Polynomial-Time Statistical Estimation of Species Trees under Gene Duplication and Loss

Brandon Legried ${ }^{1}$, Erin K. Molloy ${ }^{2}$ [0000-0001-5553-3312], Tandy Warnow ${ }^{2}$ [0000-0001-7717-3514] , and Sébastien Roch $^{1}[0000-0002-7608-8550]$
${ }^{1}$ University of Wisconsin-Madison, Madison, WI, USA
\{roch, blegried\}@math.wisc.edu
${ }^{2}$ University of Illinois at Urbana-Champaign, Urbana, IL, USA
\{warnow, emolloy2\}@illinois.edu

Abstract

Phylogenomics-the estimation of species trees from multilocus datasets-is a common step in many biological studies. However, this estimation is challenged by the fact that genes can evolve under processes, including incomplete lineage sorting (ILS) and gene duplication and loss (GDL), that make their trees different from the species tree. In this paper, we address the challenge of estimating the species tree under GDL. We show that species trees are identifiable under a standard stochastic model for GDL, and that the polynomial-time algorithm ASTRAL-multi, a recent development in the ASTRAL suite of methods, is statistically consistent under this GDL model. We also provide a simulation study evaluating ASTRAL-multi for species tree estimation under GDL.

Keywords: Species trees • gene duplication and loss • identifiability • statistical consistency • estimation • ASTRAL.

1 Introduction

Phylogeny estimation is a statistically and computationally complex estimation problem, due to heterogeneity across the genome resulting from processes such as incomplete lineage sorting (ILS), gene duplication and loss (GDL), rearrangements, gene flow, horizontal gene transfer, introgression, etc. [19].

Much is known about the problem of estimating species trees in the presence of ILS, as modelled by the Multi-Species Coalescent (MSC) 1531. For example, because the most probable unrooted tree for every four species is the species tree on those species [1], the unrooted species tree topology is identifiable under the MSC from its gene tree distribution, and quartet-based species tree estimation methods that operate by combining gene trees (such as BUCKy-pop 16 and ASTRAL [21|23|37]) are statistically consistent estimators of the unrooted species tree topology (i.e., as the number of sampled genes increases, almost surely the tree returned by these methods will be the true species tree). It is also known that concatenation (whether partitioned or unpartitioned) is not statistically consistent, and can even be positively misleading (i.e., converge to the wrong tree as the number of loci increases) [29|27]. In general, establishing whether a method is statistically consistent or not is important for understanding its performance guarantees.

Yet, correspondingly little has been established about species tree estimation in the presence of GDL. For example, although likelihood-based approaches for species tree estimation have been developed (e.g., PHYLDOG [5), they have not been established to be statistically consistent. Key to understanding the performance of species tree estimation under GDL is whether the species tree topology itself is identifiable from the distribution it defines on the gene trees it generates. However, since gene trees can have multiple copies of each species when gene duplication occurs, this question can be formulated as: "Is the species tree identifiable from the distribution on MUL-trees?", where a MUL-tree is a tree with potentially multiple copies of each species.

In this paper, we prove that unrooted species tree topologies are identifiable from the distribution implied on MUL-trees (Section 3) under the simple GDL model of [2]. Furthermore, we prove that the polynomial-time method ASTRAL-multi [24, a recent variant of ASTRAL designed to enable analyses of datasets with multiple individuals per species, is statistically consistent under this model (Section 3). We also present the results of a simulation study evaluating ASTRAL-multi under this model in comparison to leading species tree estimation methods (Section 4) and close with remarks about future work and implications for large-scale phylogenomic species tree estimation (Section 5).

2 Species tree estimation from gene families

Our input is a collection \mathcal{T} of gene trees representing the inferred evolutionary histories of gene families. In the presence of gene duplication and loss events, such gene trees may be multi-labeled trees (MUL-trees), meaning that the same
species label may be assigned to several gene copies. Our goal is to reconstruct a species tree T over the corresponding set S of species.
$A S T R A L$ We provide theoretical guarantees and empirically validate an approach based on ASTRAL [21] in its variant for multiple alleles [24], which we refer to as ASTRAL-multi. Following [10], the input consists of unrooted MULtrees \mathcal{T} from all gene families, where copies of a gene in a species are treated as multiple alleles within the species.

ASTRAL-multi proceeds as follows. Let S be the set of n species and let R be the set of m individuals. The input are the gene trees $\mathcal{T}=\left\{t_{i}\right\}_{i=1}^{k}$, where t_{i} is labeled by individuals $R_{i} \subseteq R$. For any (unrooted) species tree \tilde{T} labeled by S, an extended species tree $\tilde{T}_{\text {ext }}$ labeled by R is built by adding to each leaf of \tilde{T} all individuals corresponding to that species as a polytomy. The quartet score of \tilde{T} with respect to \mathcal{T} is then

$$
\begin{equation*}
Q_{k}(\tilde{T})=\sum_{i=1}^{k} \sum_{\mathcal{J}=\{a, b, c, d\} \subseteq R_{i}} \mathbf{1}\left(\tilde{T}_{\text {ext }}^{\mathcal{J}}, t_{i}^{\mathcal{J}}\right), \tag{1}
\end{equation*}
$$

where $\mathbf{1}\left(T_{1}, T_{2}\right)$ is the indicator that T_{1} and T_{2} agree and $T_{1}^{\mathcal{J}}$ is the restriction of T_{1} to individuals \mathcal{J}. Run in its exact version (i.e., an unrooted species tree that maximizes the quartet score), ASTRAL-multi is guaranteed to find an optimal solution, but can use exponential time. The default mode, which runs in polynomial time, uses dynamic programming to solve a constrained version of the problem, requiring that the output tree draw its bipartitions from a set Σ of bipartitions that ASTRAL computes on the input, where Σ by construction includes all the bipartitions on S that occur in any gene tree in \mathcal{T}.

3 Theoretical results

In this section, we provide theoretical guarantees for the reconstruction algorithm discussed in Section 2 Specifically, we establish statistical consistency under a standard model of GDL [2]. First we show that the species tree is identifiable.

3.1 Gene duplication and loss model

We assume in this section that gene tree heterogeneity is due exclusively to GDL (and so no ILS) and that the true gene trees are known.
Birth-death process of gene duplication and loss The rooted n-species tree $T=$ (V, E) has vertices V and directed edges E with lengths (in time units) η that depend on the edge. For ease of presentation, we assume that there is a single copy of each gene at the root of T and that the rates of duplication λ and loss μ are fixed throughout T (although our proofs do not use these assumptions). Each gene tree is generated by a top-down birth-death process within the species tree. That is, on each edge, each gene copy independently duplicates at rate λ and is lost at rate μ; at speciation events, each gene copy bifurcates and proceeds similarly in the descendant edges. The resulting gene tree is then pruned of lost copies to give the observed unrooted gene tree t_{i}. The gene trees $\left\{t_{i}\right\}_{i=1}^{k}$ are assumed independent and identically distributed.

3.2 Identifiability of the species tree under the GDL model

We first show that the unrooted species tree is identifiable from the distribution of MUL-trees \mathcal{T} under the GDL model over T. That is, that two distinct species trees necessarily produce different gene tree distributions.

We begin with a quick proof sketch. The idea is to show that, for each 4 -tuple of species $\mathcal{Q}=\{A, B, C, D\}$, the corresponding species quartet topology can be identified by taking an independent uniform random gene copy in each species in \mathcal{Q} and showing that the quartet topology consistent with the species tree is most likely to result in the gene tree restricted to these copies. It should be noted that the proof is not as straightforward as it is under the multispecies coalescent [1], as we explain next. Assume the species tree restricted to \mathcal{Q} is $((A, B),(C, D))$, let R be the most recent common ancestor of \mathcal{Q} in T, and let a, b, c, d be random gene copies in A, B, C, D respectively.

- When all ancestral copies of a, b, c, d in R are distinct, by symmetry all quartet topologies are equally likely.
- When the ancestors of a and b (or c and d) in R are the same, the species quartet topology results.
- However, there are further cases. For example, if the ancestors of a and c in R coincide while being distinct from those of b and d, then the resulting quartet topology differs from that of the species tree.

Hence, one must carefully account for all possible cases to establish that the species quartet topology is indeed likeliest, which we do next. Our argument relies primarily on the symmetries (i.e., exchangeability) of the process.

Theorem 1 (Identifiability). Let T be a species tree with $n \geq 4$ leaves. Then T, without its root, is identifiable from the distribution of MUL-trees \mathcal{T} under the GDL model over T.

Proof. It is known that the unrooted topology of a species tree is defined by its set of quartet trees [3]. Let $\mathcal{Q}=\{A, B, C, D\}$ be four distinct species in T and let $T^{\mathcal{Q}}$ be the species tree restricted to \mathcal{Q}. Assume without loss of generality that the corresponding unrooted quartet topology is $A B \mid C D$. Let t be a MUL-tree generated under the GDL model over T and let $t^{\mathcal{Q}}$ be its restriction to the gene copies from species in \mathcal{Q}. Condition on having at least one gene copy in the species \mathcal{Q}, independently pick a uniformly random gene copy a, b, c, d in species A, B, C, D respectively and let q be the corresponding quartet topology under $t^{\mathcal{Q}}$. We show that the most likely outcome is $q=a b \mid c d$. There are two cases: T is 1) balanced or 2) a caterpillar.

In case 1), let R be the most recent common ancestor of \mathcal{Q} in T and let I be the number of gene copies exiting (forward in time) R. By the law of total probability, $\mathbf{P}^{\prime}[q=a b \mid c d]=\mathbf{E}^{\prime}\left[\mathbf{P}_{I}^{\prime}[q=a b \mid c d]\right]$, where the primes indicate that we are conditioning on having at least one gene copy in each species in \mathcal{Q} and the subscript I indicates conditioning on I. So it suffices to prove

$$
\begin{equation*}
\mathbf{P}_{I}^{\prime}[q=a b \mid c d]>\max \left\{\mathbf{P}_{I}^{\prime}[q=a c \mid b d], \mathbf{P}_{I}^{\prime}[q=a d \mid b c]\right\} \tag{2}
\end{equation*}
$$

almost surely. Let $i_{x} \in\{1, \ldots, I\}$ be the ancestral lineage of $x \in\{a, b, c, d\}$ in R. Then

$$
\begin{align*}
\mathbf{P}_{I}^{\prime}[q=a b \mid c d]=\mathbf{P}_{I}^{\prime}\left[i_{a}\right. & \left.=i_{b}\right]+\mathbf{P}_{I}^{\prime}\left[i_{c}=i_{d}\right]-\mathbf{P}_{I}^{\prime}\left[i_{a}=i_{b}, i_{c}=i_{d}\right] \\
& +\mathbf{P}_{I}^{\prime}\left[q=a b \mid c d \text { and } i_{a}, i_{b}, i_{c}, i_{d} \text { all distinct }\right] . \tag{3}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\mathbf{P}_{I}^{\prime}[q=a c \mid b d] \leq \mathbf{P}_{I}^{\prime} & {\left[i_{b} \neq i_{a}=i_{c} \neq i_{d}\right]+\mathbf{P}_{I}^{\prime}\left[i_{a} \neq i_{b}=i_{d} \neq i_{c}\right] } \\
& +\mathbf{P}_{I}^{\prime}\left[q=a c \mid b d \text { and } i_{a}, i_{b}, i_{c}, i_{d} \text { all distinct }\right] \tag{4}
\end{align*}
$$

and similarly for $\mathbf{P}_{I}^{\prime}[q=a c \mid b d]$, where note that we double-counted the case $i_{a}=i_{c} \neq i_{d}=i_{b}$ to simplify the expression. By symmetry of the GDL process above R (which holds under \mathbf{P}_{I}^{\prime}), the last term on the RHS of (3) and (4) are the same. The same holds for the first two terms on the RHS of (4) this time by the independence and exchangeability of the pairs $\left(i_{a}, i_{b}\right)$ and $\left(i_{c}, i_{d}\right)$ under \mathbf{P}_{I}^{\prime}, which further implies

$$
\begin{aligned}
& \mathbf{P}_{I}^{\prime}[q=a b \mid c d]-\mathbf{P}_{I}^{\prime}[q=a c \mid b d] \\
& \geq \mathbf{P}_{I}^{\prime}\left[i_{a}=i_{b}\right]+\mathbf{P}_{I}^{\prime}\left[i_{c}=i_{d}\right]-\mathbf{P}_{I}^{\prime}\left[i_{a}=i_{b}, i_{c}=i_{d}\right]-2 \mathbf{P}_{I}^{\prime}\left[i_{b} \neq i_{a}=i_{c} \neq i_{d}\right] \\
& =x+y-x y-2(1-x)(1-y) \mathbf{P}_{I}^{\prime}\left[i_{a}=i_{c} \mid i_{a} \neq i_{b}, i_{c} \neq i_{d}\right] \\
& =x+y-x y-2(1-x)(1-y) \frac{1}{I} \equiv h(x, y)
\end{aligned}
$$

where $x=\mathbf{P}_{I}^{\prime}\left[i_{a}=i_{b}\right]$ and $y=\mathbf{P}_{I}^{\prime}\left[i_{c}=i_{d}\right]$.
For fixed $y, h(x, y)$ is linear in x and $h(1, y)=1$. So $h(\cdot, y)$ achieves its minimum at the smallest value allowed for x. The same holds for y. Intuitively, i_{a} and i_{b} are "positively correlated" so $x \geq 1 / I$. We prove this formally next.
Lemma 1. Almost surely, $x, y \geq 1 / I$.
Proof. For $j \in\{1, \ldots, I\}$, let N_{j} be the number of gene copies descending from j in R at the divergence of the most recent common ancestor R^{\prime} of A and B. Upon conditioning on $\left(N_{j}\right)_{j}$, the choice of a and b is independent, with i_{a} and i_{b} being picked proportionally to the corresponding N_{j} 's (i.e., the gene copies in R^{\prime} are equally likely to have given rise to a). By the law of total probability and the fact that the quadratic mean is greater than the arithmetic mean,

$$
\mathbf{P}_{I}^{\prime}\left[i_{a}=i_{b}\right]=\mathbf{E}_{I}^{\prime}\left[\mathbf{P}_{I}^{\prime}\left[i_{a}=i_{b} \mid\left(N_{j}\right)_{j}\right]\right]=\mathbf{E}_{I}^{\prime}\left[\frac{\sum_{j=1}^{I} N_{j}^{2}}{\left(\sum_{j=1}^{I} N_{j}\right)^{2}}\right] \geq \frac{1}{I}
$$

and similarly for $\mathbf{P}_{I}^{\prime}\left[i_{c}=i_{d}\right]$.
Returning to the proof of the theorem, evaluating h at $x, y=1 / I$ gives

$$
h(1 / I, 1 / I)=2 \frac{1}{I}-\frac{1}{I^{2}}-2 \frac{(I-1)^{2}}{I^{3}}=\frac{2 I^{2}-I}{I^{3}}-\frac{2 I^{2}-4 I+2}{I^{3}}=\frac{3 I-2}{I^{3}}>0 .
$$

That establishes (2) in case 1), which implies

$$
\begin{equation*}
\mathbf{P}^{\prime}[q=a b \mid c d]>\max \left\{\mathbf{P}^{\prime}[q=a c \mid b d], \mathbf{P}^{\prime}[q=a d \mid b c]\right\}, \tag{5}
\end{equation*}
$$

as desired. The proof in case 2) can be found in the appendix.
As a direct consequence of our identifiability proof, it is straightforward to establish the statistical consistency of the following pipeline, which we refer to as ASTRAL/ONE (see also [10]): for each gene tree t_{i}, pick in each species a random gene copy (if possible) and run ASTRAL on the resulting set of modified gene trees \tilde{t}_{i}. The proof can be found in the appendix.

Theorem 2 (Statistical Consistency: ASTRAL/ONE). ASTRAL/ONE is statistically consistent under the GDL model. That is, as the number of input gene trees tends toward infinity, the output of ASTRAL/ONE converges to T almost surely, when run in exact mode or in its default constrained version.

3.3 Statistical consistency of ASTRAL-multi under GDL

The following consistency result is not a direct consequence of our identifiability result, although the ideas used are similar.

Theorem 3 (Statistical Consistency: ASTRAL-multi). ASTRAL-multi, where copies of a gene in a species are treated as multiple alleles within the species, is statistically consistent under the GDL model. That is, as the number of input gene trees tends toward infinity, the output of ASTRAL-multi converges to T almost surely, when run in exact mode or in its default constrained version.

Proof. First, we show that ASTRAL-multi is consistent when run in exact mode. The input are the gene trees $\mathcal{T}=\left\{t_{i}\right\}_{i=1}^{k}$ with t_{i} labelled by individuals (i.e., gene copies) $R_{i} \subseteq R$. Then the quartet score of \tilde{T} with respect to \mathcal{T} is given by (1). For any 4 -tuple of gene copies $\mathcal{J}=\{a, b, c, d\}$, we define $m(\mathcal{J})$ to be the corresponding set of species. It was proved in [24] that those \mathcal{J} 's with fewer than 4 species contribute equally to all species tree topologies. As a result, it suffices to work with a modified quartet score

$$
\tilde{Q}_{k}(\tilde{T})=\sum_{i=1}^{k} \sum_{\substack{\mathcal{J}=\{a, b, c, d\} \subseteq R_{i} \\|m(\mathcal{J})|=4}} \mathbf{1}\left(\tilde{T}_{\text {ext }}^{\mathcal{J}}, t_{i}^{\mathcal{J}}\right) .
$$

By independence of the gene trees (and non-negativity), $\tilde{Q}_{k}(\tilde{T}) / k$ converges almost surely to its expectation simultaneously for all unrooted species tree topologies over S.

The expectation can be simplified as

$$
\begin{align*}
\mathbf{E}\left[\frac{1}{k} \tilde{Q}_{k}(\tilde{T})\right] & =\mathbf{E}\left[\sum_{\substack{\mathcal{J}=\{a, b, c, d\} \subseteq R_{i} \\
|m(\mathcal{J})|=4}} \mathbf{1}\left(\tilde{T}_{\text {ext }}^{\mathcal{J}}, t_{1}^{\mathcal{J}}\right)\right] \\
& =\sum_{\mathcal{Q}=\{A, B, C, D\}} \mathbf{E}\left[\sum_{\mathcal{J} \subseteq R_{1}: m(\mathcal{J})=\mathcal{Q}} \mathbf{1}\left(\tilde{T}_{\text {ext }}^{\mathcal{J}}, t_{1}^{\mathcal{J}}\right)\right] . \tag{6}
\end{align*}
$$

Let $\mathcal{N}_{A B \mid C D}^{\mathcal{Q}}\left(\right.$ respectively $\left.\mathcal{N}_{A C \mid B D}^{\mathcal{Q}}, \mathcal{N}_{A D \mid B C}^{\mathcal{Q}}\right)$ be the number of choices consisting of one gene copy in t_{1} from each species in \mathcal{Q} whose corresponding restriction $t_{1}^{\mathcal{Q}}$ agrees with $A B \mid C D$ (respectively $A C|B D, A D| B C$). Then each summand in (6) may be written as $\mathbf{E}\left[\mathcal{N}_{\tilde{T_{\mathcal{Q}}}}^{\mathcal{Q}}\right]$. We establish below that this last expression is maximized at the true species tree $T^{\mathcal{Q}}$, that is,

$$
\begin{equation*}
\mathbf{E}\left[\mathcal{N}_{A B \mid C D}^{\mathcal{Q}}\right]>\max \left\{\mathbf{E}\left[\mathcal{N}_{A C \mid B D}^{\mathcal{Q}}\right], \mathbf{E}\left[\mathcal{N}_{A D \mid B C}^{\mathcal{Q}}\right]\right\} \tag{7}
\end{equation*}
$$

when (without loss of generality) $T^{\mathcal{Q}}=A B \mid C D$. From (6) and the law of large numbers, it will then follow that almost surely the quartet score is eventually maximized by the true species tree as $k \rightarrow+\infty$.

It remains to establish (7). Fix $\mathcal{Q}=\{A, B, C, D\}$ a set four distinct species in T. Assume that the corresponding unrooted quartet topology in T is $A B \mid C D$. Let t_{1} be a MUL-tree generated under the GDL model over T. Again, there are two cases: T is 1) balanced or 2) a caterpillar.

In case 1), let R be the most recent common ancestor of \mathcal{Q} in T and let I be the number of gene copies exiting (forward in time) R. For $j \in\{1, \ldots, I\}$, let \mathcal{A}_{j} be the number of gene copies in A descending from j in R, and similarly define $\mathcal{B}_{j}, \mathcal{C}_{j}$ and \mathcal{D}_{j}. By the law of total probability, $\mathbf{E}\left[\mathcal{N}_{A B \mid C D}^{\mathcal{Q}}\right]=\mathbf{E}\left[\mathbf{E}_{I}\left[\mathcal{N}_{A B \mid C D}^{\mathcal{Q}}\right]\right]$. We show that, almost surely,

$$
\begin{equation*}
\mathbf{E}_{I}\left[\mathcal{N}_{A B \mid C D}^{\mathcal{Q}}\right]>\max \left\{\mathbf{E}_{I}\left[\mathcal{N}_{A C \mid B D}^{\mathcal{Q}}\right], \mathbf{E}_{I}\left[\mathcal{N}_{A D \mid B C}^{\mathcal{Q}}\right]\right\}, \tag{8}
\end{equation*}
$$

which implies (7). By symmetry, we have $X^{=} \equiv \mathbf{E}_{I}\left[\mathcal{A}_{j_{1}} \mathcal{B}_{j_{1}}\right]=\mathbf{E}_{I}\left[\mathcal{A}_{1} \mathcal{B}_{1}\right]$, $Y^{=} \equiv$ $\mathbf{E}_{I}\left[\mathcal{C}_{j_{1}} \mathcal{D}_{j_{1}}\right]=\mathbf{E}_{I}\left[\mathcal{C}_{1} \mathcal{D}_{1}\right], X^{\neq} \equiv \mathbf{E}_{I}\left[\mathcal{A}_{j_{1}} \mathcal{B}_{k_{1}}\right]=\mathbf{E}_{I}\left[\mathcal{A}_{1}\right] \mathbf{E}_{I}\left[\mathcal{B}_{1}\right]$ as well as $Y^{\neq} \equiv$ $\mathbf{E}_{I}\left[\mathcal{C}_{j_{1}} \mathcal{D}_{k_{1}}\right]=\mathbf{E}_{I}\left[\mathcal{C}_{1}\right] \mathbf{E}_{I}\left[\mathcal{D}_{1}\right]$ for all j_{1}, k_{1} with $j_{1} \neq k_{1}$. Hence, the expected number of pairs consisting of a single gene copy from A and B is $X=I X^{=}+$ $I(I-1) X^{\neq}$. Arguing similarly to (3) and (4),

$$
\begin{aligned}
& \mathbf{E}_{I}\left[\mathcal{N}_{A B \mid C D}^{\mathcal{Q}}\right]-\mathbf{E}_{I}\left[\mathcal{N}_{A C \mid B D}^{\mathcal{Q}}\right] \\
& \quad \geq\left(I X^{=}\right) Y+X\left(I Y^{=}\right)-\left(I X^{=}\right)\left(I Y^{=}\right)-I(I-1) X^{\neq}\left[2(I-1) Y^{\neq}\right] \\
& \quad=X Y\left[x+y-x y-2(1-x)(1-y) \frac{1}{I}\right]
\end{aligned}
$$

where here we define $x=\frac{I X^{=}}{X}, y=\frac{I Y^{=}}{Y}$. Following the argument in the proof of Theorem [1] to establish (8) it suffices to show that almost surely, $x, y \geq 1 / I$. That is implied by the following positive correlation result.

Lemma 2. Almost surely, $X^{=} \geq X^{\neq}$.
Indeed, we then have:

$$
x=\frac{I X^{=}}{I X=+I(I-1) X^{\neq}} \geq \frac{I X^{=}}{I X^{=}+I(I-1) X^{=}}=\frac{1}{I} .
$$

Proof (Lemma 2). For $j \in\{1, \ldots, I\}$, let N_{j} be the number of gene copies at the divergence of the most recent common ancestor of A and B that are descending from j in R. Then, for $j \in\{1, \ldots, I\}$, since \mathcal{A}_{j} and \mathcal{B}_{j} are conditionally independent given $\left(N_{j}\right)_{j}$ under \mathbf{E}_{I}, it follows that

$$
X^{=}=\mathbf{E}_{I}\left[\mathbf{E}_{I}\left[\mathcal{A}_{j} \mathcal{B}_{j} \mid\left(N_{j}\right)_{j}\right]\right]=\mathbf{E}_{I}\left[\left(N_{j} \alpha\right)\left(N_{j} \beta\right)\right]=\alpha \beta \mathbf{E}_{I}\left[N_{j}^{2}\right]
$$

where α (respectively β) is the expected number of gene copies in A (respectively B) descending from a single gene copy in the most recent common ancestor of A and B under \mathbf{E}_{I}. Similarly, for $j \neq k \in\{1, \ldots, I\}$,

$$
X^{\neq}=\mathbf{E}_{I}\left[\mathbf{E}_{I}\left[\mathcal{A}_{j} \mathcal{B}_{k} \mid\left(N_{j}\right)_{j}\right]\right]=\mathbf{E}_{I}\left[\left(N_{j} \alpha\right)\left(N_{k} \beta\right)\right] \leq \alpha \beta \mathbf{E}_{I}\left[N_{j}^{2}\right]
$$

by Cauchy-Schwarz.
We establish (8) in case 2) in the appendix. Thus, ASTRAL-multi is statistically consistent when run in exact mode, because it is guaranteed to return the optimal tree, and that is realized by the species tree. To see why the default version of ASTRAL-multi is also statistically consistent, note that the true species tree will appear as one of the input gene trees, almost surely, as the number of MUL-trees sampled tends to infinity. Furthermore, when this happens, then the true species tree bipartitions are all contained in the constraint set Σ used by the default version. Hence, as the number of sampled MUL-trees increases, almost surely ASTRAL-multi will return the true species tree topology.

4 Experiments

We performed a sequence of experiments to evaluate ASTRAL-multi and other methods for species tree estimation on multi-locus datasets. Due to space constraints, we briefly describe the study here, and provide details and full commands sufficient to reproduce the study in the Appendix.

We evaluated methods on simulated datasets based on the 16 -taxon fungal dataset studied in [10 25. We used this fungal dataset to construct a model species tree, on which we generated gene trees using SimPhy [20] under three GDL rates (the lowest of which is the one selected by [25] to reflect the fungal dataset, so that the higher two reflect more challenging conditions). The branch lengths in the gene trees were rescaled by random values to deviate from the strict molecular clock, and then used to generate sequences using Indelible [13] under GTR+GAMMA models selected using these data. Estimated gene trees were obtained on the true gene sequence alignment using RAxML [30]. By varying the sequence length for each gene alignment, we varied the gene tree estimation
error (GTEE), measured using the normalized Robinson-Foulds (RF) error rate [26] between true and estimated gene trees. We evaluated accuracy using the normalized RF error rate between true and estimated species trees.

In our first experiment, we explored ASTRAL-multi on both true and estimated gene trees (Fig. 11). ASTRAL-multi was very accurate on true gene trees: even with just 25 true gene trees, the average species tree error was less than 1% when the GDL rate was one of the two lower rates $\left(1 \times 10^{-10}\right.$ or $\left.2 \times 10^{-10}\right)$ and was less than 6% for the highest level of GDL. As expected, ASTRAL-multi error increased with GTEE and decreased with the number of genes.

In our second experiment, we evaluated five different species tree estimation methods (ASTRAL-multi, ASTRID [33], DupTree [35], MulRF 7], and STAG [12]) on estimated gene trees at one sequence length, which produced average gene tree estimation error (GTEE) of about 53%. As seen in Figure 2 , error rates for all methods increased with the GDL rates and decreased with the number of genes. ASTRID had the lowest accuracy of all methods, and was most impacted by increases in GDL rate. Under all three GDL rates, ASTRAL and MulRF were the most accurate, with a small advantage to MulRF for lower numbers of genes. Finally, STAG was unable to run on some datasets when the level of GDL was high and the number of genes was low; this result was due to STAG using only genes that contain all the species, which fails to be true for many gene trees simulated under the highest GDL rate.

Fig. 1. ASTRAL-multi on true and estimated gene trees generated from the fungal species tree (16 taxa) under a GDL model using three different rates (subplot rows). Estimated gene trees had four different levels of gene tree estimation error (GTEE), by varying the sequence length (subplot columns). We report the average Robinson-Foulds (RF) error rate between the true and estimated species trees. There are 10 replicate datasets per model condition. Red dots indicate means, and bars indicated medians.

Fig. 2. Average RF tree error rates of species tree methods on estimated gene trees (mean GTEE: 53%) generated from the fungal 16 -taxon species tree using three different GDL rates (subplot rows) and different numbers of genes (subplot columns). STAG failed to run on some replicate datasets for model conditions indicated by "NA", because none of the input gene trees included at least one copy of every species.

5 Discussion and Conclusion

This study establishes the identifiability of species trees under a GDL model, and also establishes that ASTRAL-multi is statistically consistent under this model. We also show that ASTRAL-multi is highly accurate and competitive with other leading methods on both true and estimated gene trees. Finally, the two most accurate methods on these datasets were MulRF and ASTRALmulti, with a slight advantage of MulRF over ASTRAL-multi for low numbers of genes. The results in this study can be compared to the previous study by Chaudhary et al. [6], who also evaluated species tree estimation methods under GDL models, and found that MulRF and gene tree parsimony methods had better accuracy than NJst [18] (a method that is similar to ASTRID). Their study has an advantage over our study in that it explored larger datasets (up to 500 species), but they did not consider ASTRAL, and all their genes evolved under a strict molecular clock. Another study [10] evaluated ASTRAL-multi on true gene trees, and found it had very high accuracy. Overall, our study is the first study to explore ASTRAL-multi on estimated gene trees.

These results were limited to model conditions with only 16 species, with one underlying species tree topology. Previous studies [34] have shown that MulRF (which uses a heuristic search strategy to find solutions to its NP-hard optimization problem) is much slower than ASTRAL on large datasets, suggesting that

ASTRAL may dominate MulRF in practice as the number of species increases. Hence, future studies should investigate ASTRAL-multi and other methods under a broader range of conditions, and in particular with larger numbers of species. Future research should also evaluate empirical performance and statistical consistency under a variety of causes for gene tree heterogeneity.

We note with interest that the proof that ASTRAL-multi is statistically consistent is based on the fact that the most probable unrooted gene tree on four leaves (according to two ways of defining it) under the GDL model is the true species tree (equivalently, there is no anomaly zone for the GDL model for unrooted four-leaf trees). This coincides with the reason ASTRAL is statistically consistent under the MSC as well as under a model for random HGT [28]8]. Furthermore, previous studies have shown that ASTRAL has good accuracy in simulation studies where both ILS and HGT are present [9]. Hence ASTRAL, which was originally designed for species tree estimation in the presence of ILS, has good accuracy and theoretical guarantees under different sources of gene tree heterogeneity.

We also note the surprising accuracy of both DupTree and MulRF, methods that, like ASTRAL, are not based on likelihood under a GDL model. Therefore, DynaDup [22]4] is also of potential interest, as it is similar to DupTree in seeking a tree that minimizes the duploss score (though the score is modified to reflect true biological loss), but has the potential to scale to larger datasets via its use of dynamic programming to solve the optimization problem in polynomial time within a constrained search space. In addition, other methods could also be explored, including more computationally intensive methods such as InferNetwork_ML and InferNetwork_MPL (maximum likelihood and maximum pseudo-likelihood methods in PhyloNet 3236) restricted so that they produce trees rather than reticulate phylogenies, or PHYLDOG [5], a Bayesian method for co-estimation of gene trees and the species tree under a GDL model.

6 Acknowledgments

This study was supported in part by NSF grants CCF-1535977 and 1513629 (to TW) and by the Ira and Debra Cohen Graduate Fellowship in Computer Science (to EKM). SR was supported by NSF grants DMS-1614242, CCF-1740707 (TRIPODS), and DMS-1902892, as well as a Simons Fellowship and a Vilas Associates Award. BL was supported by NSF grant DMS-1614242 (to SR). This study was performed on the Illinois Campus Cluster and the Blue Waters supercomputer, computing resources that are operated and financially supported by UIUC in conjunction with the National Center for Supercomputing Applications. Blue Waters is supported by the NSF (grants OCI-0725070 and ACI-1238993) and the state of Illinois.

References

1. Allman, E.S., Degnan, J.H., Rhodes, J.A.: Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent. Journal of Mathematical Biology 62(6), 833-862 (2011). https://doi.org/10.1007/s00285-010-0355-7
2. Arvestad, L., Lagergren, J., Sennblad, B.: The gene evolution model and computing its associated probabilities. J. ACM 56(2) (2009)
3. Bandelt, H.J., Dress, A.: Reconstructing the shape of a tree from observed dissimilarity data. Advances in Applied Mathematics 7(3), 309 - 343 (1986). https://doi.org/10.1016/0196-8858(86)90038-2
4. Bayzid, M.S., Warnow, T.: Gene tree parsimony for incomplete gene trees: addressing true biological loss. Algorithms for Molecular Biology 13(1), 1 (2018). https://doi.org/10.1186/s13015-017-0120-1
5. Boussau, B., Szöllősi, G.J., Duret, L., Gouy, M., Tannier, E., Daubin, V.: Genomescale coestimation of species and gene trees. Genome Research 23(2), 323-330 (2013). https://doi.org/10.1101/gr.141978.112
6. Chaudhary, R., Boussau, B., Burleigh, J.G., Fernández-Baca, D.: Assessing approaches for inferring species trees from multi-copy genes. Systematic Biology 64(2), 325-339 (2015). https://doi.org/10.1093/sysbio/syu128, http://dx.doi.org/ 10.1093/sysbio/syu128
7. Chaudhary, R., Fernández-Baca, D., Burleigh, J.G.: MulRF: a software package for phylogenetic analysis using multi-copy gene trees. Bioinformatics 31(3), 432-433 (2014). https://doi.org/10.1093/bioinformatics/btu648
8. Daskalakis, C., Roch, S.: Species trees from gene trees despite a high rate of lateral genetic transfer: A tight bound (extended abstract). In: Proceedings of the TwentySeventh Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 1621-1630 (2016). https://doi.org/10.1137/1.9781611974331.ch110
9. Davidson, R., Vachaspati, P., Mirarab, S., Warnow, T.: Phylogenomic species tree estimation in the presence of incomplete lineage sorting and horizontal gene transfer. BMC Genomics 16(10), S1 (2015). https://doi.org/10.1186/1471-2164-16-S10S1
10. Du, P., Hahn, M.W., Nakhleh, L.: Species tree inference under the multispecies coalescent on data with paralogs is accurate. bioRxiv (2019). https://doi.org/10.1101/498378
11. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32(5), 1792-1797 (2004). https://doi.org/10.1093/nar/gkh340
12. Emms, D., Kelly, S.: STAG: Species tree inference from all genes. bioRxiv (2018). https://doi.org/10.1101/267914
13. Fletcher, W., Yang, Z.: INDELible: A Flexible Simulator of Biological Sequence Evolution. Molecular Biology and Evolution 26(8), 1879-1888 (2009). https://doi.org/10.1093/molbev/msp098
14. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O.: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology 59(3), 307-321 (2010). https://doi.org/10.1093/sysbio/syq010
15. Kingman, J.F.C.: The coalescent. Stochastic processes and their applications 13(3), 235-248 (1982). https://doi.org/10.1016/0304-4149(82)90011-4
16. Larget, B.R., Kotha, S.K., Dewey, C.N., Ané, C.: BUCKy: Gene Tree/Species Tree Reconciliation with Bayesian Concordance Analysis. Bioinformatics 26(22), 29102911 (2010). https://doi.org/10.1093/bioinformatics/btq539
17. Lefort, V., Desper, R., Gascuel, O.: FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program. Molecular Biology and Evolution 32(10), 2798-2800 (2015). https://doi.org/10.1093/molbev/msv150
18. Liu, L., Yu, L.: Estimating Species Trees from Unrooted Gene Trees. Systematic Biology 60(5), 661-667 (2011). https://doi.org/10.1093/sysbio/syr027
19. Maddison, W.: Gene Trees in Species Trees. Systematic Biology 46(3), 523-536 (1997). https://doi.org/10.1093/sysbio/46.3.523
20. Mallo, D., De Oliveira Martins, L., Posada, D.: SimPhy: Phylogenomic simulation of gene, locus, and species trees. Systematic Biology 65(2), 334-344 (2016). https://doi.org/10.1093/sysbio/syv082
21. Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S., Warnow, T.: ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30(17), i541-i548 (2014). https://doi.org/10.1093/bioinformatics/btu462
22. Mirarab, S.: Github page for DynaDup, software for species tree estimation from rooted gene trees under gene duplication and loss, last accessed October 3, 2019
23. Mirarab, S., Warnow, T.: ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31(12), i44i52 (2015). https://doi.org/10.1093/bioinformatics/btv234
24. Rabiee, M., Sayyari, E., Mirarab, S.: Multi-allele species reconstruction using ASTRAL. Molecular Phylogenetics and Evolution 130, 286-296 (2019). https://doi.org/10.1016/j.ympev.2018.10.033
25. Rasmussen, M.D., Kellis, M.: Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome Research 22(4), 755-765 (2012). https://doi.org/10.1101/gr.123901.111
26. Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Mathematical Biosciences 53(1), 131-147 (1981). https://doi.org/10.1016/0025-5564(81)90043-2
27. Roch, S., Nute, M., Warnow, T.: Long-branch attraction in species tree estimation: Inconsistency of partitioned likelihood and topology-based summary methods. Systematic Biology 68(2), 281-297 (2018). https://doi.org/10.1093/sysbio/syy061
28. Roch, S., Snir, S.: Recovering the treelike trend of evolution despite extensive lateral genetic transfer: a probabilistic analysis. J. Comput. Biol. 20(2), 93-112 (2013). https://doi.org/10.1089/cmb.2012.0234, http://dx.doi.org.ezproxy.library. wisc.edu/10.1089/cmb.2012.0234
29. Roch, S., Steel, M.: Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. Theoretical Population Biology 100, 56-62 (2015). https://doi.org/10.1016/j.tpb.2014.12.005
30. Stamatakis, A.: RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics $\mathbf{3 0}(9)$ (2014). https://doi.org/10.1093/bioinformatics/btu033
31. Takahata, N.: Gene genealogy in three related populations: consistency probability between gene and population trees. Genetics 122(4), 957-966 (1989)
32. Than, C., Ruths, D., Nakhleh, L.: PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9(1), 322 (2008). https://doi.org/10.1186/1471-2105-9-322
33. Vachaspati, P., Warnow, T.: ASTRID: Accurate Species TRees from Internode Distances. BMC Genomics 16(10), S3 (2015). https://doi.org/10.1186/1471-2164-16-S10-S3
34. Vachaspati, P., Warnow, T.: FastRFS: fast and accurate Robinson-Foulds Supertrees using constrained exact optimization. Bioinformatics 33(5), 631-639 (2016). https://doi.org/10.1093/bioinformatics/btw600
35. Wehe, A., Bansal, M.S., Burleigh, J.G., Eulenstein, O.: DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics 24(13), 1540-1541 (2008). https://doi.org/10.1093/bioinformatics/btn230
36. Wen, D., Yu, Y., Zhu, J., Nakhleh, L.: Inferring phylogenetic networks using PhyloNet. Systematic Biology 67(4), 735-740 (2018). https://doi.org/10.1093/sysbio/syy015
37. Zhang, C., Rabiee, M., Sayyari, E., Mirarab, S.: ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19(6), 153 (2018). https://doi.org/10.1186/s12859-018-2129-y

A Additional proofs

A. 1 Proof of Theorem 1; case 2)

In case 2), assume that $T^{\mathcal{Q}}=(((A, B), C), D)$, let R be the most recent common ancestor of A, B, C (but not $D)$ in $T^{\mathcal{Q}}$, and let I be the number of gene copies exiting R. As in case 1), it suffices to prove (2) almost surely. Let $i_{x} \in\{1, \ldots, I\}$ be the ancestral lineage of $x \in\{a, b, c\}$ in R. Then

$$
\begin{equation*}
\mathbf{P}_{I}^{\prime}[q=a b \mid c d]=\mathbf{P}_{I}^{\prime}\left[i_{a}=i_{b}\right]+\mathbf{P}_{I}^{\prime}\left[q=a b \mid c d \text { and } i_{a}, i_{b}, i_{c} \text { all distinct }\right] . \tag{9}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\mathbf{P}_{I}^{\prime}[q=a c \mid b d]=\mathbf{P}_{I}^{\prime}\left[i_{b} \neq i_{a}=i_{c}\right]+\mathbf{P}_{I}^{\prime}\left[q=a c \mid b d \text { and } i_{a}, i_{b}, i_{c} \text { all distinct }\right], \tag{10}
\end{equation*}
$$

with a similar result for $\mathbf{P}_{I}^{\prime}[q=a d \mid b c]$. By symmetry again, the last term on the RHS of (9) and (10) are the same. This implies

$$
\begin{aligned}
& \mathbf{P}_{I}^{\prime}[q=a b \mid c d]-\mathbf{P}_{I}^{\prime}[q=a c \mid b d] \\
& =\mathbf{P}_{I}^{\prime}\left[i_{a}=i_{b}\right]-\mathbf{P}_{I}^{\prime}\left[i_{b} \neq i_{a}=i_{c}\right] \\
& =x-(1-x) \mathbf{P}_{I}^{\prime}\left[i_{a}=i_{c} \mid i_{a} \neq i_{b}\right] \\
& =x-(1-x) \frac{1}{I} \equiv g(x),
\end{aligned}
$$

where $x=\mathbf{P}_{I}^{\prime}\left[i_{a}=i_{b}\right]$. This function g attains its minimum value at the smallest possible of x, which by Lemma 1 is $x=1 / I$. Evaluating at $x=1 / I$ gives

$$
g(1 / I)=\frac{1}{I}-\frac{1}{I}+\frac{1}{I^{2}}=\frac{1}{I^{2}}>0
$$

which establishes (2) in case 2).

A. 2 Proof of Theorem 2

First, we prove consistency for the exact version of ASTRAL. The input to the ASTRAL/ONE pipeline is the collection of gene trees $\mathcal{T}=\left\{t_{i}\right\}_{i=1}^{k}$, where t_{i} is labeled by individuals (i.e., gene copies) $R_{i} \subseteq R$. For each species and each gene tree t_{i}, we pick a uniform random gene copy, producing a new gene tree \tilde{t}_{i}. Recall that the quartet score of \tilde{T} with respect to $\tilde{\mathcal{T}}=\left\{\tilde{t}_{i}\right\}_{i=1}^{k}$ is then

$$
Q_{k}(\tilde{T})=\sum_{i=1}^{k} \sum_{\mathcal{J}=\{a, b, c, d\} \subseteq R_{i}} \mathbf{1}\left(\tilde{T}_{e x t}^{\mathcal{J}}, \tilde{t}_{i}^{\mathcal{J}}\right) .
$$

We note that the score only depends on the unrooted topology of \tilde{T}. Under the GDL model, by independence of the gene trees (and non-negativity), $Q_{k}(\tilde{T}) / k$ converges almost surely to its expectation simultaneously for all unrooted species tree topologies over S.

For a species $A \in S$ and gene tree \tilde{t}_{i}, let A_{i} be the gene copy in A on \tilde{t}_{i} if it exists and let \mathcal{E}_{i}^{A} be the event that it exists. For a 4 -tuple of species $\mathcal{Q}=\{A, B, C, D\}$, let $\mathcal{Q}_{i}=\left\{A_{i}, B_{i}, C_{i}, D_{i}\right\}$ and $\mathcal{E}_{i}^{\mathcal{Q}}=\mathcal{E}_{i}^{A} \cap \mathcal{E}_{i}^{B} \cap \mathcal{E}_{i}^{C} \cap \mathcal{E}_{i}^{D}$. The expectation can then be written as

$$
\begin{equation*}
\mathbf{E}\left[\frac{1}{k} Q_{k}(\tilde{T})\right]=\sum_{\mathcal{Q}=\{A, B, C, D\}} \mathbf{E}\left[\mathbf{1}\left(\tilde{T}_{e x t}^{\mathcal{Q}_{1}}, \tilde{t}_{1}^{\mathcal{Q}_{1}}\right) \mid \mathcal{E}_{1}^{\mathcal{Q}}\right] \mathbf{P}\left[\mathcal{E}_{1}^{\mathcal{Q}}\right], \tag{11}
\end{equation*}
$$

as, on the event $\left(\mathcal{E}_{1}^{\mathcal{Q}}\right)^{c}$, there is no contribution from \mathcal{Q} in the sum over the first sample.

Based on the proof of Theorem 11, a different way to write $\mathbf{E}\left[1\left(\tilde{T}_{\text {ext }}^{\mathcal{Q}_{1}}, \tilde{t}_{1}^{\mathcal{Q}_{1}}\right) \mid \mathcal{E}_{1}^{\mathcal{Q}}\right]$ is in terms of the original gene tree t_{1}. Let a, b, c, d be random gene copies on t_{1} in A, B, C, D respectively. Then if q is the topology of t_{1} restricted to a, b, c, d,

$$
\mathbf{E}\left[\mathbf{1}\left(\tilde{T}_{e x t}^{\mathcal{Q}_{1}}, \tilde{1}_{1}^{\mathcal{Q}_{1}}\right) \mid \mathcal{E}_{1}^{\mathcal{Q}}\right]=\mathbf{P}^{\prime}\left[q=\tilde{T}^{\mathcal{Q}^{\mathcal{1}}}\right] .
$$

From (5), we know that this expression is maximized (strictly) at the true species tree $\mathbf{P}^{[}\left[q=T^{\mathcal{Q}}\right]$. Hence, together with (11) and the law of large numbers, almost surely the quartet score is eventually maximized by the true species tree as $k \rightarrow+\infty$. This completes the proof for the exact version.

The default version is statistically consistent for the same reason as in the proof of Theorem 3. As the number of MUL-trees sampled tends to infinity, the true species tree will appear as one of the input gene trees almost surely. So ASTRAL returns the true species tree topology almost surely as the number of sampled MUL-trees increases.

A. 3 Proof of Theorem 3; case 2)

In case 2), assume that $T^{\mathcal{Q}}=(((A, B), C), D)$ and let R be the most recent common ancestor of A, B, C (but not D) in T. We want to establish (8) in this case. For $i=1,2,3$, let $\mathcal{N}_{A B \mid C D}^{\mathcal{Q},\{i\}}$ (respectively $\mathcal{N}_{A C \mid B D}^{\mathcal{Q},\{i\}}$) be the number of choices consisting of one gene copy from each species in \mathcal{Q} whose corresponding restriction on $t^{\mathcal{Q}}$ agrees with $A B \mid C D$ (respectively $A C \mid B D$) and where, in addition, copies of A, B, C descend from i distinct lineages in R. We make five observations:

- Contributions to $\mathcal{N}_{A B \mid C D}^{\mathcal{Q},\{2\}}$ necessarily come from copies in A and B descending from the same lineage in R, together with a copy in C descending from a distinct lineage and any copy in D. Similarly for $\mathcal{N}_{A C \mid B D}^{\mathcal{Q},\{2\}}$
- Moreover $\mathcal{N}_{A C \mid B D}^{\mathcal{Q},\{1\}}=0$ almost surely, as in that case the corresponding copies from A and B coalesce (backwards in time) below R.
- Arguing as in the proof of Theorem [1, by symmetry we have the equality $\mathbf{E}_{I}\left[\mathcal{N}_{A B \mid C D}^{\mathcal{Q},\{3\}}\right]=\mathbf{E}_{[}\left[\mathcal{N}_{A C \mid B D}^{\mathcal{Q},\{3\}}\right]$.
- For $j \in\{1, \ldots, I\}$, let \mathcal{A}_{j} be the number of gene copies in A descending from j in R, and similarly define $\mathcal{B}_{j}, \mathcal{C}_{j}$. Let \mathcal{D} be the number of gene copies in D. Then, under the conditional probability $\mathbf{P}_{I}, \mathcal{D}$ is independent of $\left(\mathcal{A}_{j}, \mathcal{B}_{j}, \mathcal{C}_{j}\right)_{j=1}^{I}$. Moreover, under $\mathbf{P}_{I},\left(\mathcal{C}_{j}\right)_{j=1}^{I}$ is independent of $\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)_{j=1}^{I}$.
- Similarly to case 1), by symmetry we have $X^{=} \equiv \mathbf{E}_{I}\left[\mathcal{A}_{j_{1}} \mathcal{B}_{j_{1}}\right]=\mathbf{E}_{I}\left[\mathcal{A}_{1} \mathcal{B}_{1}\right]$, $X^{\neq} \equiv \mathbf{E}_{I}\left[\mathcal{A}_{j_{1}} \mathcal{B}_{k_{1}}\right]=\mathbf{E}_{I}\left[\mathcal{A}_{1}\right] \mathbf{E}_{I}\left[\mathcal{B}_{1}\right]$ for all j_{1}, k_{1} with $j_{1} \neq k_{1}$. Define also $X=I X^{=}+I(I-1) X^{\neq}, Y \equiv \mathbf{E}_{I}\left[\mathcal{C}_{1}\right]$ and $Z \equiv \mathbf{E}_{I}[\mathcal{D}]$.

Putting these observations together, we obtain

$$
\begin{aligned}
& \mathbf{E}_{I}\left[\mathcal{N}_{A B \mid C D}^{\mathcal{Q}}\right]-\mathbf{E}_{I}\left[\mathcal{N}_{A C \mid B D}^{\mathcal{Q}}\right] \\
& \quad=\mathbf{E}_{I}\left[\mathcal{N}_{A B \mid C D}^{\mathcal{Q},\{1\}}\right]+\mathbf{E}_{I}\left[\mathcal{N}_{A B \mid C D}^{\mathcal{Q},\{2\}}\right]-\mathbf{E}_{I}\left[\mathcal{N}_{A C \mid B D}^{\mathcal{Q},\{2\}}\right] \\
& \quad=I X^{=} Y Z+I(I-1) X^{=} Y Z-I(I-1) X^{\neq} Y Z \\
& \quad>0,
\end{aligned}
$$

where we used Lemma 2 on the last line.

B SimPhy Simulation

Here we describe the simulation of gene trees from a species tree under a model of GDL. Our protocol is based on the simulation study by 10 that uses a biological datasets (16 species of fungi) from [25]. We simulated gene trees with different rates of GDL from the species tree estimated by Rasmussen and Kellis [25] (download: http://compbio.mit.edu/dlcoal/pub/config/fungi.stree); note the estimated species tree has branch lengths in millions years (myr) and the estimated number of generations is 10 per year. SimPhy requires an ultrametric species tree with branch lengths in generations, so we multiplied each branch length by 10^{7} (i.e., assuming 10 generations per year) and made some minor modifications to the branch lengths so that the tree would be ultrametric using a custom Python script. Below is the Newick string for the species tree that we gave to SimPhy (height: $1,800,000,337.5$ generations).

$$
\begin{aligned}
& (()(()(, \text { scer }: 70617600.0, \text { spar }: 70617600.0): 49996800.0, \text { smik } \\
& : 120614400.0): 59706000.0, \text { sbay }: 180320400.0): 526823100.0, \text { cgla }: \\
& 707143500.0): 72206550.0, \text { scas }: 779350050.0): 231815475.0,(\text { (agos } \\
& : 785532600.0, \text { klac }: 785532600.0): 104349600.0, \text { kwal }: 889882200.0): \\
& 121283325.0): 788834812.5,(((\text { calb }: 412758000.0, \text { ctro }: 412758000.0 \\
&): 296329500.0,(\text { cpar:523231200.0, lelo }: 523231200.0): 185856300.0): \\
& 311495850.0,((\text { cgui }: 756158400.0, \text { dhan }: 756158400.0): 140068800.0, \\
& \text { clus }: 896227200.0): 124356150.0): 779416987.5) ;
\end{aligned}
$$

After updating the species tree, we ran SimPhy Version 1.0 .2 with the command:

```
simphy-1.0.2-mac64 -rs 10 -rl F:1000 -rg 1 -s $stre -si F:1 \
    -sp F:$size -su F:0.0000000004 -sg F:10 -lb F:$rate \
    -ld F:lb -hg LN:1.5,1 -o <output directory> -ot 0 \
    -om 1 -od 1 -op 1 -oc 1 -ol 1 -v 3 -cs 293745 &> <log file>
```

where $\$$ stree is the species tree (Newick string above), $\$$ size is the population size $\left(1 \times 10^{7}\right)$, and $\$$ rate is the duplication and loss rate (either 1×10^{-10}, 2×10^{-10}, or 5×10^{-10}).

Note that the tree-wide effective population size (-sp), the tree-wide substitution rate (-su), the duplication rate (-lb), and the loss rate (-1 d) are the same parameters used by [10]; these parameters (with GDL rate of 1×10^{-10}) are similar to those estimated from the biological dataset by [25].

Unlike in the simulation performed by [10], we did not enable gene conversion, and we allowed gene trees to deviate from a molecular clock by using gene-by-lineage-specific rate heterogeneity modifiers (-hg), meaning that for each gene tree, a gamma distribution was defined for each gene tree by drawing α drawn from a log-normal distribution with a location of 1.5 and a scale of 1 (same parameters as [37), and then each branch in a gene tree is multiplied by a value drawn the gamma distribution corresponding to that gene tree. In summary, there were three model conditions, characterized by the three GDL rates; each of these model conditions had 10 replicate datasets.

Table 1. SimPhy Simulation Summary. For datasets with duplications and losses, the gene trees can differ from the species tree due to gene duplication and loss as well as incomplete lineage sorting; however, the gene trees differ from the locus trees due to incomplete lineage sorting only. We quantified the level of ILS by evaluating the locus-to-gene tree discord; specifically, we computed Robinson-Foulds distance between the each true locus tree and its respective true gene tree (which are on the same leaf set), averaging this value across all 1000 locus/gene trees. In this table, we show the average (\pm standard deviation) locus-to-gene tree discord across the 10 replicate datasets for each model condition; note that these values are all less than 1%, so there is effectively no incomplete lineage sorting in these simulated datasets. We also report the average (\pm standard deviation) number of taxa per locus/gene tree as well as the average (\pm standard deviation) number of leaves per locus/gene tree. Because the duplication and loss rates are equal, the number of leaves per locus/gene tree is close to the number of leaves in the species tree. As the duplication/loss rate increase, the number of species per locus/gene tree decreases, and thus, even though locus/gene trees have the same number of leaves on average, these leaves are labeled by fewer species as the duplication/loss rate increase.

Duplication/Loss Rate	Locus-to-Gene Tree Discord	Number of taxa per locus/gene tree	Number of leaves per locus/gene tree
1×10^{-10}	$0.20 \% \pm 0.03 \%$	13.61 ± 0.09	16.09 ± 0.14
2×10^{-10}	$0.37 \% \pm 0.07 \%$	12.02 ± 0.12	16.36 ± 0.14
5×10^{-10}	$0.68 \% \pm 0.14 \%$	9.20 ± 0.10	17.42 ± 0.25

C INDELible Simulation

Here we describe the simulation of multiple sequence alignments for each model gene tree produced by SimPhy under the GTR $+\Gamma$ model of evolution. Our protocol is also based on the fungi dataset from Rasmussen and Kellis [25] (http://compbio.mit.edu/dlcoal/pub/data/real-fungi.tar.gz), containing a multiple sequence alignment estimated using MUSCLE [11] and a maximum likeli-
hood tree estimated using PhyML [14 for each of the 5,351 genes. We estimated GTR $+\Gamma$ model parameters for each of the PhyML gene tree by running RAxML Version 8.2.12 [30] with the following command:

```
raxmlHPC-SSE3 -m GTRGAMMA -f e -t <PhyML gene tree file> \
    -s <MUSCLE alignment file> -n <output name>
```

We then fit distributions to the GTR $+\Gamma$ model parameters estimated from alignments with greater than or equal to 500 distinct alignment patterns and less than or equal to 25% gaps. Finally, for each model gene tree, we drew GTR $+\Gamma$ model parameters drawn from these distributions and then simulated a multiple sequence alignment (1000 base pairs) using INDELible Version 1.03 [13. Note that GTR base frequences (A, C, G, T) were drawn from Dirchlet ($113.48869,69.02545,78.66144,99.83793$), GTR substitution rates (AC, AG, AT, CG, CT, GT) were drawn from Dirchlet(12.776722, 20.869581, 5.647810 $9.863668,30.679899,3.199725)$, and α was drawn from LogNormal(-0.470703916 , 0.348667224), where the first parameter is the meanlog and the second parameter is the sdlog.

C. 1 Gene Tree Estimation

On gene trees with 4 or more species, we estimated gene trees using RAxML Version 8.2.12 with the command:

```
raxmlHPC-SSE3 -m GTRGAMMA -p <random seed> -n <output name> \
    -s <alignment file>
```

Sequences were truncated to the first $25,50,100$, and 250 base pairs to produce datasets with varying levels of gene tree estimation error (GTEE). Sequence lengths of $25,50,100$, and 250 resulted in average (\pm standard deviation) GTEE of $65 \% \pm 18 \%, 53 \% \pm 18 \%, 39 \% \pm 17 \%, 23 \% \pm 15 \%$ respectively. GTEE was measured as the normalized Robinson-Foulds (RF) distance between the true and the estimated gene tree.

C. 2 Species Tree Estimation

We estimated species trees using either the first $25,50,100$, or 500 (true or estimated) gene trees.

ASTRAL Version 5.6.3 was run with the command:

```
java -Xms2000M -Xmx20000M -jar astral.5.6.3.jar -i <gene tree file> \
    -a <species to gene name map file> -o <output file> &> <log file>
```

ASTRID Version 2.2.1 (No Java) was run with the command:

```
./ASTRID -i <gene tree file> -a <species to gene name map file> \
    -o <output file> &> <log file>
```

Note that even for the highest level of GDL (i.e., 5×10^{-10}) and the lowest number of genes (i.e., 25), there was no missing data in the average gene tree internode distance matrix, so ASTRID ran FastME to construct the species tree. DupTree (download: http://genome.cs.iastate.edu/CBL/DupTree/linux-i386.tar. gz) was run with the command:

```
./duptree -i <gene tree file> -o <output file> &> <log file>
```

MulRF Version 2.1 was run with the command:

```
./MulRFSupertreeLin -i <gene tree file> \
    -o <output file> &> <log file>
```

STAG (download:https://github.com/davidemms/STAG) was run with the command:

```
python stag.py <species to gene name map file> \
    <gene tree folder> &> <log file>
```

STAG requires FastME [17] as a dependency, and we used Version 2.1.5 of FastME. Importantly, STAG only uses gene trees that include at least one copy of every species. When the level of GDL was high (i.e., 5×10^{-10}), STAG failed to run on $3 / 10$ replicates with 25 genes and $2 / 10$ replicates on 50 genes, because there were no gene trees that included at least one copy of every species; we do not show results using STAG for those model conditions.

Custom Python scripts were used to format the input gene trees for each species tree method; scripts and datasets will be made available on the Illinois Data Bank upon acceptance.

