is
engaged in protein complexes [3]. As a result, methodologies for the rapid elucidation of
protein complexes are still critically needed.

Interaction proteomics encompasses a suite of methods to determine composition
and, at times, subcellular location and abundance of protein complexes, albeit at lower
resolution but higher throughput than structural biology techniques. Among these
methods, liquid chromatography coupled to tandem mass spectrometry [4, 5]
(LC-MS/MS)—and more specifically affinity purification coupled to LC-MS/MS
(AP-MS [6])—has been most widely used. For AP-MS analysis, individual proteins are
engineered to display an affinity tag and are expressed as “bait” proteins in cells. The
bait and the corresponding “prey” proteins assembled around it are then isolated and
qualitatively [7–10] or quantitatively [11–14] analyzed by MS. This method has proven
robust across laboratories [15] and, through process automation and integrative data
analysis, efforts to map the PPIs of the entire human proteome [16,17] have helped
characterize more than half of canonical human proteins [18]. This knowledge is
embedded in a variety of databases, including BioPlex [16,18], STRING [19], IntAct [20]
and hu.MAP [21] that provide access to generic human PPI maps. They have also been
used to predict PPIs for previously uncharacterized proteins, e.g. PrePPI [22–24].
Whereas it can be expected that these systematic PPI mapping projects will reach
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saturation in the next few years, AP-MS and related approaches are fundamentally
limited in their ability to detect compositional or abundance changes across multiple cell
states and to detect concurrent changes in different complexes within the same sample.

Protein correlation profiling (PCP) [25] and related methods [3, 26–31] have been
proposed as a means to concurrently analyze multiple complexes from the same sample.
PCP proceeds by first separating native protein complexes—e.g. according to their
hydrodynamic radius by size-exclusion chromatography (SEC)—then collecting 40-80
consecutive fractions, and finally performing bottom-up mass spectrometric analysis of
fraction-specific proteins. The result is a set of quantitative protein abundance profiles,
across the apparent molecular weight of each protein complex (Fig. 1a). Under the
assumption that protein subunits of the same complex have congruent SEC profiles, the
latter can then be used to infer protein-protein interactions and protein complex
composition. Conditional to availability of quantitative mass spectrometric data, the
method further supports comparative analysis across multiple biological conditions,
which is critically missing in current PPI databases. For the most part, PCP datasets
have been analyzed using interaction-centric algorithms [26,27,29,31–34] which
essentially use chromatographic co-elution of protein profiles to identify PPIs, to infer
protein complexes and to conduct qualitative and quantitative comparisons across
biological conditions. Interaction-centric algorithms are limited by the inherently low
SEC resolution, resulting in the presence of hundreds to thousands of proteins per SEC
fraction. This lowers the confidence of inferred interactions because of the high
probability that non-interacting proteins may show similar elution profiles by
chance [34].

To address these limitations, we recently developed the algorithm CCprofiler [3]
which implements a targeted, complex-centric strategy to query the protein elution
profiles generated by high resolution SEC-SWATH-MS [3] to assess presence,
composition and abundance of predefined protein complexes. Similar to targeted
proteomic approaches [35,36], transforming the problem from de novo “identification” of
unknown protein complexes to a posteriori “detection” of established ones significantly
increases sensitivity. Using prior knowledge from reference databases like CORUM [37],
BioPlex [16,18] or STRING [19], the confidence of protein complex detection was also
substantially improved, albeit at the cost of missing potential novel interactions or
complexes not included in the query set. Taking advantage of the precise quantitative
values generated by SWATH-MS, we have also shown that the CCprofiler strategy is
well-suited to detect changes in complex-associated protein abundance across
conditions [38].

However, several critical challenges remain, both for interaction- and complex-centric
strategies. This is especially relevant in studies where an increasing number of
experimental conditions or samples are compared, as can be expected in the near future.
Specifically, the assumption that protein complexes constitute entities of fixed subunit
composition across different contexts and conditions is both highly restrictive and
biologically unrealistic, thus critically hindering data analysis and interpretation. For
example, the spliceosome—a complex molecular machinery controlling pre-mRNA
intron removal—consists of small nuclear RNAs (snRNA) and more than 100 protein
subunits, assembled into a variety of submodules, each with highly context-specific
activity and composition [39,40]. Since only a fraction of these protein subunits will be
detectable across all conditions in typical bottom-up proteomics experiments,
differentiating between biological effects and technical artefacts is challenging for the
absent subunits if complexes are considered to be static entities.
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Figure 1. Methodological overview. (a) The SEC-SWATH-MS workflow is depicted comparing two different
experimental conditions A and B. Native protein extracts are separated by SEC and individual fractions are sampled
(1-15). Each fraction is separately measured by LC-MS/MS. Peptide or protein abundance grouped according to SEC
fraction can be depicted as profile, whereby co-eluting proteins might be part of the same protein complex. Two
experimental conditions can result in similar protein complex profiles but might differ for some proteins (highlighted
in pink). (b) The SECAT algorithm uses peptide-level protein complex profiles and reference PPI networks as input.
The signal processing module computes a set of scores for the peptide profiles of candidate interactors. Using the set
of scores and ground truth positive and negative interactomes, the PPI detection module conducts semi-supervised
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learning and generates context-specific PPI subnetworks. Confident PPIs are quantified to assess complex abundance
and interactor ratio changes using the PPI quantification module. The proteoVIPER algorithm based on VIPER [41]
is used for quantitative protein inference from peptide-level abundances. Network integration: Significance of changes
between the experimental conditions is integrated by a network-centric approach on all different levels. (c) SECAT
provides quantitative insights on different levels. Protein abundance-based quantitative metrics are computed for total
abundance, monomer abundance and assembled abundance. PPI-based quantitative metrics are provided separately for
each interactor, integrated as positively correlated complex abundance or negatively correlated interactor ratio metric.

To address these limitations, we introduce the Size-Exclusion Chromatography
Algorithmic Toolkit (SECAT). This methodology further extends PCP data analysis to
support network-centric analysis, without requiring the inference of protein complexes.
In a first step, SECAT scores binary PPIs from PCP datasets to construct
context-specific, error-rate-controlled PPI networks. In a second step, rather than using
the resulting connectivity maps to directly infer protein complexes, SECAT leverages
them to transform differential protein abundances across fractions into metrics
representing complex abundance and interactor-protein ratio. We demonstrate that this
novel, network-centric strategy for protein complex attribute inference is robust against
technical variability and overcomes key limitations of current protein-complex inference
methods, while representing changes in network connectivity in an intuitive and
unbiased way. This supports discovery of cell-state-specific PPI network changes as well
as the molecular mechanisms associated with them.

Results

The Size-Exclusion Chromatography Algorithmic Toolkit

SECAT’s workflow consists of four consecutive steps: signal processing, PPI detection,
PPI quantification and network integration, respectively. The main input data are the
peptide-level PCP profiles, e.g. acquired by SEC-SWATH-MS [3,38], and a set of
reference PPI networks (Fig. 1b, Methods). The output of the system are
context-specific interactomes with protein-level metrics summarizing the associated
differential protein and PPI properties (Fig. 1c, Methods). In the following we describe
each step.

Step 1, Signal processing: The goal of the first step is to define the SEC profile
boundaries within which specific binary interactions are observable and to derive a set
of partial scores that discriminate true vs. false interactions. Candidate interactions are
obtained from a comprehensive repertoire of PPI network references, such as
CORUM [37], STRING [19] or PrePPI [24]. Since protein complexes frequently form
Gaussian elution peaks in the SEC dimension, previous approaches [3, 31,34]
preprocessed the data to select peak boundaries and to filter the data for the most
promising candidate signals (”peak picking”). In contrast, to maintain quantitative
consistency between conditions and replicates, SECAT avoids peak-picking altogether
and performs only minimal signal preprocessing, thus focusing the analysis on the SEC
fraction subsets where both tested interactors are detectable (Methods). For each
candidate PPI, peptide-level elution profiles from each protein are processed to compute
chromatographic (cross-correlation shape and shift [42,43], maximal and total
information criterion [44]), interactor ratio, SEC coverage, and monomeric fraction
distance metrics (Fig. 1b, Methods). The result of this step is a table in which each
candidate PPI is associated with a score vector representing the different properties that
can differentiate between true and false interactions.
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Step 2, PPI detection: To generate context-specific interaction subnetworks,
partial scores from the first step are used as input to a machine learning (ML) approach
based on the PyProphet algorithm [45,46]. This step is designed to discriminate true vs.
false interactions and to estimate their confidence. For this purpose, SECAT is trained
using a set of true negative PPIs as null model and the most confidently detected PPIs
as gold standard model of true interactions (Fig. 1b, Methods). Since queried or tested
candidate PPIs may, by chance, match co-eluting protein profiles that are not
representative of true positive interactions detectable within the experimental context,
SECAT uses a semi-supervised learning approach (Fig. 1b, Methods). The first
iteration is thus initialized by a composite score only for the most confident PPIs, with
subsequent iterations increasing the classifier sensitivity, relying on cross-validation and
“early stopping” to alleviate overfitting (Methods). Many reference PPI networks
provide confidence metrics for individual interactions; SECAT can incorporate the prior
confidence by computing a group-based false discovery rate (FDR) metric (Methods).
Thus, SECAT learns a classifier using only high confidence PPI networks (e.g.
CORUM [37]) and then applies it to less stringent networks (e.g. STRING [19] or
PrePPI [24]) to maximize sensitivity and coverage of profiled interactions. In summary,
this step generates a set of confidence metrics for each candidate PPI (posterior error
probabilities and q-values), that allow thresholding the list at any user-defined FDR.

Step 3, PPI quantification: For each protein involved in an interaction, the
molecular mass of its monomeric subunit is used, together with the SEC calibrated
molecular weight scale [3] to define a protein-specific “monomer threshold”, which
corresponds to the SEC fraction index that separates the fractionation range into
regions where the protein of interest is present in likely assembled or monomeric forms
(Methods). Within the fractions covering the assembled protein conformations, the
combined set of PPIs that are confidently detected across all experimental conditions
and replicates is then used for quantification. Specifically, for each protein in a
candidate binary interaction, peptide-level data within the boundaries of the SEC
fractions defined in Step 1 are independently summarized. This provides quantitative
metrics that can be used to assess protein or PPI changes across experimental
conditions (Fig. 1b, Methods).

Step 4, Network integration: The goal of the last step is to integrate individual
protein and binary PPI metrics from the previous step into comprehensive PPI network
states, where nodes represent individual proteins and their differential attributes and
edges indicate specific binary PPIs, representing the consensus across different
conditions and replicates (Fig. 1b, Methods).

The VIPER [41] algorithm was originally developed to infer protein activity from
target transcript abundances using gene regulatory networks (GRN). SECAT’s
proteoVIPER algorithm extends this conceptual strategy by adapting it to proteomic
data that estimates protein- or PPI-level metrics, based on their fractionated peptide
abundances, as computed by the previous step (Methods). To estimate protein-level
metrics, peptide-protein relationships are used to compute a normalized enrichment
score (NES). When all fractions are considered, a metric for “total” protein abundance
can thus be computed; alternatively, considering the above-defined monomer threshold,
metrics for “monomeric” (right side of threshold) or “assembled” (left side of threshold)
subunits can be estimated (Fig. 1c, Methods). To estimate PPI-level metrics, the
peptides of two interactor proteins are quantified using only their overlapping SEC
fractions. For each protein, a separate “interactor” metric can be computed as
described above to assess the quantitative changes for the individual protein within the
particular PPI. Alternatively, complex-related metrics can be derived: First, the
peptides of the two interactors are assessed in a positively correlated setting, where the
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resulting metric can be used to assess “complex abundance”. Second, the interactor
peptides are assessed in a negatively correlated setting to derive a metric representing
“interactor ratio” (Fig. 1c, Methods). This metric can represent stoichiometric changes
between interacting subunits within a complex or alterations in their connectivity, if a
PPI is abrogated in some conditions.

In the final step, SECAT statistically compares the quantitative metrics between
different groups and then integrates PPI-level (edges) metrics on a protein-by-protein
basis (nodes) to assess protein abundance or protein-complex-based changes for every
protein of interest. For this integration, we use the Empirical Brown’s Method [47],
which is specifically designed to account for non-statistically-independent evidence and
can integrate both redundant (PPI for protein of interest from the same complex) and
orthogonal (PPI for protein of interest from different complexes) information (Methods).
In conclusion, SECAT leverages large-scale SEC-SWATH-MS measurements, including
across multiple conditions, to generate context-specific PPI networks, as well as protein
abundance and other PPI-related quantitative metrics, to comprehensively characterize
condition-specific proteome and proteome-network changes.

Parameter selection and validation of signal processing and PPI
detection modules

To assess SECAT’s signal processing and PPI detection modules for parameter selection
and validation, we first benchmarked the effect of different peak-picking preprocessing
methods. For this, we used a publicly available SEC-SWATH-MS dataset [38] of a HeLa
CCL2 cell line that was measured in triplicate in both interphase and mitotic cell state
(referred to as HeLa-CC dataset, Methods). Then, we assessed the method’s robustness
based on its ability to infer bona fide PPIs using reference networks with an increasing
ratio of false vs. true PPIs. For both assessments, the entire SECAT methodology was
used, however, with different choices for the parameters at each step.

Defining reference sets of true and false PPIs is non-trivial and for this
benchmarking process we adapted a previously applied strategy used by the PrInCE
algorithm [34] (Methods). It leverages CORUM [37] PPIs as true and all other
interactions of CORUM proteins that are not included in the database
(CORUM-inverted) as false PPIs. Since proteins in CORUM complexes are well
characterized and, for the most part, supported by 3D structure data, this strategy
assumes that any true interactions within that set of proteins should be known already.
As such, identified or detected interactions that are not reported are likely false
positives [34]. For the purpose of the benchmark we further excluded any known or
predicted interactions from CORUM-inverted and split the combined true/false
reference set into equally sized training/validation and hold-out subsets (Methods).

Effect of signal preprocessing on PPI detection consistency: Both,
interaction- and complex-centric algorithms frequently employ peak picking to increase
signal-to-noise (S/N) characteristics of co-eluting candidate peaks. This can lower
detection consistency due to the often-extreme elution profile heterogeneity of protein
complex elution peaks (i.e., their variability in elution width from 5-60 SEC fractions),
convoluted peak structure, intensities spanning several orders of magnitude, and
different S/N characteristics. As a result, peaks may remain undetected—or different
(elution) boundaries may be set across conditions—thus impairing resulting accuracy
and reproducibility. To minimize these effects, SECAT skips peak picking and focuses
only on the intersecting fractions of candidate interactors, as described in Step 1. To
better assess the effects of this strategy, we compared it to two different peak picking
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strategies, termed “detrend” (base line removal) and “localmax” (local maximum peak
picking) (Methods).

Using the above-described benchmark setup, we first processed three replicates of
each condition of the HeLa-CC dataset with the different peak picking options. Our
results (Fig. 2a) show that peak-picking based noise removal results in tighter and less
variable mean peak widths across all conditions and replicates. However, when
comparing peak-width standard deviation across the three replicates, the “localmax”
method introduced slightly higher variability (Fig. 2a). In contrast, the quantitative,
integrated peak area-based metrics and particularly the standard deviation are very
similar across all three options (Fig. 2a). This suggests that the three approaches
perform similarly in terms of quantitative applications. However, considerable
differences were found when comparing detection consistency (Fig. 2b). Indeed,
decomposing the total number of detected PPIs for detectability across experimental
replicates revealed that the fractions of PPIs consistently detected across replicates was
substantially higher if no peak picking preprocessing was used, thus supporting its
omission in SECAT.

Error-rate estimation accuracy and PPI detection sensitivity: To
optimally separate true vs. false candidate PPIs, SECAT integrates 10 different partial
scores into a composite score (Fig. 2c), using a semi-supervised learning strategy
initialized by a high confidence PPI score (kickstart score, Methods). Consistent with
other evidence integration approaches, the final integrative score (secat score) is more
discriminative than any of the initial or partial scores (Fig. 2c). To assess error-rate
estimation accuracy and algorithm sensitivity, we performed cross-validation analysis by
applying the classifier to the hold-out subset with increasing fractions (1:0 –1:16) of false
reference interactions (Methods, Fig. 2d). The accuracy of PPI detection confidence
was then assessed by comparing the q-value estimates with the ground truth estimated
FDR (Fig. 2e). Our results show that the q-value estimates for the hold-out dataset
were accurate within the assessed range. This shows that the SECAT PPI detection
module is robust against a variable fraction of false or undetectable PPIs in reference
databases, especially in the more relevant high-confidence region (q-value < 0.1).
However, lowering the specificity of the reference databases or hypothetically assessing
all pairwise PPI combinations has a negative effect on the sensitivity due to multiple
hypotheses testing correction [48] (Fig. 2f): Indeed, at a high confidence level (q-value
< 0.05), only 1,173 bona fide PPIs were detected, using a 1:16 ratio of true/false PPIs
in the query set, compared to 3,200, when a 1:0 ratio was used. The higher PPI
recovery rate illustrates the benefit of using a high-quality reference PPI network, rather
than comparing all potential PPI interactions using the proposed scoring approach.

Compatibility with different data modalities: PCP datasets have been
acquired by proteomic methods different from SWATH-MS, e.g. by label-based [30] or
label-free [27] data-dependent acquisition methods. We tested the performance of
SECAT with a publicly available SILAC-PCP dataset [30] which compared Anti-Fas
IgM treated (inducing apoptosis) against control samples of Jurkat cells in triplicates
per condition. We refer to this dataset as Jurkat-Fas. The assessment was conducted
using the same strategy as described above.
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Figure 2. Signal processing and PPI detection performance evaluated using the HeLa-CC [38] dataset.
(a) The effect of different peak-picking methods for signal processing on peak-width and PPI quantification within
replicates of the same experimental condition is depicted in violin plots (lines representing 25, 50 and 75% quantiles
respectively, Methods). (b) Sensitivity of PPI detection vs. SECAT q-value for peak-picking options. The PPI were
filtered to a global context q-value < 0.05. Colors indicate different peak-picking options; line types indicate number
of detections with the three replicates per condition. (c) The receiver-operating characteristic (ROC) illustrates the
sensitivity vs. specificity of the different SECAT partial scores, the kickstart score and the integrated SECAT score. (d)
The SECAT score histograms depict the dilution of the reference PPI network (true: CORUM) with false PPI (false:
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CORUM-inverted) for the benchmark (Methods). (e) The SECAT estimated q-value is accurate as evaluated against the
ground truth for all levels of reference PPI network accuracy. For the dilution 1:0, no a priori false PPI are tested, thus
the true FDR equals to 0. (f) The sensitivity of PPI detection in dependency of SECAT q-value for different levels of
reference PPI network accuracy is depicted. Solid lines represent the true, whereas dashed lines represent the false PPI.
(g) Consistency of PPI detection between replicates of the same conditions.

Benchmark data shows that SECAT can be effectively applied to the Jurkat-Fas
dataset, with similar performance characteristics in terms of signal processing and
error-rate control robustness, resulting in 2,049 PPIs (q-value < 0.05) detected across
both conditions and replicates (Supplementary Fig. 1). A crucial requirement for
studies comparing multiple experimental conditions and replicates is high PPI detection
reproducibility. For example, requiring PPIs to be detected in all three instead of just
one replicate reduced recall by 33.7 - 35.3% (Supplementary Fig. 1g) in the Jurkat-FAS
dataset. In comparison, the corresponding drop for SEC-SWATH-MS in the HeLa-CC
dataset was substantially smaller (5.2 - 6.6%) (Fig. 2g). In conclusion, the core
assumptions for SECAT are also fulfilled for datasets acquired by different methods.
But because different biological systems were investigated (i.e., HeLa-CC vs. Jurkat-Fas
dataset), no conclusions can be made in terms of performance metric differences, since
they could be of technical or biological (e.g. sample complexity) origin.

Comparison of SECAT with established algorithms: To assess the
performance of the SECAT PPI detection module with that of established algorithms,
we used a previously published SEC-SWATH-MS dataset of a HEK293 cell line [3] in
exponential growth state, measured in a single replicate. In the following we refer to
this dataset as HEK293-EG. We used the CORUM reference PPI network to generate a
pseudo ground-truth dataset for classifier training, as described above, but restricted
validation results to a manually curated list of detectable complexes (Methods).

To compare binary PPI identification/detection performance, we trained the SECAT,
CCprofiler [3] and EPIC [31] classifiers using the same input data. For CCprofiler,
complex hypotheses were defined as binary complexes. Since the algorithms apply very
different signal processing and filtering steps, the numbers of reported PPIs with
predicted scores varied substantially. SECAT only queries targeted PPIs and reported
39,288 PPIs of which 2,588 had a q-value < 0.05. Similarly, CCprofiler conducts
targeted analysis, but the preprocessing steps of the algorithm reduced the number of
reported PPIs to 5,092 of which 2,169 had a q-value < 0.05. EPIC assesses all
combinations of protein interactions in an unbiased manner and only reported results
with a score above 0.5 (not error-rate controlled), resulting in 4,678 PPIs.

To assess the power of individual classifiers to discriminate true and false PPIs, we
compared all combinations of the three classifiers and also the full intersection of all
predicted PPIs (without cutoffs, except EPIC score > 0.5). The full intersection of the
three algorithms resulted in a set of predictions for 2,647 ground truth “true” and 222
ground truth “false” PPIs. On this set, SECAT achieved an area under the receiver
operating characteristic (AUROC) of 0.835, with CCprofiler reporting a similar
performance of 0.819, whereas the AUROC of EPIC was lower at 0.707 (Supplementary
Fig. 2a). Further, SECAT and CCprofiler outperformed EPIC in all pairwise
comparisons, especially in the high-confidence region, potentially because that
algorithm was not primarily developed for the analysis of SEC, but rather ion-exchange
(IEX) profiles [31] (Supplementary Fig. 2b-d).

In summary, the PPI detection module provides accurate estimation of PPI
detection confidence which is achieved by combining a targeted approach with a
semi-supervised learning strategy. Differential quantification of network states requires
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both PPI detection reproducibility and sensitivity. Compared to algorithms that require
peak picking, SECAT’s minimal signal preprocessing supports more reproducible PPI
detection across samples, while still performing competitively on single replicates. While
SECAT can be applied to data from other PCP sample preparation and data acquisition
methods, it benefits from the quantitative accuracy of DIA-based SWATH-MS.

Validation of PPI quantification & network integration modules

Building on SECAT’s benchmarked ability to detect true PPIs from PCP datasets, we
next validated its PPI quantification and network integration modules. For these
analyses, we used the previously described HeLa-CC dataset [38]. For this study, we
performed independent analyses, using CORUM [37], STRING [19] and PrePPI [24] as
reference PPI networks, and used a classifier trained on the full CORUM true/false
reference network.

PPI detection with different reference networks: For the three reference PPI
networks, the total query spaces ranged from 15,939 to 449,265 PPIs (Fig. 3a). Of these,
between 5,460 and 9,026 high-confidence PPIs (q-value < 5%) were detected, with a
core set of 3,306 common PPIs (Fig. 3b). Notably, the full intersection of detected true
PPIs might be larger, but two factors conspire to make objective comparison more
complex. First, different confidence scores provided by each database are used as priors
in our analyses. Second, the largely variable number of PPIs represented in each
database needs to be accounted for during multiple testing correction (Methods).

PPI quantification and relation of metric classes: SECAT’s quantification
module computes two main quantitative property categories from SEC-SWATH data:
one indicating protein abundance, the other representing PPIs. Some of these metrics
are expected to be related. For example, if a protein is only present in an “assembled”
conformation, the “total abundance” and “assembled abundance” values will be highly
correlated. To assess the relation and redundancy within metric classes, we conducted
dimensionality reduction using principal component analysis (PCA), separating
replicates and conditions (Fig. 3c). The data show that the first two principal
components of the “total abundance”, “monomer abundance” and “assembled
abundance” metrics explain 60.72-66.48% of the variance between them, while the first
two principal components for the “interactor abundance”, “complex abundance” and
“interactor ratio” metrics explain 62.66-73.93% of the variance. The small difference in
variance between protein abundance- and PPI-based metrics might potentially arise
from metrics quantifying redundant interactions between same-complex proteins.

To assess the relationship between metric classes, we further computed the
distribution of Spearman’s correlation of metrics aggregated over conditions, replicates
and proteins to the corresponding “total” protein abundances (Fig. 3d). As expected,
the “assembled abundance” metrics which cover the majority of SEC fractions have the
strongest correlation, followed by “monomer abundance”, “interactor abundance” and
“complex abundance” metrics. Notably, since the “interactor ratio” metrics summarize
relative changes between the interactors, they are substantially less correlated.

11/32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819755doi: bioRxiv preprint 

https://doi.org/10.1101/819755
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. PPI quantification and Network integration assessment using the HeLa-CC [38] dataset. (a)
The Euler diagram indicates the overlap of STRING, PrePPI and CORUM reference PPI networks resulting in at least
a partial overlap of the interactors in any of the replicates. (b) Overlap of confident (q-value < 0.05) PPI detections
after SECAT analysis with different reference PPI networks. (c) Quantitative SECAT metrics can be used to separate
experimental conditions and replicates. (d) Spearman’s correlation of the metrics (PPI: summarized by averaging) to
total-level is depicted in individual boxplots (lower and upper hinges represent the first and third quartiles; the bar
represents the median; lower and upper whisker extend to 1.5 * IQR from the hinge). (e) Predictive error quantified by
the empirical cumulative distribution function (ECDF) for leave-one-out cross-validated logistic regression classification of
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replicates to biological conditions. (f) Predictive error for group-wise leave-one-out cross-validated logistic regression
classification of replicates to biological conditions. Groups represent several metrics connected to a core metric based
on the PPI network. (g) Correlation of node-level integrated adjusted p-values estimated using different reference PPI
networks.

Assessment of predictive power of quantitative metrics: To assess the
predictive power of the different metric classes for classifying the six samples to one of
the two represented mitotic states, we estimated the prediction error using leave-one-out
cross-validation using a logistic regression classifier applied to each metric separately
(Fig. 3e). The empirical cumulative distribution function (ECDF) in dependency of the
prediction error indicates that the “complex abundance” metrics are most informative,
followed by “interactor abundance” and the other metrics, to separate the two mitotic
states. While these metrics are computed for single proteins or PPIs, network-centric
data integration might further boost the predictive power of the respective values.

To assess this effect, we combined individual PPI metrics based on the SECAT PPI
networks by extending the score vector for the classifier from single metrics to all PPI
scores connected to a specific protein (Fig. 3f). The results show that the “complex
abundance”-based metrics performed best and the “assembled abundance” metrics
performed second best, indicating that the fractions covering assembled protein
conformations have a higher information content than those covering monomeric
subunits and that the connectivity information calculated by SECAT has higher
information content than the protein abundance.

Redundancy of network integration: In higher order complexes composed of
three or more subunits, PPI information is expected to be partly redundant, with each
subunit relating to at least two other co-complex members. Thus, a change in one
subunit might be apparent in other PPIs as well. This PPI redundancy between
subunits of a multiprotein complex is critically relevant to any strategy attempting to
integrate individual protein or PPI properties at the network level. Consistent with this
observation, SECAT assumes that changes in the individual subunits of a protein
complex can be measured redundantly by assessing its interactions with all proteins in
the complex. Different reference PPI networks are thus expected to provide comparable
quantitative metrics if they partially overlap. To test this assumption, we compared the
differential integrated metrics on “complex abundance” and “interactor ratio” levels
using different reference PPI networks. The results indicate a high degree of correlation
among the “complex abundance” (Spearman’s rho: 0.787-0.846) and “interactor ratio”
levels (Spearman’s rho: 0.717-0.764) (Fig. 3g), confirming that different reference PPI
networks provided comparable quantitative metrics from the same PCP input data.

In summary, SECAT’s PPI quantification and network integration modules generate
specific PPI networks for each sample or phenotypic state. To achieve this, the signal
processing and PPI detection modules first transform SEC fraction peptide abundance
values to a set of protein abundance or complex-associated metrics. The presented
validation results show that PPI-level quantitative metrics have higher predictive power
to separate sample groups than the underlying total protein abundances. In a second
step, redundant and non-redundant PPI-level metrics (edges) are integrated to
protein-level (nodes). With different empirical or predicted reference PPI networks, this
transformation achieves similar results attesting to the robustness of results despite
different background PPI networks.
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Molecular mechanisms differentiating HeLa cell cycle states

To demonstrate SECAT’s ability to discriminate molecular mechanisms that are
differentially represented across experimental conditions or phenotypes, we further
investigated the results obtained from the HeLa-CC dataset [38]. This study was
designed to compare the protein complex differences between cell cycle states of a HeLa
CCL2 cell line, first, by thymidine blocking (arrest in interphase) and then second, by
release in nocodazole (arrest in mitosis) [38]. For each experimental condition, three
full-process replicates were generated, and 65 SEC fractions per condition and replicates
were measured by SEC-SWATH-MS. Cumulatively, 70,445 peptides associated with
5,514 proteins were quantified across the full dataset. We conducted the SECAT
analysis of this quantitative matrix using STRING as the reference PPI network with
the goal to identify phenotype-associated molecular mechanisms (Methods). Since the
cell cycle and its checkpoints are controlled by clearly defined events involving selected
checkpoint proteins, this provides a reference framework for the interpretation of the
results.

After network-centric data integration, SECAT identified 28 differentially abundant
proteins (“total abundance”-level) across the two cell states, 50 alterations affecting
“assembled abundance”, no alterations regarding “monomer abundance”, 110 alterations
affecting “interactor abundance”, 117 alterations in “complex abundance”, and 139
alterations in “interactor ratio” (adj. p-value < 0.01; |log2(fold-change)| > 1)
(Supplementary Data 2-3). Since, as discussed above, different data aggregation levels
can be highly correlated, SECAT implements for visualization purposes a simplistic
aggregation to the most significant level per protein that provides a reduced overview.
This can be further augmented by integration of the context-specific PPI network with
Reactome [49] (Fig. 4, Methods).

GSEA analysis of the top-level Reactome pathways (Fig. 4a) shows that
protein-complex rearrangements constitute the primary significant differences between
the two cell states. Proteins associated with the categories “Cell Cycle”, “Metabolism of
RNA”, “DNA Replication” and “Protein localization” were especially affected. Two
primary clusters detected by the analysis, comprising 88 and 74 proteins, respectively,
were associated with translation and mitochondrial translation respectively (Fig. 4b).
Further, large modules that differ between cell states include “respiratory electron
transport” (72 proteins), ribosomal RNA processing (57 proteins) and RNA metabolism
(36 proteins).

Cyclin B1 bound to Cyclin-dependent kinase 1 (Cdk1) is a major catalytic factor
promoting mitosis [50]. Counteracting Cyclin B1-Cdk1 mediated activation, sequential
degradation of cell cycle regulating proteins via the ubiquitin pathway is important to
progress through mitosis [51]. SECAT recalled these well-known biochemical events
from the SEC-SWATH data. Specifically, it detected different levels of Cdk1 “complex
abundance” and “interactor ratio” as a principal factor differentiating the two cell cycle
states (Fig. 5a). Further, SECAT identified several subunits of the anaphase-promoting
complex (APC) to be significantly more abundant during mitosis (Fig. 5b). The
network visualization further illustrates the high connectivity between the individual
subunits, resulting in a distinctive complex module within the graph, primarily affected
by differential protein abundance between the mitosis states (Fig. 4b). This is consistent
with the role of the APC as a ubiquitin ligase mediating this particular step [51].
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Figure 4. Molecular mechanisms differentiating HeLa cell cycle states. (a) Gene set enrichment analysis
indicates that changes on protein complex abundance-level are dominant. Opaque categories are significant (adj. p-value
< 0.05). (b) The integrated STRING-based PPI network of the HeLa cell cycle dataset [38] is depicted with proteins
(nodes) and binary PPI (edges) clustered against Reactome pathway association (Methods). Different colors indicate the
most significant metric-level (legend, Methods). Node-size indicates effect-size and opacity indicates significance. The most
prominent clusters highlight essential macromolecular assemblies: (1) Respiratory electron transport, (2) Mitochondrial
protein import, (3) Translation, (4) rRNA processing, (5) Metabolism of RNA, (6) mRNA slicing, (7) Nuclear pore
complex proteins, (8) Anaphase-promoting complex (APC), (9) Activation of the TFAP2 (AP-2) family of transcription
factors, (10) SWI/SNF complex, (11) Condensin-2 complex, (12) Chromatin modifying enzymes, (13) Origin recognition
complex. The inset shows the APC subunits and highlights their connectivity and changes on different subunit levels.
Interactive results (Cytoscape) are provided as Supplementary Data 1.

Between transcription and translation, pre-mRNA is processed to remove introns
and splice exons to produce mature mRNA molecules for translation. This process is
catalyzed by the spliceosome, a multi-megadalton ribonucleoprotein complex, which
highly dynamically adapts to context-dependent functions [52]. Spliceosome assembly
and function typically involve several intermediate complexes, requiring the integrity of
the nuclear compartement [40]. With the disassembly of the nucleus and associated
nuclear pore complex (NPC) proteins during mitosis, the rate of transcription is
reduced and it is currently believed that spliceosome subunits are distributed across the
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mitotic cytoplasm awaiting re-activation upon nuclear reassembly [40]. However,
systematic screens identified spliceosome subcomplexes, including the NineTeen
Complex (NTC) with five out of seven of its core proteins (PRPF19 (PRP19), CDC5L,
SPF27, PLRG1 and CTNNBL1 (CTBL1)) as essential components for mitosis [53].
Correspondingly, in our analyses PRPF19 and CDC5L were identified as differentially
abundant between interphase and mitosis on the “complex abundance” level. In
addition, they display changes on the “interactor ratio” level. Specifically, the NTC
subunits form a more distinctive SEC elution peak during mitosis (Fig. 5c). Similarly,
NHP2-like protein 1 (NH2L1), a component of the U4/U6.U5 tri-snRNP subcomplex,
has been found to be required during mitosis [53]. Our analysis further supports the
importance of NH2L1 during mitosis, as it is among the most significantly changed
proteins in terms of “interactor ratio” but not “total abundance”. SECAT further found
the linked U4/U6.U5 tri-snRNP subcomplex proteins such as the tri-snRNP-associated
protein 2 (SNUT2), the pre-mRNA-processing factors 3, 4, 6 and 31 (PRP3,4,6,31) to
be of similar differential “interactor ratio” significance, suggesting subcomplex activity
during the cell cycle (Fig. 5d).
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Figure 5. Protein-level SEC-SWATH profiles of HeLa cell cycle states. Lines indicate different protein subunits,
whereas the dashed line indicates the highest monomer threshold per group. (a) Cyclin B1-Cdk1 complex. (b) Subunits
of the anaphase-promoting complex (APC). (c) Subunits of the NineTeen Complex (NTC). (d) Associated U4/U6.U5
tri-snRNP subcomplex proteins. (e) The ten most abundant ribosome biogenesis-associated proteins. (f) Subunits of the
origin recognition complex (ORC).

16/32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819755doi: bioRxiv preprint 

https://doi.org/10.1101/819755
http://creativecommons.org/licenses/by-nc-nd/4.0/


The Ribosomal RNA Processing complex represents one of the larger and most
densely connected submodules of the dataset. SECAT found 40 out of total 57 proteins
known to belong to this group to be differentially abundant (Fig. 5e). Of those, the
majority is associated with ribosome biogenesis, a process located in both cytoplasm
and nucleolus. Similar to the origin recognition complex (ORC, Fig. 5f), which is only
active in the nucleus, this difference in abundance might be explained by the
experimental design, because under the conditions used for cell lysis, proteins of the
nucleus are less accessible during interphase than mitosis, a cell cycle state where the
NPC is disassembled.

In summary, SECAT provides context-specific networks and protein-level metrics
that can be visualized as intuitive maps (Fig. 4b), facilitating the interpretation of
observed molecular differences between cell states at different levels including protein
abundance, PPIs, protein complexes and PPI network modules, concurrently, from the
same dataset.

Discussion

Protein-protein interactions within protein complexes are a principal characteristic of
the proteome and significantly affect the biochemical state of the cell. Interaction
proteomics has developed powerful methods such as AP-MS to investigate the
interactions of specific proteins at relatively high throughput. The cumulative results of
thousands of AP-MS measurements constitute PPI network maps for investigated
organisms [16,18]. However, the extension of the AP-MS approach to compare PPI
networks at different states is intrinsically limited because it would require the
comparative analysis of the results of a high number of AP-MS measurements in the
different states.

For this reason, PCP-based methods, such as SEC-SWATH-MS, have emerged as
complementary approaches. They can measure protein complex profiles for thousands of
proteins, quickly and reproducibly. They achieve, however, lower proteome coverage and
are limited to medium to high affinity-binding protein complexes that are soluble and
remain intact under the extraction conditions used. Previous studies have already
demonstrated the application of PCP to qualitatively characterize metazoan
macromolecular complexes [29]. With increasing throughput and further methodological
improvements, it can be expected that these developments enable the qualitative and
quantitative comparison of dozen to hundreds of samples in single studies.

However, the relatively low peak capacity of SEC imposes major limitations for PPI
identification, i.e. the number of proteins identified by far exceeds the number of
separable peaks and thus fractions collected. In previous studies this limitation was
addressed by sequentially applying orthogonal biochemical fractionation methods [27] or
by focusing on protein complex detection using predetermined subunits [3]. This
requires either more complex and costly experimental designs or focus on well
characterized protein complexes, limiting the scalability and generic applicability of
protein complex profiling studies.

With SECAT, we propose an alternative analysis strategy, which makes use of the
high consistency of peptide-level quantification of SWATH-MS and prior knowledge
from PPI reference databases. We demonstrate that SECAT applied to data with these
qualities provides accurate estimation of PPI detection confidence while substantially
increasing the coverage of binary interactions. The robustness of the scoring and
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semi-supervised learning strategy further permits omission of preprocessing steps such
as peak picking, making the algorithm robust against context-specific deviations related
to SEC peak shape or different calibration of SEC fractions.

Because SEC separates stable native protein complexes, the inference of their
composition from binary interactions is a key component of most previous data analysis
strategies. This provides the opportunity to identify previously unknown associations in
a global fashion, however, the underlying challenges of annotating and comparing
context-specific related subcomplexes will become more severe with increasing number
of conditions tested in a study. We show that the proposed protein abundance-level and
PPI-based metrics are comparable across different PPI reference networks and thus
their implementation in SECAT provides a scalable alternative to protein complex
inference that makes use of redundant information to increase the consistency of
quantitative comparisons.

Our application of SECAT to the HeLa-CC dataset [38] illustrates that different
network states can efficiently be visualized in a network-centric representation to
highlight the complex relations of different qualities. This provides a bird’s-eye view of
alterations in PPI networks that can be used intuitively to guide follow-up investigations.
SECAT is available for all platforms as open source software implemented in Python
and is compatible with different LC-MS/MS profile and reference PPI database formats.
We expect that our toolkit and the underlying concepts will be particularly useful for
future PCP datasets, guiding the qualitative and quantitative comparison of multiple
conditions, where protein complexes represent dynamic rather than static modules.

Methods

The Size-Exclusion Chromatography Algorithmic Toolkit

Peak picking

Protein complexes are expected to form Gaussian-like elution peaks in SEC. While this
assumption holds true for some protein subunits, the high dynamic range (3-4 orders of
magnitude) of protein abundance measured by LC-MS/MS in combination with varying
peak width and convoluted (sub-)complexes result in a diverse set of elution peaks.
While increasing sensitivity and quantitative consistency of DIA-based methods like
SWATH-MS provide more accurate peptide and protein profiles, the fundamental
limitations, particularly the low resolution and the logarithmic-linear relation between
the apparent molecular weight and the fraction index of SEC pose great analytical
challenges.

To boost signal-to-noise ratio (SNR), PrinCE [34] and CCprofiler [3], implement
peak-picking via Gaussian deconvolution or sliding window peak detection respectively.
The resulting sets of candidate peaks for each protein are more uniform and co-eluting
peaks can be scored and grouped to the same protein complex. The downside is that
non-Gaussian peaks or highly convoluted peaks are more difficult to detect. Other
approaches [29] compute full elution profile correlation profiles between potential
interacting proteins, which has the advantage that peak picking is not limiting, but the
downside that proteins that are present in different complex conformations will
potentially not be detected.

SECAT adapts a third approach, where only the intersection of the queried proteins
is assessed with the following assumptions: First, two candidate interactors are expected
to interact via the same molecular mechanism as part of their constitution in different
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protein subcomplexes. Second, if this interaction is changed or perturbed via a specific
mechanism, the subcomplexes will be similarly affected. The benefit of this approach is
that the involvement of the protein subunits as part of different, non-overlapping
complexes or monomers can be independently assessed. Further, the omission of
peak-picking enables consistent scoring and quantification across multiple samples, a
key property when heterogeneous systems or samples acquired with different SEC
configurations need to be compared.

Optionally, SECAT provides two peak-picking methods for preprocessing data before
scoring. “Detrending” subtracts the mean of the peptide abundance over all SEC
fractions, where missing values are replaced by zero. All fractions with negative values
are then excluded and the original intensities for the other fractions are retained. The
“localmax” peak picking algorithm computes the mean of all peptide intensities per
protein and requires a minimum SEC fraction number of 3 continuous fractions, while
setting peak boundaries at a relative height of 0.9. Only peptide intensities of SEC
fractions within peaks are reported.

Peak scoring

Several scoring systems for SEC and related separation techniques have been developed.
They have in common that the inferred protein-level abundance profiles over the SEC
dimension are used for scoring. The inferred protein-level abundance provides a robust
estimate, especially when peptide quantification is less sensitive or quantitatively
consistent, as is the case with older LC-MS/MS setups or DDA-based data acquisition.

In contrast, our recently developed technique SEC-SWATH-MS [3] can provide
accurate peptide quantification across the full SEC fraction range. Because CCprofiler
in complex-centric mode assesses two or more individual subunits, peptide abundances
are aggregated before peak picking and scoring.

To optimally use the additional data points that can be assessed by comparing
consistent peptide quantification profiles, SECAT uses variable numbers of peptide
traces for scoring (default: 1-3). Inspired by our previous scoring systems for
chromatographic data [42,43,54], cross-correlation shape and SEC fraction shift across
two candidate interacting proteins are assessed. SECAT further estimates the maximal
and total information coefficients (MIC/TIC) [44] to assess the statistical association
between the overlapping sections of the SEC profiles of the two proteins. Protein
complexes and their binary representations follow specific rules in terms of interactor
ratio. To capture this property, we estimate the abundance ratio between the individual
subunits. Finally, the delta number of fractions between the apex of the dominating
candidate PPI peak and the monomer threshold is computed.

Classification by semi-supervised machine learning

While the partial scores describe different properties that can be used to separate true
from false candidate PPI, they are ideally integrated to a single discriminant score via
classification [34]. Further, establishing a null model that represents spontaneous
co-elution of individual protein subunits is required to estimate the confidence of PPI
detection accurately.

SECAT adapts a semi-supervised learning strategy inspired by the approaches
implemented in Percolator [55], mProphet [42] and PyProphet [45,54]. As positive
reference dataset, SECAT uses the PPI covered by the CORUM [37] reference database.
However, in contrast to the strategies employed for scoring spectra or fragment ion
chromatograms, the SEC profiles of potential interactors can be more heterogeneous,
and a single score might not be discriminative enough to select the best positive
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examples for semi-supervised learning. For this reason, SECAT computes a “kickstart”
score, that integrates cross-correlation shape, co-elution and mass ratio to separate the
very best scoring examples from CORUM during the first iteration. Semi-supervised
learning is a crucial component of the SECAT scoring model, because the omission of
peak picking generates random, partially overlapping protein profiles that would be
used as true interactions in the classifier otherwise.

Different approaches have been described to generate null models for PPI identified
or detected using SEC data. Random permutation of PPI can potentially generate large
sets of negative interactions, but the later restriction of the set to at least partially
overlapping SEC profiles might potentially increase the fraction of true interactions.
Ground truth negative interactome reference databases like IntAct [20] or
Y2H-predicted [56] pose an alternative, but are either low in coverage or do not
represent the target reference databases well. By default, SECAT thus uses the
CORUM-inverted reference database as was previously proposed [34]. The benefit is
that the target protein set is well represented, and a large number of negative PPI can
be obtained. To minimize the number of potential true PPI not covered by CORUM, all
overlapping PPI with reference databases are further removed.

SECAT uses XGBoost [57], a tree boosting approach to maximize classification
performance. XGBoost replaces the linear discriminant analysis (LDA)-based classifier
used in PyProphet during all learning iterations with hyperparameters that can
optionally be automatically tuned during semi-supervised learning. In a first step,
SECAT uses the positive and negative reference databases to learn a classifier using the
kickstart score. At each subsequent iteration (default: 10), an XGBoost [57]-based
classifier is then trained on the true positives, with an initial q-value of 0.1 and iterative
q-value of 0.05, from the prior iteration—starting from the initial score based ones—and
used to generate increasingly discriminative integrative scores from individual partial
scores. By default, three cross-validation iterations are conducted. “Early stopping” is
enabled in the XGBoost learning step to alleviate overfitting. The scores of the final
learning iterations of each cross-validation step are then averaged and used to train a
final classifier. In a second step, statistical validation is conducted using the
Storey-Tibshirani framework [58]. At this step, prior information about PPI confidence
from reference databases can be incorporated: SECAT generates N (default: 100)
quantiles for the PPI confidence scores and applies statistical validation separately. This
enables multiple hypothesis testing correction to account for different prior probabilities
of false detection of interactions and is generically applicable to confidence scores with
different statistical properties.

Quantification of protein-protein interactions

SEC peptide profiles can be partitioned into components to represent quantitative
information on different levels. The sum of the full elution profile corresponds to the
total peptide abundance, which to some degree represent protein abundances measured
by conventional, non-fractionated LC-MS/MS. In a first step, SECAT extracts and adds
up the monomeric components by defining a threshold fraction for each protein profile
based on the estimated monomeric weight multiplied by a constant factor (default: 2) to
account for uncertainty in the apparent molecular weights of the SEC fractions.
Complementarily, the fractions on the left hand-side of the monomer threshold are
summarized and represent the assembled protein conformations. To compute the
PPI-level quantitative metrics, for each PPI below a specified confidence threshold
(default: q-value < 0.05 in any of the compared conditions), the intersecting fractions of
the two interactor protein profiles are analogously extracted on peptide level.

Quantitative protein inference is conducted using proteoVIPER, which is based on
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the VIPER [41] algorithm. Originally developed for inference of protein activity using
transcriptomics data, instead of a gene regulatory network, the peptide-protein
relationships are used as for the analytical rank-based enrichment analysis (aREA) to
infer the scores for the protein abundance-based metrics. For the PPI-based metrics, the
model is slightly adjusted: To assess protein complex abundance, the peptides for both
interactor proteins are used with the same mode of regulation. For scoring protein
complex interactor ratio on the other hand, the mode of regulation has different signs
for each of the interactors, which enables proteoVIPER to assess changes in interactor
ratio. The implementation of proteoVIPER in SECAT infers a quantitative matrix with
normalized enrichment scores (NES) for each condition and replicate. This approach
has the benefit that proteins with missing values or not perfectly overlapping peptides
can be accurately and robustly quantified. Experimental conditions, from prior
annotation or selected based on the data, can then be statistically compared by
independent t-tests [41] on each level.

Network-centric data integration

Using the quantitative metrics from above, SECAT conducts network-centric data
integration. The concept is based on the assumption that specific experimental
conditions (e.g. drug perturbations) have a specific effect on individual protein subunits
that can be detected via one or several of their interactions.

The evidence of multiple measured PPI is summarized to protein complex metrics
summarizing changes in protein complex abundance or interactor ratio for each protein
using Empirical Brown’s Method [47]. Notably, highly correlated PPI (e.g. from the
same protein complex) are integrated in a dependent fashion, whereas independent PPI
(e.g. from different protein complexes) combine and increase the significance of the
protein complex engagement metric.

In a network context, this helps to identify the most perturbed or dysregulated
proteins based on changes of their protein complexes. Instead of clustering or inferring
protein complexes, which are difficult to define in presence of subcomplexes across
multiple experimental conditions, SECAT’s metrics can be more robustly characterized
from a partial subset of their interactions.

Integrated p-values are adjusted for multiple testing using the
Benjamini-Hochberg [59] approach, as suggested [47].

Primary data analysis

Processed mass spectrometry data has been obtained from the repositories linked by the
original publications or the authors of the corresponding publications.

The quantitative values on peptide level were normalized via cyclic lowess [60,61]
grouped by a sliding window of 5 units and a step-size of 1 over the SEC fraction
indices before processing in SECAT (Supplementary Fig. 3-6).

SECAT data analysis

SECAT (version 1.0) and PyProphet (version 2.1.0) were used for all data analyses with
CORUM (version 3.0 [37]), PrePPI (version 2016 [24]) and STRING (version 11.0 [19])
and default parameters if not otherwise specified. Semi-supervised learning was
conducted using CORUM as positive network and CORUM-inverted as negative
network. All input data and parameters are provided on the Zenodo repository.
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CORUM-inverted was generated by using the inverted set of PPI (i.e. all possible
PPI that are not covered by CORUM) and removing all PPI in this set covered by
STRING [19], IID [62], PrePPI or BioPlex [18].

Parameter selection and validation of signal processing and PPI
detection modules

The SECAT PPI detection benchmark was conducted by using 50% of the CORUM
reference PPI network for learning and the other fraction for evaluation. Reference false
PPI from CORUM-inverted were randomly selected in predefined ratios (1:0 – 1:16) and
added to the target set for evaluation but not learning.

Fig. 2a and Supplementary Fig. 1a depict violin plots with the following parameters:
Lower and upper hinges represent the first and third quartiles; the bar represents the
median. This represents the default parameters of the function “geom violin” of ggplot2.

Fig. 2b and Supplementary Fig. 1b were generated by assessing the PPIs with a
global-context q-value < 0.05 and decomposing the number of PPIs for detection
amongst replicates at different confidence thresholds.

Fig. 2e and Supplementary Fig. 1e were generated by using the ground truth
CORUM and CORUM-inverted reference values. Because the estimated q-values are
dependent on the combined reference sets with unknown ratios of true and false PPIs,
the “true q-values” were corrected by the estimated proportion of true positives by
PyProphet.

For Supplementary Fig. 2, the CORUM reference PPI network was similarly used as
described above to generate a pseudo-ground truth dataset for classifier training.
However, for the validation subset, an excess of 10 times as many false interactions as
targets prior to analysis was added. For the downstream analysis, the CORUM targets
only were reduced to the intersection with a manually curated annotation of the
dataset [3].

The CCprofiler [3] analysis (git revision: efdeca4) was conducted as suggested by the
software documentation. All input data and parameters are provided on the Zenodo
repository.

The EPIC [31] analysis (git revision: b6432b9) was conducted as suggested by the
software documentation with the provided Docker container. The input data was first
aggregated from peptide-level to protein-level using the top3 method implemented in
aLFQ [63] (version 1.3.5). All input data and parameters are provided on the Zenodo
repository.

Validation of PPI quantification & network integration modules

The data was analyzed as described above with the full CORUM, PrePPI and STRING
reference networks. Fig. 3c-f were generated using the STRING-based analysis. Fig. 3d
depicts boxplots with the following parameters: Lower and upper hinges represent the
first and third quartiles; the bar represents the median. Lower and upper whisker
extend to 1.5 * IQR from the hinge. This represents the default parameters of the
function “geom boxplot” of ggplot2.

Molecular mechanisms differentiating HeLa cell cycle states

The gene set enrichment analysis in Fig. 4a was generated using the R-package
“fgsea” [64], applied on each level separately. Data was prefiltered
(|log2(fold-change)| > 1 or differential interactor ratio < 0.9) on each level separately
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and -log10(BH-adjusted p-value) was used as score. The Reactome Pathway
Database [49] (version 67; only top-levels) was used with 10,000 permutations and a
minimum gene set size of 5; all proteins of the SEC-SWATH-MS dataset were used as
background. Opacity in the figure indicates significance (BH-adjusted p-value < 0.05).

To annotate and visualize differential proteins in Fig. 4b between the HeLa cell cycle
states identified by SECAT, we used Cytoscape [65] (version 3.7.1). The Reactome
Pathway Database (version 67) was used to cluster PPI using the Cytoscape App
AutoAnnotate [66] with default parameters and a maximum cluster size (“Max words
per label”) of 1. Clusters were arranged according to the CoSE layout.

Visualization of protein-level SEC-SWATH-MS profiles in Fig. 5 was conducted
using the R-package “ggplot2” by averaging the three most intense peptide precursors
per protein.

Source code availability

SECAT is available as platform-independent open source software under the Modified
BSD License and distributed as part of the SECAT
(https://pypi.org/project/secat) and PyProphet
(https://pypi.org/project/pyprophet) Python PyPI packages. SECAT further
depends on the R/Bioconductor package “viper”, which is distributed under a
non-commercial usage license. Further documentation and instructions for usage can be
found on the SECAT source code repository
(https://github.com/grosenberger/secat).

Data availability

All analysis results are available on Zenodo with the dataset identifier
10.5281/zenodo.3515928.
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Supplementary Figures

Supplementary Figure 1. Signal processing and PPI detection performance evaluated using the Jurkat-
Fas [30] dataset. (a) The effect of different peak-picking methods for signal processing on peak-width and PPI
quantification within replicates of the same experimental condition is depicted in violin plots (lines representing 25, 50 and
75% quantiles respectively, Methods). (b) Sensitivity of PPI detection vs. SECAT q-value for peak-picking options. The
PPI were filtered to a global context q-value < 0.05. Colors indicate different peak-picking options; line types indicate

24/32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819755doi: bioRxiv preprint 

https://doi.org/10.1101/819755
http://creativecommons.org/licenses/by-nc-nd/4.0/


number of detections with the three replicates per condition. (c) The receiver-operating characteristic (ROC) illustrates
the sensitivity vs. specificity of the different SECAT partial scores, the kickstart score and the integrated SECAT score.
(d) The SECAT score histograms depict the dilution of the reference PPI network (true: CORUM) with false PPI (false:
CORUM-inverted) for the benchmark (Methods). (e) The SECAT estimated q-value is accurate as evaluated against the
ground truth for all levels of reference PPI network accuracy. For the dilution 1:0, no a priori false PPI are tested, thus
the true FDR equals to 0. (f) The sensitivity of PPI detection in dependency of SECAT q-value for different levels of
reference PPI network accuracy is depicted. Solid lines represent the true, whereas dashed lines represent the false PPI.
(g) Consistency of PPI detection between replicates of the same conditions.
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Supplementary Figure 2. Receiver operating characteristic for the comparison of SECAT with EPIC and
CCprofiler using the HEK293-EG [3] dataset.
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Supplementary Figure 3. Summarized raw peptide precursor intensities over the SEC profile for the
HeLa-CC [38] dataset.
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Supplementary Figure 4. Summarized normalized peptide precursor intensities over the SEC profile for
the HeLa-CC [38] dataset.
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Supplementary Figure 5. Summarized raw peptide precursor intensities over the SEC profile for the
Jurkat-Fas [30] dataset.
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Supplementary Figure 6. Summarized normalized peptide precursor intensities over the SEC profile for
the Jurkat-Fas [30] dataset.
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63. Rosenberger, G., Ludwig, C., Röst, H. L., Aebersold, R. & Malmström, L. ALFQ:
An R-package for estimating absolute protein quantities from label-free
LC-MS/MS proteomics data. Bioinformatics 30, 2511–2513 (2014).

64. Sergushichev, A. A. An algorithm for fast preranked gene set enrichment analysis
using cumulative statistic calculation. bioRxiv 060012 (2016).

65. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome research 13, 2498–504 (2003).

66. Kucera, M., Isserlin, R., Arkhangorodsky, A. & Bader, G. D. AutoAnnotate: A
Cytoscape app for summarizing networks with semantic annotations.
F1000Research 5, 1717 (2016).

32/32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819755doi: bioRxiv preprint 

http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1101/819755
http://creativecommons.org/licenses/by-nc-nd/4.0/

