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Abstract

Protein-protein interactions (PPIs) play critical functional and regulatory roles in
virtually all cellular processes. They are essential for the formation of macromolecular
complexes, which in turn constitute the basis for extended protein interaction networks
that determine the functional state of a cell. We and others have previously shown that
chromatographic fractionation of native protein complexes in combination with
bottom-up mass spectrometric analysis of consecutive fractions supports the multiplexed
characterization and detection of state-specific changes of protein complexes.

In this study, we describe a computational approach that extends the analysis of
data from the co-fractionation / mass spectrometric analysis of native complexes to the
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level of PPI networks, thus enabling a qualitative and quantitative comparison of the
proteome organization between samples and states. The Size-Exclusion
Chromatography Algorithmic Toolkit (SECAT) implements a novel, network-centric
strategy for the scalable and robust differential analysis of PPI networks. SECAT and
its underlying statistical framework elucidate differential quantitative abundance and
stoichiometry attributes of proteins in the context of their PPIs. We validate algorithm
predictions using publicly available datasets and demonstrate that SECAT represents a
more scalable and effective methodology to assess protein-network state and that our
approach thus obviates the need to explicitly infer individual protein complexes.
Further, by differential analysis of PPI networks of HeLa cells in interphase and mitotic
state, respectively, we demonstrate the ability of the algorithm to detect PPI network
differences and to thus suggest molecular mechanisms that differentiate cellular states.

Introduction

Living cells depend on many coordinated and concurrent biochemical reactions. Most of
these are catalyzed and controlled by macromolecular entities of well-defined subunit
composition and 3D structure, a notion that has been captured by the term “modular
cell biology” by Hartwell and colleagues [1]. Most of these modules consist of or contain
protein complexes. It is thus a basic assumption of the modular cell biology model that
alterations in protein complex structure, composition and abundance will alter the
biochemical state of cells. Elucidating protein complexes and their organization in
extended protein-protein interaction (PPI) networks is, therefore, of paramount
importance for both basic and translational research.

Traditionally, composition and structure of protein complexes has been determined
by two broad and complementary approaches, structural biology and interaction
proteomics. Structural biology encompasses a suite of powerful techniques to
characterize individual, purified or reconstituted protein complexes at high, at times,
atomic resolution. High resolution structures have provided a wealth of functional and
mechanistic insights into biochemical reactions [2]. However, they have been solved for
only a few hundred human protein complexes and the number of cases where the
structure of protein complexes is assessed across different functional states is even lower.
This is contrasted by the observation that, under mild lysis conditions, approximately
60% of proteins and total protein cell mass in protein cell extracts is engaged in protein
complexes [3]. As a result, methodologies for the rapid elucidation of protein complexes
are still critically needed.

Interaction proteomics encompasses multiple methodologies to determine
composition and, when possible, subcellular location and abundance of protein
complexes, albeit at lower resolution, yet higher throughput, than structural biology
techniques. Among these methods, liquid chromatography coupled to tandem mass
spectrometry [4, 5] (LC-MS/MS)—and more specifically affinity purification coupled to
LC-MS/MS (AP-MS [6])—has been most widely used. For AP-MS analyses, individual
proteins are engineered to display an affinity tag and are expressed as “bait” proteins in
cells. The bait and the corresponding “prey” proteins assembled around it are then
isolated and qualitatively [7–10] or quantitatively [11–14] analyzed by MS. This method
has proven robust across laboratories [15] and, through process automation and
integrative data analysis, efforts to map PPIs across the entire human proteome [16,17]
are underway and have so far characterized interactions of more than half of canonical
human proteins [18]. This knowledge is embedded in a variety of databases, including
BioPlex [17,18], STRING [19], IntAct [20] and hu.MAP [21] that present generic human

2/46

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2020. ; https://doi.org/10.1101/819755doi: bioRxiv preprint 

https://doi.org/10.1101/819755
http://creativecommons.org/licenses/by-nc-nd/4.0/


PPI maps. The data have also been used to predict PPIs for previously uncharacterized
proteins, e.g. PrePPI [22–24]. Whereas it can be expected that these systematic PPI
mapping projects will reach saturation in the next few years, AP-MS and related
approaches are fundamentally limited in their ability to detect compositional or
abundance changes across multiple cell states and to detect concurrent changes in
different complexes within the same sample.

Protein correlation profiling (PCP) [25] and related methods [3, 26–31] have been
proposed as a means to concurrently analyze multiple complexes from the same sample.
PCP proceeds by first separating native protein complexes, e.g. according to their
hydrodynamic radius by size-exclusion chromatography (SEC), by collecting 40-80
consecutive fractions and by finally performing bottom-up mass spectrometric analysis
of the proteins in each consecutive fraction. The result is a set of quantitative protein
abundance profiles across the SEC separation range (Fig. 1a). Under the assumption
that protein subunits of the same complex have congruent SEC profiles, they can be
used to infer protein-protein interactions and protein complex composition. Conditional
to availability of quantitative mass spectrometric data, the method further supports
comparative analysis across multiple biological conditions, thus detecting
condition-specific differences, information that is critically missing in current PPI
databases. For the most part, PCP datasets have been analyzed using
interaction-centric algorithms [26,27,29,31–34] which essentially use chromatographic
co-elution of protein profiles to identify PPIs, to infer protein complexes and to conduct
qualitative and quantitative comparisons across biological conditions [30,35].
Interaction-centric algorithms are limited by the inherently low SEC resolution and the
high degree of complexity of proteomic samples. This results in the presence of
hundreds to thousands of proteins per SEC fraction and lowers the confidence of
inferred interactions, because the probability that non-interacting proteins may show
indistinguishable elution profiles by chance is relatively high [33].

To address these limitations, we recently developed the algorithm CCprofiler [3],
which implements a targeted, complex-centric strategy to query the protein elution
profiles generated by high resolution SEC-SWATH-MS [3] to assess presence,
composition and abundance of predefined protein complexes. Similar to targeted
proteomic approaches [36,37], transforming the problem from de novo inference of
unknown protein complexes to a posteriori detection of established complexes
significantly increases sensitivity. Using prior knowledge from reference databases like
CORUM [38], BioPlex [17,18] or STRING [19], substantially improved protein complex
detection confidence, albeit at the cost of missing potential novel interactions or
complexes not included in the query set. Taking advantage of the precise quantitative
values generated by SWATH-MS, we have also shown that the CCprofiler strategy is
well-suited to detect changes in complex-associated protein abundance across
conditions [35].

However, several critical challenges remain, both for interaction- and complex-centric
strategies. This is especially relevant in studies where an increasing number of
experimental conditions or samples are compared, as can be soon expected. Specifically,
the key assumption underlying the complex analysis methods described above, that
protein complexes constitute entities of fixed subunit composition across different
contexts and conditions, is both highly restrictive and biologically unrealistic. In
contrast, the ability to accurately detect changes in protein complex composition
between different conditions is increasingly critical to address key biological questions.
For example, the spliceosome—a complex molecular machinery controlling intron
removal from pre-mRNA—consists of small nuclear RNAs (snRNA) and more than 100
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protein subunits, which are assembled into a variety of submodules, each with highly
context-specific activity and composition [39,40]. Since only a fraction of these protein
subunits is detectable across all conditions in typical bottom-up proteomic experiments,
differentiating between biological effects and technical artefacts is challenging and
affecting the biological conclusions from such studies. However, if the PPIs of protein
complexes are interpreted as a network rather than discrete entities, missing
observations of PPIs in some conditions (e.g. missing PPI of proteins A and B) are less
problematic and can be substituted by other PPIs (e.g. observed PPI of proteins A and
C), due to their frequently redundant behavior within the same complexes (e.g. the
PPIs of proteins A, B and C within complex A-B-C).

To address these limitations, we introduce the Size-Exclusion Chromatography
Algorithmic Toolkit (SECAT). The algorithm extends the analysis of PCP data from
the level of well-defined complexes to the level of PPI networks, obviating the need to
explicitly infer individual protein complexes. For this purpose, SECAT generates
error-rate-controlled PPI networks for each tested condition. But in contrast to existing
methods, rather than using the resulting connectivity maps to directly infer protein
complexes, SECAT transforms the differential protein abundances across fractions into
quantitative metrics for each PPI, representing differential complex abundance and
stoichiometry, which can be further integrated on network-level to derive a differential
representation of the protein network state. In analogy to the extension of AP-MS from
a qualitative [7–10] to a quantitative [11–14] characterization of PPIs, SECAT supports
the quantitative characterization of PPI network states, while accounting for the
dynamic rather than static nature of protein complexes.

We demonstrate that this novel, network-centric strategy for PPI analysis is robust
against technical variability and overcomes key limitations of current protein-complex
inference methods, while representing changes in network connectivity in an intuitive
and unbiased way. Applying SECAT to conduct differential analysis of PPI networks of
HeLa cells in interphase and mitotic state, respectively, we demonstrate the ability of
the algorithm to detect PPI network differences and to thus suggest molecular
mechanisms that differentiate cellular states.
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Figure 1. Methodological overview. (a) The SEC-SWATH-MS workflow is depicted comparing two different
experimental conditions A and B. Native protein extracts are separated by SEC and individual fractions are sampled
(1-15). Each fraction is separately measured by LC-MS/MS. Peptide or protein abundance grouped according to SEC
fraction can be depicted as profile, whereby co-eluting proteins might be part of the same protein complex. Two
experimental conditions can result in similar protein complex profiles but might differ for some proteins (highlighted in
pink). (b) The SECAT algorithm uses peptide-level protein complex profiles and optional reference PPI networks as
input. The signal processing module computes a set of scores for the peptide profiles of candidate interactors. Using the
set of scores and ground truth positive and negative interactomes, the PPI detection module conducts semi-supervised
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learning and generates context-specific PPI subnetworks. Confident PPIs are quantified to assess complex abundance
and interactor ratio changes using the PPI quantification module. The proteoVIPER algorithm based on VIPER [41]
is used for quantitative protein inference from peptide-level abundances. Network integration: Significance of changes
between the experimental conditions is integrated by a network-centric approach on all different levels. (c) SECAT
provides quantitative insights on different levels. Protein abundance-based quantitative metrics are computed for total
abundance, monomer abundance and assembled abundance. PPI-based quantitative metrics are provided separately for
each interactor, integrated as positively correlated complex abundance or negatively correlated interactor ratio metric.

Results

The Size-Exclusion Chromatography Algorithmic Toolkit

The primary goal of SECAT is to systematically quantify differences in abundance and
interaction stoichiometry of complex-bound proteins across different conditions. SECAT
explicitly is designed to follow the paradigm that complexes represent dynamic rather
than static entities and that proteins can thus be constituents of several dependent or
independent (sub-)complexes. Therefore, the algorithm makes two main assumptions
regarding the PPIs within complexes: First, interactions of the same two proteins or
proteoforms within different complexes are expected to be mediated by a similar mode
of interaction (e.g. binding interface) and consequently, perturbations of these binary
interactions are expected to be consistently observed across multiple protein complexes
that contain the two tested proteins. Second, the quantitative measures of PPIs for any
protein might be either redundant (e.g. PPIs quantified between protein in question
with other subunits of the same complex) or orthogonal (e.g. PPIs quantified between
protein in question with subunits in different complexes).

To implement a model that fulfills these assumptions, SECAT employs a
network-centric strategy: First, similar to previous approaches [27,33,34],
context-specific PPI networks are generated for each tested condition. Second, these
networks are used to derive novel quantitative metrics representing changes in in
abundance and interaction stoichiometry for proteins that are detected in complexed
form based on their SEC profiles. Third, the redundant and non-redundant PPIs of the
detected proteins are statistically integrated to represent the global PPI network state.
In contrast to existing methods, our approach omits the explicit inference of protein
complexes and provides representation of the qualitative and quantitative changes of
PPI networks between experimental conditions.

The SECAT workflow consists of five consecutive steps: i) data preprocessing, ii)
signal processing, iii) PPI detection, iv) PPI quantification and v) network integration.
The main input data are the peptide-level intensity vs. SEC elution fraction profiles
that are acquired by SEC-SWATH-MS [3,35] in the conditions tested, and optional
reference PPI networks (Fig. 1b, Methods). For data preprocessing and PPI detection,
SECAT operates on proteotypic peptide-level profiles and uses the inferred proteins
from upstream analysis pipelines to group queries and to compute meta-attributes, such
as the expected monomeric weight for each subunit. For quantitative protein and PPI
inference, SECAT implements a novel strategy termed proteoVIPER (Methods). The
output of the system is a set of condition-specific PPI networks with protein-level
metrics summarizing the associated differential protein and PPI properties (Fig. 1c,
Methods). In the following we describe each step.

Step 1, Data preprocessing: As main input, SECAT requires quantitative
peptide-level intensity vs. SEC elution fraction profiles acquired by
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SEC-SWATH-MS [3, 35] across one or several conditions. To account for varying sample
amounts and batch effects between SEC runs, we first normalize peptide signal
intensities within conditions and replicates and across the SEC fractions (Methods).
Next, based on the molecular weight calibration curve of the SEC separation [3], for
each inferred protein the partition between assembled and monomeric state is
determined (Methods). This “monomer threshold” is defined by the expected molecular
weight of the monomeric subunit and is multiplied by a user-defined factor to account
for potential homomultimers (default: F = 2) and deviations of the protein’s
chromatographic behavior from the calibration curve. Optionally, the peptide-level
profiles grouped by inferred proteins can be preprocessed by detrending or
local-maximum peak-picking (Methods). However, as the consistent quantification of
peptides, inferred proteins and PPIs between conditions and replicates is a crucial
requirement for SECAT, only minimal preprocessing is conducted by default.

Step 2, Signal processing: To assess PPIs, peptide-level profiles from the range
of fractions representing complexed forms of each protein are queried and scored. To
account for the possibility that a protein is part of multiple complexes, SECAT focuses
the analysis of PPIs on those SEC fractions in which both tested interactors are
detectable (Methods). To restrict the query space, candidate interactions can optionally
be obtained from a comprehensive set of PPI network representations, such as
CORUM [38], STRING [19] or PrePPI [22]. Alternatively, all putative PPI combinations
are assessed. For each candidate PPI, peptide-level elution profiles from each protein
are processed to compute chromatographic (cross-correlation shape and shift [42,43],
maximal and total information criterion [44]), interactor ratio, SEC coverage, and
monomeric fraction distance metrics (Fig. 1b, Methods). The result of this step is a
table in which each candidate PPI is associated with a score vector representing the
different properties that can differentiate between true and false interactions.

Step 3, PPI detection: To generate context-specific interaction networks, partial
scores from the second step are used as input to a machine learning (ML) approach
based on the PyProphet algorithm [42,45,46]. This step is designed to discriminate true
vs. false interactions and to estimate their confidence. For this purpose, a classifier is
trained in a semi-supervised manner using a set of true negative PPIs as null model and
the most confidently detected PPIs, which are evaluated and selected over multiple
iterations, as a true interaction gold standard model (Fig. 1b, Methods). Since queried
or tested candidate PPIs may by chance match co-eluting protein profiles that are not
representative of true positive interactions detectable within the experimental context,
this semi-supervised learning approach is designed to achieve high sensitivity at high
confidence levels (Fig. 1b, Methods).

Classification is mediated by an XGBoost-based [47] gradient boosting approach
(Methods). The first machine learning iteration is initialized by a single composite score
that selects only the most confident PPIs (Methods). The full set of partial scores is
then used within each subsequent iteration, thus progressively increasing the classifier
sensitivity. Cross-validation and “early stopping” are employed to preclude potential
overfitting of the classifier (Methods). By default, SECAT learns a classifier using high
confidence PPI networks (“learning reference network”; e.g. CORUM [38]) and then
applies it to integrate additional potential interactions from less stringent, optionally
used networks (“query reference network”; e.g. STRING [19] or PrePPI [22]) or all
potential interactions, thus maximizing sensitivity and coverage of the assessed
interactions. If optionally a query reference network was used to restrict the query
space, potentially available confidence metrics for individual interactions can be
incorporated as priors by computing a group-based false discovery rate (FDR) metric
(Methods). In summary, this step generates a set of confidence metrics for each
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candidate PPI (posterior error probabilities and q-values), that allow thresholding the
list at any user-defined FDR.

Step 4, PPI quantification: The combined set of PPIs that are confidently
detected (default: q-value < 0.05) across all experimental conditions and replicates is
then used for quantification. Specifically, for each peptide of a protein in a candidate
binary interaction, peptide-level data within the boundaries of the SEC fractions
defined in Step 2 are independently summarized. In addition, for each peptide of a
protein, three metrics summarizing the total, assembled and monomeric fractions are
computed. This provides quantitative metrics that can be used to assess inferred
protein or PPI changes across experimental conditions, as described in the following
steps (Fig. 1b, Methods).

The VIPER [41] algorithm was originally developed to infer protein activity from the
abundance of transcripts that are targets of specific transcription factors in gene
regulatory network models (GRN). SECAT contains the proteoVIPER algorithm that
extends the VIPER strategy to estimate protein- or PPI-level metrics. This is achieved
by adapting VIPER to proteomic data, specifically the fractionated peptide abundance
values, as computed above (Methods). To estimate protein-level metrics from the
peptide-level data, proteotypic peptide-protein mappings are used from upstream
analysis pipelines to compute a normalized enrichment score (NES), assessing the
change of peptide-based protein abundances within individual replicates and conditions
against the reference samples (Methods). When all fractions are considered, a metric for
“total” protein abundance can be computed. Alternatively, considering the
above-defined monomer threshold, metrics for “monomeric” (right side of threshold) or
“assembled” (left side of threshold) states can be estimated (Fig. 1c, Methods), thus
providing the basis to quantify differences in PPIs across samples and states. In analogy
to other quantitative protein inference strategies [48], the protein-level NES provides a
metric for protein abundance. However, the underlying statistical framework increases
the robustness for quantification with diverse sets of peptides and enables the
differential comparison to control samples (Methods).

To estimate PPI-level metrics, the peptides of two interactor proteins are quantified
using only their overlapping SEC fractions instead of their full elution profiles. For each
protein, a separate “interactor abundance” metric can be computed as described above
to assess the quantitative changes for the individual protein within the PPI.
Alternatively, complex-related metrics can be derived: First, the peptides of the two
interactors are assessed in a positively correlated setting, where the resulting metric can
be used to assess “complex abundance”. Second, the interactor peptides are assessed in
a negatively correlated setting to derive a metric representing “interactor ratio” (Fig.
1c, Methods). This metric can represent stoichiometric changes between interacting
subunits within a complex or alterations in their connectivity, if a PPI is abrogated or
quantitatively changed in some conditions.

The proteoVIPER module reports six quantitative metrics. On the protein level it
reports total abundance, assembled abundance, monomer abundance and at the
PPI-level it reports interactor abundance, complex abundance and interactor ratio.
While these values represent different properties of a protein and its interactions, in
some cases they are strongly correlated. For example, proteins present in assembled
state only will have strongly correlated total and assembled abundances.

Step 5, Network integration: The goal of this last step of the algorithm is to
integrate individual quantitative protein and binary PPI metrics from the previous step
into comprehensive PPI network states. In the ensuing representation, nodes are
individual proteins annotated with attributes representing differential protein or
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complex abundance and interactor ratio across conditions and replicates, and edges
indicate specific binary PPIs, representing the consensus across conditions and
replicates (Fig. 1b, Methods). This transformation can be used to provide a summary
overview of the different PPI network states between two or several conditions.

Using the experimental design, SECAT first statistically compares the quantitative
metrics between different groups to identify PPIs that change between the conditions
(Methods). However, since our approach is agnostic to protein complexes, these PPIs
can be either redundant (interactions within the same complex) or orthogonal
(interactions within different complexes). For this reason, differential PPI-level (edges)
metrics are integrated using the Empirical Brown’s Method [49] on a protein-by-protein
basis (nodes) to assess protein abundance or protein-complex-based changes for every
protein of interest. This method is specifically designed to account for
non-statistically-independent evidence and can integrate both redundant and orthogonal
information (Methods).

In conclusion, SECAT leverages large-scale, quantitatively consistent co-fractionation
mass spectrometry measurements across multiple replicates and conditions, such as
those acquired by SEC-SWATH-MS, to generate context-specific PPI networks, as well
as protein abundance and other PPI-related quantitative metrics. In combination, these
metrics comprehensively characterize condition-specific proteome abundance and PPI
network changes in a single operation.

Parameter selection and validation of signal processing and PPI
detection modules

In different fields of computational proteomics, the quantification of analytes, i.e.
peptides or proteins [50], or their interactions, i.e. protein-protein interactions [11–14]
or cross-linked peptides [51], have relied on their prior identification at high confidence.
Therefore, by analogy, the consistent identification or detection of PPIs across multiple
samples with accurate confidence estimation is also a crucial property for PCP-based
PPI studies. Due to the limited resolving power of SEC and the large PPI query space,
previous approaches either used ad hoc thresholds to filter out less likely interactions
(e.g. by requiring a minimum correlation of 0.5 for two candidate interactors [27]) or
they removed background noise by peak-picking [3,33], assuming Gaussian elution peaks
in the SEC dimension. SECAT, in contrast, maintains quantitative consistency between
conditions and replicates by applying an optimized semi-supervised learning strategy
that requires only minimal signal preprocessing and obviates the need for prefiltering.

To demonstrate that SECAT can retain high sensitivity for PPI detection at high
confidence levels without extensive data preprocessing, we first compared the effects of
different preprocessing methods. For this, we used a publicly available SEC-SWATH-MS
dataset [35] of HeLa CCL2 cells that were measured in triplicate in both interphase and
mitotic cell state (referred to as HeLa-CC dataset, Methods). Then, we assessed the
method’s robustness based on its ability to infer bona fide PPIs using reference networks
with an increasing ratio of false vs. true PPIs. For both assessments, the entire SECAT
methodology was used, however, with different choices for the parameters at each step.

Defining reference sets of true and false PPIs is a non-trivial problem. For this
benchmark, we adapted a previously applied strategy used by the PrInCE
algorithm [33] (Methods). It leverages CORUM [38] PPIs as true and all other
interactions of CORUM proteins that are not included in the database
(CORUM-inverted) as false PPIs (Methods). For the purpose of the benchmark we
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further excluded any known or predicted interactions from CORUM-inverted and split
the combined true/false reference set into equally sized training/validation and hold-out
subsets. These were generally used for all benchmarks, but for algorithm comparisons,
we generated subsets on protein complex level (see below, Methods).

Effect of signal preprocessing on PPI detection consistency: To better
assess the effects of different preprocessing strategies on PPI detection consistency, we
compared the default, minimal preprocessing approach of SECAT (none) to two
different peak-picking strategies, termed “detrend”—base line removal with (detrend
zero) or without (detrend drop) missing values—and “localmax” —local maximum
peak-picking (Methods).

Using the above-described benchmark setup, we first processed three replicates of
each HeLa-CC dataset condition with the different peak-picking options. The results
(Fig. 2a) show that detrending or peak-picking based noise removal results in tighter,
less variable mean peak widths across conditions and replicates. When comparing
peak-width standard deviation across the three replicates, the “localmax” method
introduced slightly higher variability (Fig. 2a). In contrast, the quantitative, integrated
peak area-based metrics and particularly the standard deviation are more similar across
all three options (Fig. 2a), suggesting that all three tested approaches perform similarly
in terms of quantitative applications. However, considerable differences were found
when comparing detection consistency (Fig. 2b). Indeed, decomposing the total number
of detected PPIs for detectability across experimental replicates revealed that the
fractions of PPIs consistently detected across replicates was substantially higher if no
preprocessing or detrending was used, thus supporting the omission of peak-picking in
SECAT.

Error-rate estimation accuracy and PPI detection sensitivity: To
optimally separate true vs. false candidate PPIs, SECAT integrates 11 different partial
scores into a composite score (Fig. 2c), using a semi-supervised learning strategy
initialized by a high confidence PPI score (kickstart score, Methods). Consistent with
other evidence integration approaches, the final integrative score (SECAT score) is more
discriminative than any of the initial or partial scores (Fig. 2c). To assess error-rate
estimation accuracy and algorithm sensitivity, we performed cross-validation analysis by
applying the classifier to the hold-out subset with increasing fractions (1:0 –1:16) of false
reference interactions (Methods, Fig. 2d). The accuracy of PPI detection confidence was
then assessed by comparing the q-value estimates with the ground truth estimated FDR
(Fig. 2e). Our results show that the q-value estimates for the hold-out dataset were
accurate within the assessed range. This shows that the SECAT PPI detection module
is robust against a variable fraction of false or undetectable PPIs in reference databases,
especially in the more relevant high-confidence region (q-value < 0.1). Moreover,
assessing all pairwise PPI combinations instead of using reference PPI networks to
restrict the query space substantially reduces sensitivity due to multiple hypotheses
testing correction [52] (Fig. 2f). At the same high confidence level (q-value < 0.05), the
reference-network-based approach, without additional false reference interactions,
detected 3,630 PPIs, whereas a reference-network-free approach, represented by using 16
times as many false reference interactions as true interactions, only detected 1,244 bona
fide PPIs, suggesting key loss of accuracy when low-quality PPIs are included and even
greater loss when no prior PPI network is used and PPI interactions must be discovered
de novo. Indeed, the substantially higher PPI recovery rate at the same confidence
threshold illustrates the benefit of using a high-quality reference PPI network, rather
than comparing all potential PPI interactions using the proposed scoring approach.
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Figure 2. Signal processing and PPI detection performance evaluated using the HeLa-CC [35] dataset.
(a) The effect of different peak-picking methods for signal processing on peak-width and PPI quantification within
replicates of the same experimental condition is depicted in violin plots (lines representing 25, 50 and 75% quantiles
respectively, Methods). (b) Sensitivity of PPI detection vs. SECAT q-value for peak-picking options. The PPI were
filtered to a global context q-value < 0.05. Colors indicate different peak-picking options; line types indicate number
of detections with the three replicates per condition. (c) The receiver-operating characteristic (ROC) illustrates the
sensitivity vs. specificity of the different SECAT partial scores, the kickstart score and the integrated SECAT score. (d)
The SECAT score histograms depict the dilution of the reference PPI network (true: CORUM) with false PPI (false:
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CORUM-inverted) for the benchmark (Methods). (e) The SECAT estimated q-value is accurate as evaluated against the
ground truth for all levels of reference PPI network accuracy. For the dilution 1:0, no a priori false PPI are tested, thus
the true FDR equals to 0. (f) The sensitivity of PPI detection in dependency of SECAT q-value for different levels of
reference PPI network accuracy is depicted. Solid lines represent the true, whereas dashed lines represent the false PPI.
(g) Consistency of PPI detection between replicates of the same conditions.

Compatibility with different data modalities: PCP datasets have been
acquired by proteomic methods different from SWATH-MS, e.g. by label-based [30] or
label-free [26] data-dependent acquisition methods. We tested the performance of
SECAT with a publicly available SILAC-PCP dataset [30] which compared Anti-Fas
IgM treated (inducing apoptosis) against control samples of Jurkat cells in triplicates
per condition. We refer to this dataset as Jurkat-Fas. The assessment was conducted
using the same strategy as described above.

Benchmark data shows that SECAT can be effectively applied to the Jurkat-Fas
dataset, with similar performance characteristics in terms of signal processing and
error-rate control robustness, resulting in 2,132 PPIs (q-value < 0.05) detected across
both conditions and replicates (Supplementary Fig. 1). A crucial requirement for
studies comparing multiple experimental conditions and replicates is high PPI detection
reproducibility. For example, requiring PPIs to be detected in all three instead of just
one replicate reduced recall by 43.5-44.4% (Supplementary Fig. 1g) in the Jurkat-FAS
dataset. In comparison, the corresponding drop for SEC-SWATH-MS in the HeLa-CC
dataset was substantially smaller (9.0-9.3%) (Fig. 2g). In conclusion, the core
assumptions for SECAT are also fulfilled for datasets acquired by different methods.
But because different biological systems were investigated (i.e., HeLa-CC vs. Jurkat-Fas
dataset), no conclusions can be made in terms of performance metric differences, since
they could be of technical or biological (e.g. sample complexity) origin.

Comparison of SECAT with established algorithms: To our knowledge, no
other algorithms have been published to quantitatively assess differential PPI network
states using PCP datasets and thus a direct comparison of SECAT is not possible.
However, several algorithms have been developed for the interaction- and
complex-centric analysis of proteomic co-fractionation profiles. They share with SECAT
the requirement to accurately estimate the confidence of identified or detect PPIs. For
the purpose of this benchmark, we thus compared the PPI identification or detection
modules of three representative algorithms, EPIC [27] (interaction-centric),
CCprofiler [3] (complex-centric) and SECAT (network-centric). As reference dataset, we
used a previously published SEC-SWATH-MS profile of a HEK293 cell line [3] in
exponential growth state, measured in a single replicate. In the following we refer to
this dataset as HEK293-EG. We used the CORUM reference PPI network to generate a
pseudo ground-truth dataset for classifier training, as described above, but restricted
validation results to a previously published [3], manually curated list of detectable
complexes within that dataset (Methods).

To compare binary PPI identification/detection performance, we trained the SECAT,
CCprofiler and EPIC classifiers using the same input data, selecting 50% of the
complexes for training and the other 50% for validation. For CCprofiler, complex
hypotheses were defined as binary complexes. Since the algorithms apply very different
signal processing and filtering steps, the numbers of reported PPIs with predicted scores
varied substantially. SECAT reported 31,932 PPIs of which 2,506 had a q-value < 0.05.
Similarly, CCprofiler conducts targeted analysis, but the preprocessing steps of the
algorithm reduced the number of reported PPIs to 4,955 of which 2,500 had a q-value <
0.05. EPIC assesses all combinations of protein interactions in an unbiased manner and
only reported results with a score above 0.5 (not error-rate controlled), resulting in
4,592 PPIs.
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Comparison of these diverse sets of predicted PPIs is not trivial, particularly because
the algorithms were designed for very different purposes. We thus only assessed the
power of individual classifiers to discriminate true and false PPIs and for this purpose,
we compared all combinations of the three classifiers and the full intersection of all
predicted PPIs (without cutoffs, except EPIC score>0.5). The full intersection of the
three algorithms resulted in a set of predictions for 2,633 ground truth “true” and 191
ground truth “false” PPIs. On this set, SECAT achieved an area under the receiver
operating characteristic (AUROC) of 0.856, with CCprofiler reporting a slightly lower
performance of 0.805, whereas the AUROC of EPIC was lower at 0.690 (Supplementary
Fig. 2a). Further, SECAT and CCprofiler outperformed EPIC in all pairwise
comparisons, especially in the high-confidence region (Supplementary Fig. 2b-d).

It should be noted though that this comparison is limited in scope and
generalizability of the conclusions. First, in absence of any systematic ground truth
datasets that could be used for benchmarking, only the interactions of manually curated
complexes [3] and their inferred negative PPIs were used. These examples likely form
characteristic elution peaks in the SEC dimension and might not be entirely
representative of all PPIs detectable by PCP. Second, only a single replicate was
assessed and thus no conclusions about PPI detection consistency across replicates and
conditions could be drawn, which might be more variable between different
preprocessing methods, as discussed above. Third, the algorithms were originally
designed for different purposes, e.g. EPIC was not primarily developed for the analysis
of SEC, but rather ion-exchange (IEX) profiles [27].

In summary, SECAT’s novel approach for accurate estimation of PPI detection
confidence combines (optional) reference-network-based assessment of PPIs with a
semi-supervised machine learning strategy. While the semi-supervised learning
component provides selectivity by exclusion of spontaneously co-eluting PPIs present in
the ground truth dataset during the first learning iteration, the restriction of the PPI
query space using reference networks dramatically increases sensitivity, thus enabling an
optimal tradeoff between the two metrics. In turn, these improvements allow SECAT to
operate with minimal data preprocessing, ensuring reproducible detection of PPIs across
replicates and conditions, a crucial requirement for their quantification.

Validation of PPI quantification & network integration modules

Building on SECAT’s benchmarked ability to detect true PPIs from PCP datasets, we
next validated its PPI quantification and network integration modules. For these
analyses, we used the previously described HeLa-CC dataset [35]. We performed
independent analyses, either assessing all potential PPI combinations or by using a
restricted query space based on CORUM [38], STRING [19] or PrePPI [22] as reference
PPI networks. The classifiers were trained on the full CORUM true/false reference
network.

PPI detection with different reference networks: For the analyses involving
the three reference PPI networks or all combinations, the total respective query space
ranged from 17,751 (CORUM), 198,399 (PrePPI) to 528,163 (STRING) and 6,824,388
(all combinations) PPIs (Fig. 3a). Of these, between 2,891 (all combinations), 5,656
(PrePPI), 7,898 (CORUM) and 8,560 (STRING) high-confidence PPIs (q-value < 0.05)
were detected, with a core set of 1,129 common PPIs (Fig. 3b). Notably, the full
intersection of detected true PPIs might be larger, but two factors conspire to make
objective comparison more complex. First, different confidence scores provided by each
database are used as priors in our analyses. Second, the largely variable number of PPIs
represented in each database needs to be accounted for during multiple testing
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correction (Methods). Assessing all pairwise protein combinations expectedly resulted in
the lowest number of detected PPIs (N = 2, 891). While this mode discovered 1,068
unique PPIs, the much lower sensitivity represents a considerable drawback for
quantitative applications. Consequently, we primarily used the STRING-based results
for further analyses.

PPI quantification and relation of metric classes: SECAT’s quantification
module computes two main quantitative property categories from SEC-SWATH-MS
data: one indicating protein abundance, the other representing PPIs. Some of these
metrics are expected to be related. For example, if a protein is only present in an
“assembled” conformation, the “total abundance” and “assembled abundance” values
will be highly correlated. To assess the relation and redundancy within metric classes,
we conducted dimensionality reduction using principal component analysis (PCA),
separating replicates and conditions (Fig. 3c). The data show that the first two
principal components of the “total abundance”, “monomer abundance” and “assembled
abundance” metrics explain 62.40-67.21% of the variance between them, while the first
two principal components for the “interactor abundance”, “complex abundance” and
“interactor ratio” metrics explain 62.98-75.03% of the variance. The small difference in
variance between protein abundance- and PPI-based metrics might potentially arise
from metrics quantifying redundant interactions between same-complex proteins.

To assess the relationship between metric classes, we further computed the
distribution of Spearman’s correlation of metrics aggregated over conditions, replicates
and proteins to the corresponding “total” protein abundances (Fig. 3d). As expected,
the “assembled abundance” metrics which cover most SEC fractions have the strongest
correlation, followed by “monomer abundance”, “interactor abundance” and “complex
abundance” metrics. Notably, since the “interactor ratio” metrics summarize relative
changes between the interactors, they are substantially less correlated.

Assessment of predictive power of quantitative metrics: To assess the
predictive power of the different metric classes for classifying the six samples to one of
the two represented mitotic states, we estimated the prediction error using leave-one-out
cross-validation using a logistic regression classifier applied to each metric separately
(Fig. 3e). The empirical cumulative distribution function (ECDF) in dependency of the
prediction error indicates that the “complex abundance” metrics are most informative,
followed by “interactor abundance” and the other metrics, to separate the two mitotic
states. While these metrics are computed for single proteins or PPIs, network-centric
data integration might further boost the predictive power of the respective values.

To assess this effect, we combined individual PPI metrics based on the SECAT PPI
networks by extending the score vector for the classifier from single metrics to all PPI
scores connected to a specific protein (Fig. 3f). The results show that the “complex
abundance”-based metrics performed best and the “assembled abundance” metrics
performed second best, indicating that the fractions covering assembled protein states
have a higher information content than those covering monomeric subunits and that the
connectivity information calculated by SECAT has higher information content than the
protein abundance.
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Figure 3. PPI quantification and Network integration assessment using the HeLa-CC [35] dataset. (a)
The Euler diagram indicates the overlap of STRING, PrePPI and CORUM reference PPI networks resulting in at least
a partial overlap of the interactors in any of the replicates. (b) Overlap of confident (q-value < 0.05) PPI detections
after SECAT analysis with different reference PPI networks. (c) Quantitative SECAT metrics can be used to separate
experimental conditions and replicates. (d) Spearman’s correlation of the metrics (PPI: summarized by averaging) to
total-level is depicted in individual boxplots (lower and upper hinges represent the first and third quartiles; the bar
represents the median; lower and upper whisker extend to 1.5 * IQR from the hinge). (e) Predictive error quantified by
the empirical cumulative distribution function (ECDF) for leave-one-out cross-validated logistic regression classification of
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replicates to biological conditions. (f) Predictive error for group-wise leave-one-out cross-validated logistic regression
classification of replicates to biological conditions. Groups represent several metrics connected to a core metric based
on the PPI network. (g) Correlation of node-level integrated adjusted p-values estimated using different reference PPI
networks.

Redundancy of network integration: In higher order complexes composed of
three or more subunits, PPI information is expected to be partly redundant, with each
subunit relating to at least two other co-complex members. Thus, a change in one
subunit might be apparent in other PPIs as well. This PPI redundancy between
subunits of a multiprotein complex is critically relevant to any strategy attempting to
integrate individual protein or PPI properties at the network level. Consistent with this
observation, SECAT assumes that changes in the individual subunits of a protein
complex can be measured redundantly by assessing its interactions with all proteins in
the complex. Different reference PPI networks are thus expected to provide comparable
quantitative metrics if they partially overlap. To test this assumption, we compared the
differential integrated metrics on “complex abundance” and “interactor ratio” levels
using different reference PPI networks. The results indicate a high degree of correlation
among the “complex abundance” (Spearman’s rho: 0.793-0.855) and “interactor ratio”
levels (Spearman’s rho: 0.754-0.799) (Fig. 3g), confirming that different reference PPI
networks provided comparable quantitative metrics from the same PCP input data.
Notably, the comparison with the reference-network-free mode indicates much lower
correlation. This can be explained by differences in the topologies of the generated PPI
networks. Although the node degree distributions of both reference-network-free and
reference-network-based PPI networks approximate a power-law [53], substantially more
high degree nodes (k > 60) could be detected when using reference networks
(Supplementary Fig. 3).

In summary, SECAT’s PPI quantification and network integration modules generate
instances of PPI networks for each sample or phenotypic state. To achieve this, the
signal processing and PPI detection modules first transform SEC fraction peptide
abundance values to a set of protein abundance or complex-associated metrics. The
presented validation results show that PPI-level quantitative metrics have higher
predictive power to separate sample groups than the underlying total protein
abundances. In a second step, redundant and non-redundant PPI-level metrics (edges)
are integrated to protein-level (nodes). With different empirical or predicted reference
PPI networks, this transformation achieves similar results attesting to the robustness of
results despite different background PPI networks.

Molecular mechanisms differentiating HeLa cell cycle states

To demonstrate SECAT’s ability to identify molecular mechanisms that differ between
experimental conditions or phenotypes, we further investigated the results obtained
from the HeLa-CC dataset [35]. This study was designed to compare differences at the
level of protein complexes between cell cycle states of a HeLa CCL2 cell line. The HeLa
cell states were induced by thymidine blocking which arrested cells in interphase and by
a subsequent release in nocodazole which arrested cells in mitosis [35]. For each
experimental condition, three full-process replicates were generated, and 65 SEC
fractions per condition and replicates were measured by SEC-SWATH-MS. Cumulatively,
70,445 peptides associated with 5,514 proteins were quantified across the full dataset.
We conducted the SECAT analysis of this quantitative matrix using STRING as the
query reference PPI network with the goal to identify phenotype-associated molecular
mechanisms (Methods). Since the cell cycle and its checkpoints are controlled by clearly
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defined events involving selected checkpoint proteins, the literature provides a reference
framework for the interpretation of the results.
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Figure 4. Complex-level molecular mechanisms differentiating HeLa cell cycle states. The integrated
STRING-based PPI network of the HeLa cell cycle dataset [35] is depicted with proteins (nodes) and binary PPIs (edges)
clustered against CORUM complexes (identifiers in brackets; Methods). Different colors indicate the most significant
metric-level (legend, Methods). Node-size indicates effect-size and opacity indicates significance. The most prominent
clusters highlight essential macromolecular assemblies. Interactive results (Cytoscape) are provided as Supplementary
Data 1.
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Figure 5. Protein-level SEC-SWATH-MS profiles of HeLa cell cycle states. Lines indicate different protein
subunits, whereas the dashed line indicates the highest monomer threshold per group. (a) Multisynthetase complex. (b)
Telomerase holoenzyme. (c) Cyclin B1-Cdk1 complex. (d) Subunits of the anaphase-promoting complex (APC). (e)
Subunits of the NineTeen Complex (NTC). (f) Associated U4/U6.U5 tri-snRNP subcomplex proteins. (g) The most
abundant ribosome biogenesis-associated proteins. (h) Subunits of the origin recognition complex (ORC).

After network-centric data integration, SECAT identified 25 differentially abundant
proteins (“total abundance”-level) across the two cell states, 44 alterations affecting
“assembled abundance”, no alterations regarding “monomer abundance”, 117 alterations
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affecting “interactor abundance”, 129 alterations in “complex abundance”, and 141
alterations in “interactor ratio” (adj. p-value < 0.01; |log2(fold-change)| > 1)
(Supplementary Data 2-3). To visualize the data SECAT implements a simplistic
aggregation to the most significant level per protein that provides a reduced overview.
This can be further augmented by integrating the context-specific PPI network with
CORUM (Fig. 4, Supplementary Fig. 4) or Reactome [54] (Supplementary Fig. 5),
visualizing changes affecting protein complexes or modules, respectively (Methods).
Importantly, modules and complexes can represent the same entities, e.g. the
anaphase-promoting complex (APC), which constitutes a well-defined complex in both
complex or module representations (Supplementary Fig. 4-5), or their modularization
cannot be attributed to specific complexes, e.g. the proteins part of the rRNA
processing module (Supplementary Fig. 5).

The data show that a few primary clusters representing large protein complexes and
their interactors dominate the modules covered by the network of detected PPIs. These
include the cytoplasmic ribosome (80 proteins; peptide chain elongation module), the
mitochondrial 55S ribosome (72 proteins; mitochondrial translation termination
module), the multisynthetase complex (44 proteins; selenoamino acid metabolism
module), the telomerase holoenzyme (41 proteins; rRNA modification in the nucleus
and cytosol module) and the mitochondrial respiratory chain complex I (holoenzyme)
(32 proteins; respiratory electron chain transport module). These structures have in
common that they consist of numerous subunits with many intra-complex PPIs. For the
ribosomal complexes and the respiratory chain complex, many PPIs could be detected
and quantified, but most PPIs and complex subunits did not change between conditions.
In contrast, for the telomerase holoenzyme and the multisynthetase complexes, a larger
number of subunits were significantly altered between the conditions (Fig. 4,
Supplementary Fig. 4) indicating that these structures changed composition between
mitotic states. Specifically, the subunits of the multisynthetase complex form a single
complex in interphase, whereas two subunits of the telomerase holoenzyme, DKC1 and
NHP2, and their interaction, are only detectable in mitosis suggesting a significant
quantitative difference of the two proteins between mitotic states (Fig. 5b). These
results indicate SECAT’s ability to quantify different types of alterations of large
molecular modules between cellular states.

Numerous changes were also detected for smaller modules and their interactions.
Cyclin B1 bound to Cyclin-dependent kinase 1 (Cdk1) is a major catalytic factor
promoting mitosis [55]. Counteracting Cyclin B1-Cdk1 mediated activation, sequential
degradation of cell cycle regulating proteins via the ubiquitin pathway is important to
progress through mitosis [56]. SECAT recalled these well-known biochemical events
from the SEC-SWATH-MS data. Specifically, it detected different levels of Cdk1
“complex abundance” and “interactor ratio” as a principal factor differentiating the two
cell cycle states (Fig. 5c). Further, SECAT identified several subunits of the
anaphase-promoting complex (APC) to be significantly more abundant during mitosis
(Fig. 5d). The network visualization further illustrates the high connectivity between
the individual subunits, resulting in a distinctive complex module within the graph,
primarily affected by differential protein abundance between the mitosis states (Fig. 4).
This is consistent with the role of the APC as a ubiquitin ligase mediating this
particular step [56]. Between transcription and translation, pre-mRNA is processed to
remove introns and splice exons to produce mature mRNA molecules for translation.
This process is catalyzed by the spliceosome, a multi-megadalton ribonucleoprotein
complex, which highly dynamically adapts to context-dependent functions [40].
Spliceosome assembly and function typically involve several intermediate complexes,
requiring the integrity of the nuclear compartment [39]. With the disassembly of the
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nucleus and associated nuclear pore complex (NPC) proteins during mitosis, the rate of
transcription is reduced and it is currently believed that spliceosome subunits are
distributed across the mitotic cytoplasm awaiting re-activation upon nuclear
reassembly [39]. However, systematic screens identified spliceosome subcomplexes,
including the NineTeen Complex (NTC) with five out of seven of its core proteins
(PRPF19 (PRP19), CDC5L, SPF27, PLRG1 and CTNNBL1 (CTBL1)) as essential
components for mitosis [57]. Correspondingly, in our analyses PRPF19 and CDC5L were
identified as differentially abundant between interphase and mitosis on the “complex
abundance” level. In addition, they display changes on the “interactor ratio” level.
Specifically, the NTC subunits form a more distinctive SEC elution peak during mitosis
(Fig. 5e). Similarly, NHP2-like protein 1 (NH2L1), a component of the U4/U6.U5
tri-snRNP subcomplex, has been found to be required during mitosis [57]. Our analysis
further supports the importance of NH2L1 during mitosis, as it is among the most
significantly changed proteins in terms of “interactor ratio” but not “total abundance”.
SECAT further found the linked U4/U6.U5 tri-snRNP subcomplex proteins such as the
tri-snRNP-associated protein 2 (SNUT2), the pre-mRNA-processing factors 3, 4, 6 and
31 (PRP3,4,6,31) to be of similar differential “interactor ratio” significance, suggesting
subcomplex activity during the cell cycle (Fig. 5f).

The Ribosomal RNA Processing complex represents one of the larger and most
densely connected submodules of the dataset. SECAT found several proteins known to
belong to this group to be differentially abundant (Fig. 5g). Of those, the majority is
associated with ribosome biogenesis, a process located in both cytoplasm and nucleolus.
Similar to the origin recognition complex (ORC, Fig. 5h), which is only active in the
nucleus, this difference in abundance might be explained by the experimental design,
because under the conditions used for cell lysis, proteins of the nucleus are less accessible
during interphase than mitosis, a cell cycle state where the NPC is disassembled. The
proteins, complexes and modules involved in rRNA processing illustrate a further
important asset of network-centric analysis: Reactome modularization in Supplementary
Fig. 5 shows that although the proteins involved in the associated rRNA processing and
modification processes cannot always be attributed to specific complexes, their
functional association can provide clues about differential mechanisms, either by
visualization or pathways analysis. Further examples illustrating the SEC profiles of the
protein complexes covered by Fig. 4 are visualized in Supplementary Fig. 6.

In summary, SECAT provides context-specific networks and protein-level metrics
that can be visualized as intuitive maps (Fig. 4), facilitating the interpretation of
observed molecular differences between cell states at different levels including protein
abundance, PPIs, protein complexes and PPI network modules, concurrently, from the
same dataset. This representation allows to analyze changes on different levels, from
larger network modules to complexes and specific PPIs, thus providing an interpretable
and scalable resource from overview representations to zoomed-in molecular mechanisms
for expert analysis or multi-omic data integration.

Discussion

Protein-protein interactions are a principal characteristic of proteome organization and
are significantly affected by or determine the biochemical state of the cell. Most
biochemical functions are catalyzed and controlled by multiprotein complexes which, in
turn, are organized in extensive interaction networks, exemplified by PPI interaction
resources such as STRING [19]. The ability to accurately compare PPI networks of
different cellular states and to deduce from the detected differences altered biochemical
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functions and mechanisms is therefore of fundamental importance for molecular biology.
To address this need under the term “interaction proteomics” several powerful methods
have been developed, including AP-MS that investigates the interactions of specific
proteins at relatively high throughput. The cumulative results of thousands of AP-MS
measurements constitute PPI network maps for investigated organisms [17,18].
However, the extension of the AP-MS approach to compare PPI networks at different
states is intrinsically limited because it would require the comparative analysis of the
results of a high number of AP-MS measurements in the different states.

For this reason, PCP-based methods, such as SEC-SWATH-MS, have emerged as
complementary approaches. They can measure protein profiles across the
chromatographic size separation range quickly and reproducibly for thousands of
proteins, thus indicating their abundance and association with complexes. They achieve,
however, lower proteome coverage than typical bottom-up proteomic measurements and
are limited to medium to high affinity-binding protein complexes that are soluble and
remain intact under the extraction conditions used. Previous studies have already
demonstrated the application of PCP to qualitatively characterize metazoan
macromolecular complexes [31]. With increasing throughput and further methodological
improvements, it can be expected that these developments enable the qualitative and
quantitative comparison of dozen to hundreds of samples in single studies.

However, the relatively low peak capacity of SEC imposes major limitations for PPI
identification, i.e. the number of proteins identified by far exceeds the number of
separable peaks and thus fractions collected. In previous studies this limitation was
addressed by sequentially applying orthogonal biochemical fractionation methods [26] or
by focusing on protein complex detection using predetermined subunits [3]. This
requires either more complex and costly experimental designs or focus on well
characterized protein complexes, limiting the scalability and generic applicability of
protein complex profiling studies.

With SECAT, we introduce an alternative analysis strategy which makes use of the
high consistency of peptide-level quantification of SWATH-MS and prior knowledge
from PPI reference databases. We demonstrate that SECAT applied to data with these
qualities provides accurate estimation of PPI detection confidence while substantially
increasing the coverage of binary interactions. The robustness of the scoring and
semi-supervised learning strategy further permits omission of preprocessing steps such
as peak-picking and obviates the need for scoring thresholds, making the algorithm
robust against context-specific deviations related to SEC peak shape or different
calibration of SEC fractions.

Because SEC separates stable native protein complexes, the inference of their
composition from binary interactions is a key component of most previous data analysis
strategies. This provides the opportunity to identify previously unknown associations in
a global fashion, however, the underlying challenges of annotating and comparing
context-specific related subcomplexes will become more severe with increasing number
of conditions tested in a study. We show that the proposed protein abundance-level and
PPI-based metrics are comparable across different PPI reference networks and thus
their implementation in SECAT provides a scalable alternative to protein complex
inference that makes use of redundant information to increase the consistency of
quantitative comparisons. In turn, these improvements allow quantitative comparisons
of the PPI network state, which can further be grouped to protein complexes or
functional modules, where concurrent changes highlight differential molecular
mechanisms between the investigated conditions.
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Our application of SECAT to the HeLa-CC dataset [35] illustrates that different
network states can efficiently be visualized in a network-centric representation to
highlight the complex relations of different qualities. This provides a bird’s-eye view of
alterations in PPI networks that can be used intuitively to guide follow-up investigations.
SECAT is available for all platforms as open source software implemented in Python
and is compatible with different LC-MS/MS profile and reference PPI database formats.
We expect that our toolkit and the underlying concepts will be particularly useful for
future PCP datasets, guiding the qualitative and quantitative comparison of multiple
conditions, where protein complexes represent dynamic rather than static modules.

Methods

The Size-Exclusion Chromatography Algorithmic Toolkit

Input data

The primary input data for SECAT are quantitative, proteotypic/unique peptide-level
profiles, e.g. acquired by SEC-SWATH-MS [3,35]. The input can be supplied either as
matrix (protein, peptide and run-wise peptide intensity columns) or as transposed long
list. Protein identifiers need to be provided in UniProtKB/Swiss-Prot format. The
column names can be freely specified, and example files are provided and referred to in
the online documentation.

The second required input file represents the experimental design and molecular
weight calibration of the experiment [3, 35]. The primary column is the run identifier
(matching the quantitative profiles above), with additional columns for SEC fraction
identifier (integer value), SEC molecular weight (float value, as specified
previously [3, 35]), a group condition identifier (freetext value) and a replicate identifier
(freetext value). The column names can be freely specified, and example files are
provided and referred to in the online documentation.

The third required file covers matching UniProtKB/Swiss-Prot meta data in XML
format and can be obtained from UniProt.

Optionally, reference PPI networks can be specified to support semi-supervised
learning and to restrict the peptide query space. SECAT can accept three files: A
positive and a negative reference network for the learning step and a separate reference
network to restrict the query space. SECAT natively supports HUPO-PSI MITAB
(2.5-2.7), STRING-DB, BioPlex and PrePPI formats and provides filtering options to
optionally exclude lower confidence PPIs. Example files for CORUM (version 3.0),
PrePPI (version 2016) and STRING (version 11.0) are provided and referred to in the
online documentation.

Data preprocessing

By default, SECAT first normalizes the quantitative profiles on peptide-level. To reduce
local fluctuations in total protein abundance between individual samples, but to still
conserve the global distribution of the SEC-fraction-dependent protein abundances,
SECAT implements a sliding window-based approach: Cyclic lowess [58, 59] (span=0.7,
iterations=3) is applied group-wise to all conditions and replicates by a sliding window
(default: N = 5) and a step-size (default: N = 1) over the SEC fraction indices and the
average intensity is computed for each peptide in each SEC fraction. The sliding
windows are by default “padded”, meaning that the average of the first and last window
frames is computed over the restricted set of covered fractions only. Supplementary Fig.
7-10 illustrate the effects of the normalization on the total protein abundance profiles.
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Using the user-provided molecular weight calibration of the experiment [3, 35], the
apparent molecular weights of the SEC fractions are matched with the reference
molecular weights for each monomeric subunit to identify the closest SEC fraction
index, representing a protein-specific “monomer threshold”. In this process, a
user-defined factor (default: F = 2) can be specified that is used to multiply the
reference molecular weights prior to matching to account for potential homomultimers.

By default, SECAT does not conduct strict prefiltering or peak-picking of the SEC
elution profiles. Optionally, peptide-level detrending including or excluding zero values
can be conducted, where the quantitative matrix Is, represents sample s. Is consists of
peptide intensities is with rows, representing peptides of the complete set P with index
p and columns, representing runs of the complete set R with index r. Is can be
transformed to Is,detrendzero or Is,detrenddrop

:

is,p,r,detrendzero
=

{
is,p,r

∣∣∣∣∣is,p,r −
∑R

r=1 is,p,r
R

> 0

}
(1)

ss,p,r =

{
0, if is,p,r = 0
1, if is,p,r > 0

(2)

is,p,r,detrenddrop
=

{
is,p,r

∣∣∣∣∣is,p,r −
∑R

r=1 is,p,r∑R
r=1 ss,p,r

> 0

}
(3)

As alternative option, a local maximum (“local-max”) peak-picking algorithm can be
applied on protein-level, either individually per sample or averaged over the replicates of
the same conditions under the same assumptions as stated above. First, the
quantitative matrix is extended to protein-level Js for sample s or averaged over all
replicates of condition c, Jc, with rows, representing proteins of the complete set O with
index o and op indicating the set of peptides p mapping to the protein with a minimum
(default: N = 1) and maximum (default: N = 3) peptides, sorted according to
decreasing total intensity over the full SEC gradient.

js,o,r =

∑p=op
p=1 is,p,r

op
(4)

jc,o,r =

∑p=op
p=1 ic,p,r

op
(5)

Protein level arrays are then used as input for the SciPy [60] local maxima
peak-picking function “scipy.signal.find peaks” (minimum width=3, relative
height=0.9), which returns a binary vector ks,o(r) for each protein indicating the peak
boundaries. Using this vector, the peptide-level matrix is transformed: Peptide
intensities is,p,r are set to zero if the binary vector ks,o(r) of mapping protein o at run
index r is zero, indicating outside-peak boundaries:

is,p,r,localmaxreplicates
= {is,p,r|ks,o(p, r) > 0} (6)

is,p,r,localmaxconditions
=
{
is,p,r|kc,o(p, r) > 0

}
(7)
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Signal processing

Candidate PPIs, either defined by the reference PPI networks or by computing all
pairwise combinations, are evaluated in the signal processing module. First, a minimum
(default: N = 1) and maximum (default: N = 3) number of peptides are selected
according to total intensity computed over the full SEC profile and all samples. If there
are at least 3 consecutive non-zero values on protein-level, a vector of 11 scores is
computed within the assembled fractions of each candidate PPI, where the input data
are the preprocessed SEC profile intensities of the peptides corresponding to the two
interactor proteins. The peptide pA,j denotes the j-th ranking peptide with the
complete set J of protein A, whereas iA,j,r denotes the peptide intensity of that peptide
in run r of the complete set R.

Cross-correlation-based scores: Inspired by the chromatographic
cross-correlation-based scores of mQuest/mProphet [42], two scores are computed by
comparing the peptides of protein A with the peptides of protein B.

First, peptides intensities are normalized over all runs:

iA,j,r,norm =
iA,j,r − iA,j

σiA,j

(8)

Second, the cross-correlation function between each combination of peptides of
protein A and B is computed using the NumPy function “numpy.correlate”:

(iA,j,norm ? iB,k,norm)(τ) ,
∫ ∞
−∞

iA,j,norm(r)iB,k,norm(r + τ) dr (9)

Based on this function, two scores are derived. xcorrshape describes the average of
all normalized peptide pair convolution products retrieved at full signal overlap.
xcorrshift describes the maximum difference between the intersection and protein A or
B in xcorrapex, which represents the average delay τ at which the cross-correlation is
maximal:

xcorrshape =

∑j=J
j=1

∑ k=K
k=1 maxoverlap((iA,j,norm ? iB,k,norm)(τ))

J ∗K
(10)

xcorrapex,A∩B =

∑j=J
j=1

∑ k=K
k=1 argmax((iA,j,norm ? iB,k,norm)(τ))

J ∗K
(11)

xcorrapex,A =

∑j=J
j=1

∑ k=J
k=1 argmax((iA,j,norm ? iA,k,norm)(τ))

J ∗ J
(12)

xcorrapex,B =

∑j=K
j=1

∑ k=K
k=1 argmax((iB,j,norm ? iB,k,norm)(τ))

K ∗K
(13)

xcorrshift = max(|xcorrapex,A∩B − xcorrapex,A|, |xcorrapex,A∩B − xcorrapex,B |) (14)

Monomer-based scores: Two scores are computed to measure the distance in
SEC fractions between monomers of proteins A and B and their PPIs. mA denotes the
monomer threshold computed for protein A:

deltamonomer = |mA −mB | (15)

apexmonomer = min(mA − xcorrapex,A∩B ,mB − xcorrapex,A∩B) (16)
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Maximal and total information coefficient-based scores (MIC/TIC):
Mean equicharacteristic mic and tic scores are computed for all peptide combinations
between proteins A and B using the minepy package [44]:

mic =

∑j=J
j=1

∑ k=K
k=1 mice((iA,j(r), iB,k(r))

J ∗K
(17)

tic =

∑j=J
j=1

∑ k=K
k=1 tice((iA,j(r), iB,k(r))

J ∗K
(18)

SEC profile intersection-based scores: Two scores are computed to describe
the intersection of the protein profiles. The intersection of proteins A and B over the
SEC profile is defined as true at index r, if any peptide of protein A and any peptide of
protein B have non-zero intensities:

isA∩B,r = {iA,j∈J,r > 0 ∧ iB,k∈K,r > 0} (19)

The union of proteins A and B over the SEC profile is defined as true at index r, if
any peptide of protein A or B has non-zero intensities:

uA∪B,r = {iA,j∈J,r > 0 ∨ iB,k∈K,r > 0} (20)

The score secintersection describes the maximum stretch of consecutive intersecting
fractions:

secintersection = maxconsecutive(isA∩B(r)) (21)

The score secoverlap represents the Jaccard Index and describes the total intersection
divided by the total overlap.

secoverlap =

∑r=R
r=1 isA∩B,r∑r=R
r=1 uA∪B,r

(22)

Protein-abundance-based scores: Two scores are derived to describe the
relative ratio of proteins A and B. First, the peptide intensities are summarized over
the intersection or the full SEC profile:

iA∩B,j =
∑r=R

r=1
{iA,j,r|iA,j∈J,r > 0 ∧ iB,k∈K,r > 0} (23)

iA,j,total =
∑r=R

r=1
iA,j,r (24)

Second, for each protein an abundance metric is computed by averaging the peptide
intensities:

OA∩B =

∑j=J
j=1 iA∩B,j

J
(25)

OA,total =

∑j=J
j=1 iA,j,total

J
(26)

The score abundanceratio defines the relative abundance ratio between the
intersection of proteins A and B. The score total abundanceratio defines the abundance
ratio between the full SEC profiles of proteins A and B. If the values are larger than 1,
the inverse values are computed:

abundanceratio =

(
OA∩B

OB∩A
< 1→ OA∩B

OB∩A

)
∧

(
¬OA∩B

OB∩A
< 1→ OB∩A

OA∩B

)
(27)
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total abundanceratio =

(
OA,total

OB total
< 1→ OA,total

OB,total

)
∧

(
¬OA,total

OB,total
< 1→ OB,total

OA,total

)
(28)

Kickstart score: To initialize semi-supervised learning, a kickstart score is
computed to select PPIs that co-elute, have similar shape, and similar interactor mass,
where values range between 0 and 1 with higher values indicating better signals:

kickstart =
xcorrshape ∗ total abundanceratio

xcorrshift + 1
(29)

PPI detection

Spontaneous co-elution of protein subunits in PCP datasets represents a considerable
challenge to identify or detect PPIs. While partial scores can describe properties to
discriminate true from false candidate PPIs, several properties need to be combined to
achieve sensitivity and selectivity. For this reason, supervised learning of classifiers for
PPI identification using a ground truth dataset was a critical component of all previous
approaches [3, 26,27,29,31–34].

The CORUM [38] protein complex reference database has been used previously for
this purpose. For the application in SECAT, the complexes were transformed to PPIs,
representing the positive ground truth dataset. For the negative ground truth dataset,
we adapted the approach proposed by the PrInCE algorithm [33]. It leverages CORUM
PPIs as true and all other interactions of CORUM proteins that are not included in the
database (CORUM-inverted) as false PPIs. Since proteins in CORUM complexes are
well characterized and, for the most part, supported by 3D structure data, this strategy
assumes that any true interactions within that set of proteins should be known already.
As such, identified or detected interactions that are not reported are likely false
positives [33]. For the purpose of the benchmark we further excluded any known or
predicted interactions from CORUM-inverted and split the combined true/false
reference set into equally sized training/validation and hold-out subsets.

However, since SECAT does by default not conduct strict prefiltering and uses
considerably more candidate PPIs for machine learning and scoring, spontaneous
co-elution events of (partially) overlapping interactors within the positive ground truth
dataset would lead to an accumulation of false positives. For this reason, a
semi-supervised learning approach, inspired by the solutions developed as part of
Percolator [61], mProphet [42] and PyProphet [45,46] for related challenges within
computational proteomics was implemented, where the positive ground truth set is
learned over several iterations, ensuring both selective and sensitive scoring of candidate
signals.

The input for the semi-supervised learning step are the partial score vectors for the
positive and negative ground truth dataset. Optionally, two filters can be applied to
remove the most unlikely candidate PPIs. The minimum abundance ratio filter (default:
F = 0.1) ensures that only PPIs within a maximum 10-fold difference of protein
abundance ratios are considered. The maximum SEC fraction shift filter (default:
F = 10) ensures that only PPIs with maximum elution peaks within 10 SEC fractions
are considered. The PyProphet learning module is then applied to the ground truth
dataset.

Semi-supervised learning: This step is conducted essentially as described
before [42] with modifications:
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1. Cross-validation is conducted with a randomly sampled fraction f of the data
(default:f = 0.8) and repeated r (default: r = 10) times.

(a) Initialization of semi-supervised learning:

i. All negative ground truth PPIs of the cross-validation fold are used. The
kickstart score is used to select the initial positive ground truth PPI
subset at a defined q-value threshold (default: q = 0.1).

ii. As part of the initialization step, all partial scores, except the kickstart
score are then used to train an XGBoost [47]-based classifier.
Hyperparameters can optionally be tuned as described below, but a
default set (num boost round=100, early stopping rounds=10,
test size=0.33, eta=1.0, gamma=0, max depth=6, min child weight=1,
subsample=1, colsample bytree=1, colsample bylevel=1,
colsample bynode=1, lambda=1, alpha=0, scale pos weight=1, silent=1,
objective=binary:logitraw, nthread=1, eval metric=auc) is provided.

iii. Based on this classification, the positive ground truth dataset is
re-scored for the next iteration.

(b) Iterate i (default: i = 3) times:

i. All negative ground truth PPIs of the cross-validation fold are used. The
previous classifier is applied to the ground truth dataset to select the
iteration positive ground truth PPI subset at a defined q-value threshold
(default: q = 0.05).

ii. Classification of the new dataset is conducted as described above in the
initialization step.

iii. Based on this classification, the positive ground truth dataset is
re-scored for the next iteration.

(c) The classifier discriminant scores are normalized relative to the negative
ground truth data points by subtracting the mean and dividing by the
standard deviation of the negative ground truth data points as described
previously [42].

2. Classifier discriminant scores are averaged over all cross-validation folds. In
combination with the negative ground truth dataset, this score is used to select
the final positive ground truth PPI subset at a defined q-value threshold (default:
q = 0.05). A final classifier is trained and stored, which will later be used and
applied to the full dataset for classification. Optionally, hyperparameters can be
tuned at this stage using the hyperopt framework [62] in a hierarchical fashion
within 10 rounds optimizing the evaluation metric “auc”: 1) Complexity
hyperparameters: max depth=(2,8) and min child weight=(1,5), 2) Gamma
hyperparameter: gamma=(0.0,0.5), 3) Subsampling hyperparameters:
subsample=(0.5,1.0), colsample bytree=(1.0), colsample bylevel=(1.0),
colsample bynode=(1.0), 4) Regularization hyperparameters: lambda=(0.0,1.0),
alpha=(0.0,1.0), 5) Learning rate: eta=(0.5,1.0). Integer ranges are sampled by a
quantized uniform distribution, floating number ranges are sampled by a uniform
distribution. In our applications, we found that the default hyperparameter set
described above was applicable to all tested datasets and we thus omitted
autotuning in further iterations.

Statistical validation: The Storey-Tibshirani q-value framework [63] is used to
assess false-discovery rates. First, empirical p-values are estimated for the positive
ground truth dataset using the negative ground truth dataset as null model [63].
q-values are then estimated as described previously [63] with the following parameters in
all iterations: pi0 lambda=(min=0.01,max=0.5,step=0.01), pi0 method=bootstrap.
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Incorporation of prior information from reference PPI networks: If a
reference PPI network was used to restrict the query space, the optionally provided
confidence scores can be incorporated during statistical validation. Because these scores
often only to some extent represent the PPIs measurable by PCP datasets and can be
differently calibrated across databases, SECAT uses them to compute a grouped FDR.
Queried PPIs are grouped according to their prior score in N predefined confidence bins
(default: N = 100) and q-value estimation is conducted for each bin separately. This
enables multiple hypothesis testing correction to account for different prior probabilities
of false detection of interactions and is generically applicable to confidence scores with
different statistical properties.

Integration across multiple replicates: If multiple replicates of the same
biological condition are scored together, a global q-value is computed for each PPI by
prior computing of the average of the classifier scores over all replicates.

PPI quantification

SEC peptide profiles can be partitioned into components to represent quantitative
information on different levels. Based on the peptide-level SEC profiles, SECAT
computes four quantitative metrics for selected peptides of a protein (default: minimum
N = 1; maximum N = 3 peptides per protein, ranked according to total protein
abundance):

Total intensity: The sum of the full elution profile corresponds to the total
peptide abundance, which to some degree represents protein abundances measured by
conventional, non-fractionated LC-MS/MS. Assembled intensity: Based on the
protein-specific monomer threshold defined in the preprocessing step, the peptide
signals of all assembled fractions (left hand-side of monomer threshold) are summarized.

Monomer intensity: Based on the protein-specific monomer threshold defined in
the preprocessing step, the peptide signals of all monomer fractions (right hand-side of
monomer threshold) are summarized.

Interactor intensity: To compute the PPI-level quantities, for each PPI below a
specified confidence threshold (default: integrated q-value < 0.05 in any of the
compared conditions), the intersecting fractions of the two interactor protein profiles are
analogously extracted on peptide level.

These summarized peptide-level quantities are then log2-transformed and the
log2-fold-change between groups is computed. The intensities are further used by the
proteoVIPER module for differential quantitative protein and PPI assessment.
proteoVIPER is based on the VIPER algorithm [41], which was originally developed to
assess protein activity from transcriptomic profiles using gene regulatory networks.
Using the peptide-protein relationships, proteoVIPER computes three differential
protein-level metrics, total, assembled and monomer abundance to describe changes
between the groups. In addition, proteoVIPER computes three differential PPI-level
metrics based on the peptide interactor intensities of the two proteins within a PPI:
interactor and complex abundance and interactor ratio.

The main component of VIPER and thus proteoVIPER is the analytic rank-based
enrichment analysis (aREA) module, which tests for a global shift in the position of the
peptides mapping to the same protein or PPI when projected on the rank-sorted
peptide intensities of a run on separate levels [41]. The description of the algorithm
below is adapted from the original publication [41]:

1. To compute total, assembled and monomer abundances, the peptides mapping to
the protein-of-interest are used. To compute the interactor abundance, for each
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PPI, the peptides of each interactor are separately assessed with a positively
correlated mode of interaction. To compute complex abundance, the peptides of
proteins A and B are used with the same, positively correlated mode of
interaction. To compute interactor ratio, the peptides of proteins A and B are
used with negatively correlated mode of interaction.

2. The means of the quantile-transformed rank positions are used as test statistic
(enrichment score), which is computed twice:

(a) First, a one-tail approach is used based on the absolute value of the peptide
intensities, which rank-sorts proteins from the less invariant between groups
to the most differentially abundant.

(b) Second, a two-tail approach is used, where the positions of the peptides of one
interactor is inverted (negatively correlated mode of interaction) within the
peptide intensity signature to compute the interactor ratio enrichment score.

3. The one-tail and two-tail enrichment scores are then integrated exactly as
described previously [41], but with equal confidence for each peptide. The scores
are normalized and calibrated against the reference exactly as described
previously [41].

The quantitative metrics reported by proteoVIPER have several advantages: First,
quantitative changes of proteins between different samples can also be assessed by only
partially overlapping sets of peptides. Second, complex abundance changes can be
estimated by contributions of the peptides of both interactor proteins. Third, by
assessing the interactor proteins in a negatively correlated mode of interaction, a
differential metric for changes affecting the ratio of the interactors can be derived,
which to some extent represents a metric describing changes in complex stoichiometry.
proteoVIPER reports six quantitative matrices, representing protein or PPI metrics on
each level that can be used for differential comparisons between the samples and
conditions. Experimental conditions can then be statistically compared by independent
t-tests [41] on each level.

Network inference

Using the PPI-level quantitative metrics from above, SECAT conducts network-centric
data integration. For each protein, the test statistics and proteoVIPER normalized
enrichment scores of its PPIs are integrated using Empirical Brown’s Method [49]. The
evidence of multiple measured PPI is thus summarized to protein complex metrics
summarizing changes in protein complex abundance or interactor ratio for each protein.
Notably, highly correlated PPI (e.g. from the same protein complex) are integrated in a
dependent fashion, whereas independent PPI (e.g. from different protein complexes)
combine and increase the significance of the protein complex engagement metric.

In a network context, this helps to identify the most perturbed or dysregulated
proteins based on changes of their protein complexes. Instead of clustering or inferring
protein complexes, which are difficult to define in presence of subcomplexes across
multiple experimental conditions, SECAT’s metrics can be more robustly characterized
from a partial subset of their interactions.

Integrated p-values are adjusted for multiple testing using the
Benjamini-Hochberg [64] approach, as suggested in the original publication [49].

Primary data analysis

Processed mass spectrometry datasets have been obtained from the repositories linked
by the original publications or the authors of the corresponding publications.
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SECAT data analysis

SECAT (version 1.0.5), PyProphet (version 2.1.4) and VIPER (version 1.20) were used
for all data analyses with CORUM [38] (version 3.0), PrePPI [22] (version 2016) and
STRING [19] (version 11.0) and default parameters if not otherwise specified.
Semi-supervised learning was conducted using CORUM as positive network and
CORUM-inverted as negative network. The inverted CORUM reference PPI network
was generated by using the inverted set of PPIs (i.e. all possible PPIs that are not
covered by CORUM) and removing all PPI in this set covered by STRING (version
11.0), IID [65] (version 2018-11), PrePPI (version 2016) or BioPlex [18] (version 2.0).

All input and output data and used parameters are provided on the Zenodo
repository to reproduce all analysis steps.

Parameter selection and validation of signal processing and PPI
detection modules

The SECAT PPI detection benchmark was conducted by using 50% of the CORUM
reference PPI network for learning and the other fraction for evaluation. For all
assessments, this random selection was conducted on PPI-level, except for the algorithm
comparison, where the selection was conducted on complex-level. Reference false PPI
from CORUM-inverted were randomly selected in predefined ratios (1:0 – 1:16) and
added to the target set for evaluation but not learning.

Fig. 2a and Supplementary Fig. 1a depict violin plots with the following parameters:
Lower and upper hinges represent the first and third quartiles; the bar represents the
median. This represents the default parameters of the function “geom violin” of ggplot2.

Fig. 2b and Supplementary Fig. 1b were generated by assessing the PPIs with a
global-context q-value < 0.05 and decomposing the number of PPIs for detection
amongst replicates at different confidence thresholds.

Fig. 2e and Supplementary Fig. 1e were generated by using the ground truth
CORUM and CORUM-inverted reference values. Because the estimated q-values are
dependent on the combined reference sets with unknown ratios of true and false PPIs,
the “true q-values” were corrected by a factor, which accounts for the PyProphet
estimated proportion of false targets in the 1:0 dilution step.

For Supplementary Fig. 2, the CORUM reference PPI network was similarly used as
described above to generate a pseudo-ground truth dataset for classifier training.
However, for the validation subset, an excess of 10 times as many false interactions as
targets prior to analysis was added and subsets were generated by randomly selecting
protein complexes instead of PPIs. For the downstream analysis, the CORUM targets
only were reduced to the intersection with a previously published [3], manually curated
annotation of the dataset.

The CCprofiler [3] analysis (git revision: 39650f2) was conducted as suggested by the
software documentation. All input data and parameters are provided on the Zenodo
repository.

The EPIC [27] analysis (git revision: b6432b9) was conducted as suggested by the
software documentation with the provided Docker container. The input data was first
aggregated from peptide-level to protein-level using the top3 method implemented in
aLFQ [66] (version 1.3.5). All input data and parameters are provided on the Zenodo
repository.
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Validation of PPI quantification & network integration modules

The data was analyzed as described above with the full CORUM, PrePPI and STRING
reference networks and a network encompassing all potential PPIs. Fig. 3c-f were
generated using the STRING-based analysis. Fig. 3d depicts boxplots with the following
parameters: Lower and upper hinges represent the first and third quartiles; the bar
represents the median. Lower and upper whisker extend to 1.5 * IQR from the hinge.
This represents the default parameters of the function “geom boxplot” of ggplot2.

Supplementary Fig. 3 was generated by computing the node degrees with the
“NetworkAnalyzer” module of Cytoscape [67] (version 3.7.2) and visualization of the
density distributions of each network using the function density.compare from the
R-package “sm” (version 2.2-5.6) with default parameters.

Molecular mechanisms differentiating HeLa cell cycle states

To annotate and visualize differential proteins in Fig. 4 and Supplementary Fig. 4-5
between the HeLa cell cycle states identified by SECAT, we used Cytoscape [67]
(version 3.7.2). CORUM (version 3.0) or Reactome [54] (version 71) was used to cluster
PPI using the Cytoscape App AutoAnnotate [68] (version 1.3.2) with default
parameters and a maximum cluster size (“Max words per label”) of 1. Clusters were
arranged according to the CoSE layout.

Visualization of protein-level SEC-SWATH-MS profiles in Fig. 5 and Supplementary
Fig. 6 was conducted using the R-package “ggplot2” by averaging the three most
intense peptide precursors per protein.

Source code availability

SECAT is available as platform-independent open source software under the Modified
BSD License and distributed as part of the SECAT
(https://pypi.org/project/secat) and PyProphet
(https://pypi.org/project/pyprophet) Python PyPI packages. SECAT further
depends on the R/Bioconductor package “viper”, which is distributed under a
non-commercial usage license. Further documentation and instructions for usage can be
found on the SECAT source code repository
(https://github.com/grosenberger/secat).

Data availability

All analysis results are available on Zenodo with the dataset identifier
10.5281/zenodo.3631786.
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Supplementary Figures

Supplementary Figure 1. Signal processing and PPI detection performance evaluated using the Jurkat-
Fas [30] dataset. (a) The effect of different peak-picking methods for signal processing on peak-width and PPI
quantification within replicates of the same experimental condition is depicted in violin plots (lines representing 25, 50 and
75% quantiles respectively, Methods). (b) Sensitivity of PPI detection vs. SECAT q-value for peak-picking options. The
PPI were filtered to a global context q-value < 0.05. Colors indicate different peak-picking options; line types indicate
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number of detections with the three replicates per condition. (c) The receiver-operating characteristic (ROC) illustrates
the sensitivity vs. specificity of the different SECAT partial scores, the kickstart score and the integrated SECAT score.
(d) The SECAT score histograms depict the dilution of the reference PPI network (true: CORUM) with false PPI (false:
CORUM-inverted) for the benchmark (Methods). (e) The SECAT estimated q-value is accurate as evaluated against the
ground truth for all levels of reference PPI network accuracy. For the dilution 1:0, no a priori false PPI are tested, thus
the true FDR equals to 0. (f) The sensitivity of PPI detection in dependency of SECAT q-value for different levels of
reference PPI network accuracy is depicted. Solid lines represent the true, whereas dashed lines represent the false PPI.
(g) Consistency of PPI detection between replicates of the same conditions.
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Supplementary Figure 2. Receiver operating characteristic for the comparison of SECAT with EPIC and
CCprofiler using the HEK293-EG [3] dataset.
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Supplementary Figure 3. Comparison of node degree densities between different reference PPI networks
and the network covering all possible PPI combinations.
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Supplementary Figure 4. Extended complex-level molecular mechanisms differentiating HeLa cell cycle
states. The integrated STRING-based PPI network of the HeLa cell cycle dataset [35] is depicted with proteins (nodes)
and binary PPIs (edges) clustered against CORUM complexes (identifiers in brackets; Methods). Different colors indicate
the most significant metric-level (legend, Methods). Node-size indicates effect-size and opacity indicates significance. The
most prominent clusters highlight essential macromolecular assemblies. Interactive results (Cytoscape) are provided as
Supplementary Data 1.
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Supplementary Figure 5. Pathway-level molecular mechanisms differentiating HeLa cell cycle states. The
integrated STRING-based PPI network of the HeLa cell cycle dataset [35] is depicted with proteins (nodes) and binary
PPI (edges) clustered against Reactome pathways (identifiers in brackets; Methods). Different colors indicate the
most significant metric-level (legend, Methods). Node-size indicates effect-size and opacity indicates significance. The
most prominent clusters highlight essential macromolecular assemblies. Interactive results (Cytoscape) are provided as
Supplementary Data 1.
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Supplementary Figure 6. Extended protein-level SEC-SWATH-MS profiles of HeLa cell cycle states. Lines
indicate different protein subunits, whereas the dashed line indicates the highest monomer threshold per group. (a) BAF
complex. (b) 18S U11/U12 snRNP. (c) Condensin II. (d) Nup 107-160 subcomplex.
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Supplementary Figure 7. Summarized raw peptide precursor intensities over the SEC profile for the
HeLa-CC [35] dataset.
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Supplementary Figure 8. Summarized normalized peptide precursor intensities over the SEC profile for
the HeLa-CC [35] dataset.
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Supplementary Figure 9. Summarized raw peptide precursor intensities over the SEC profile for the
Jurkat-Fas [30] dataset.
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Supplementary Figure 10. Summarized normalized peptide precursor intensities over the SEC profile for
the Jurkat-Fas [30] dataset.
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48. Ahrné, E., Molzahn, L., Glatter, T. & Schmidt, A. Critical assessment of
proteome-wide label-free absolute abundance estimation strategies. Proteomics
13, 2567–2578 (2013).

49. Poole, W., Gibbs, D. L., Shmulevich, I., Bernard, B. & Knijnenburg, T. A.
Combining dependent P-values with an empirical adaptation of Brown’s method.
Bioinformatics 32, i430–i436 (2016).

44/46

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2020. ; https://doi.org/10.1101/819755doi: bioRxiv preprint 

https://doi.org/10.1101/819755
http://creativecommons.org/licenses/by-nc-nd/4.0/


50. Domon, B. & Aebersold, R. Options and considerations when selecting a
quantitative proteomics strategy. Nature Biotechnology 28, 710–721 (2010).

51. Walzthoeni, T. et al. xTract: software for characterizing conformational changes
of protein complexes by quantitative cross-linking mass spectrometry. Nature
Methods 12, 1185–1190 (2015).

52. Sham, P. C. & Purcell, S. M. Statistical power and significance testing in
large-scale genetic studies. Nature Reviews Genetics 15, 335–346 (2014).

53. Barabási, A. L. & Oltvai, Z. N. Network biology: Understanding the cell’s
functional organization. Nature Reviews Genetics 5, 101–113 (2004).

54. Jassal, B. et al. The reactome pathway knowledgebase. Nucleic acids research 48,
D498–D503 (2020).

55. Gavet, O. & Pines, J. Progressive Activation of CyclinB1-Cdk1 Coordinates
Entry to Mitosis. Developmental Cell 18, 533–543 (2010).

56. Castro, A., Bernis, C., Vigneron, S., Labbé, J. C. & Lorca, T. The
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