Abstract
Phylogenomics—the estimation of species trees from multilocus datasets—is a common step in many biological studies. However, this estimation is challenged by the fact that genes can evolve under processes, including incomplete lineage sorting (ILS) and gene duplication and loss (GDL), that make their trees different from the species tree. In this paper, we address the challenge of estimating the species tree under GDL. We show that species trees are identifiable under a standard stochastic model for GDL, and that the polynomial-time algorithm ASTRAL-multi, a recent development in the ASTRAL suite of methods, is statistically consistent under this GDL model. We also provide a simulation study evaluating ASTRAL-multi for species tree estimation under GDL. All scripts and datasets used in this study are available on the Illinois Data Bank: https://doi.org/10.13012/B2IDB-2626814_V1.
Footnotes
{roch{at}math.wisc.edu, blegried{at}math.wisc.edu}
{warnow{at}illinois.edu, emolloy2{at}illinois.edu}
The experimental rseults have been updated, as the earlier version used a buggy version of ASTRID-multi.