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One approach to precision medicine is to discover drugs that target molecularly defined 

diseases. Voluminous cancer patient gene expression profiles have been accumulated in public 

databases, enabling the creation of a cancer-specific expression signature. By matching this 

signature to perturbagen-induced gene expression profiles from large drug libraries, researchers 

can prioritize small molecules that present high potency to reverse expression of signature 

genes for further experimental testing of their efficacy. This approach has proven to be an 

efficient and cost-effective way to identify efficacious drug candidates. However, the success of 

this approach requires multiscale procedures, imposing significant challenges to many labs. 

Therefore, we present OCTAD: an open workplace for virtually screening compounds targeting 

precise cancer patient groups using gene expression features. We release OCTAD as a web 

portal and standalone R workflow to allow experimental and computational scientists to easily 

navigate the tool. In this work, we describe this tool and demonstrate its potential for precision 

medicine. 
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Introduction 

Many cancers are understudied because they are rare or of little public interest, such as Ewing 

sarcoma, a rare pediatric cancer 1, and hepatocellular carcinoma (HCC), a common adult 

malignancy in Asia, but an orphan disease in the U.S 2. As the field of precision medicine 

progresses and we start to tailor treatments for cancer patients classified by their clinical and 

molecular features such as MYC amplification and PIK3CA mutation, an increased amount of 

cancer subtypes is emerging. The effect of each understudied cancer or cancer subtype in 

healthcare may be limited, but the cumulative effects of all these diseases could be profound. 

Ewing sarcoma is one of over 6000 rare diseases in the U.S., affecting about 2.9 per million1, 

while all rare diseases affect an estimated 25 million people in the U.S3.  HCC affects less than 

200,000 people in the U.S but is the cause of half a million deaths annually worldwide  2. One 

common research challenge for these diseases is that the resources allocated to them are 

relatively limited. Compared to common conditions, the large-scale screening of compounds is 

often challenging, if not impossible, to perform in small labs due to limited resources. The 

decreasing cost of sequencing enables the generation of gene expression, such as RNA-Seq, 

profiles of understudied cancer patient samples. Integrating these profiles with the increasing 

amount of other available open data (BOX 1) provides tremendous opportunity to 

computationally identify new potential therapeutic candidates. 

 Like many other investigators 4–9, we utilized a systems-based approach that employs 

gene expression profiles of disease samples and drug-induced gene expression profiles from 

cancer cell lines to predict new therapeutic candidates for HCC 7, Ewing sarcoma 8, and basal 

cell carcinoma 9. A disease signature is defined as a list of differentially expressed genes 

between disease samples and control samples (i.e., normal tissues). The essential idea is to 

identify drugs that reverse the gene expression signature of a disease by tamping down over-

expressed genes and stimulating weakly expressed ones.  In the Ewing sarcoma study, this 
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systems-approach achieved a hit rate of >50% in predicting effective candidates 8. In the HCC 

study, we identified deworming pills as therapeutic candidates for HCC and demonstrated that 

the expression of disease genes was reversed in a clinically relevant mouse model after drug 

treatment 7. The recent pan-cancer analysis demonstrated that the reversal of cancer gene 

expression correlates to drug efficacy 10. Compared to the commonly used target-based drug 

discovery approach that focuses on interfering with individual targets, this systems-approach 

aims to target a list of critical features of the disease (Figure S1). The previous studies 

suggested that this efficient and cost-effective approach could be explored to virtually screen 

novel compounds or repurposing drugs using existing drug libraries such as LINCS L1000 10–12.  

 

We have shown that the success of this approach is made possible by multiscale procedures, 

such as quality control of tumor samples, selection of appropriate reference normal tissues, 

evaluation of disease signatures, and integration of drug expression profiles from multiple cell 

lines. For example, the scarcity of adjacent normal tissues for many cancers (e.g., pediatric 

brain cancers) prevents the creation of disease gene expression signatures using traditional 

methodologies 13. In TCGA, an adult cancer genomic database, less than half of cancers have 

at least 10 adjacent normal tissues. In the pediatric cancer genomic database TARGET, none of 

cancers have at least 10 adjacent normal tissues. Among these tumor tissues, a substantial 

number of tissues are impure, leading to a significant bias in the subsequent genomic analysis, 

including disease signature creation 14,15. There is a plethora of relevant datasets and analysis 

modules that are publicly available, yet are isolated in distinct silos making it tedious or even 

impossible to implement this approach in translational research for many labs. In this work, we 

describe in detail how these resources and data types can be used as well as challenges with the 

process. Further, we introduce our publicly-available framework and workflow, the Open Cancer 

TherApeutic Discovery (OCTAD), to streamline the various computational tasks required for the drug 

discovery. We make OCTAD available both as a standalone software package in R for 
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bioinformaticians as well as a web server resource for investigators without a coding background. 

We further go through sample protocols detailing the power of our approach and the novel aspects 

that enable more refined prediction methods. We demonstrate the consistency of the results 

between the new version and our previously published HCC work, and the feasibility of using the 

new version to predict candidates for MYC amplification lung adenocarcinoma and PIK3CA mutation 

breast cancer. 

 

BOX 1: Public data sources and repositories  

Results from laboratory experiments push scientific knowledge forward, but the raw data generated 

are also of particular importance. By releasing raw data into an open repository, scientists break 

their work out of a silo and facilitate further research and reproducibility efforts 1,2. For instance, other 

researchers can re-analyze or combine data from many experiments into meta-analyses not 

possible with each study in isolation. This is especially important for experiments involving rare 

diseases or uncommonly used cell or tissue types in which data are scarce. Here, we detail a few 

key open repositories for both disease and drug data. 

 The Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) from NCBI is a 

public functional genomics data repository, consisting of over three million samples from over 

110,000 studies as of September 2019. ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) is 

another functional genomics dataset that have over 55 TB of data from over 70,000 experiments as 

of September 2019. The Immunology Database and Analysis Portal (ImmPort; www.immport.org) is 

a collection of immunology-related studies with genomics and clinical outcome measurements. The 

Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov) is a compilation of cancer-related 

genomics data and outcomes. The Genomics Data Commons Portal (GDC: 

https://portal.gdc.cancer.gov/) organizes and harmonizes TCGA data and consists of over 350,000 

files from about 33,000 cases of 69 Primary Site cancers (Data Release 13.0). The Cancer Cell Line 

Encyclopedia (CCLE; https://portals.broadinstitute.org/ccle) details genetic and pharmacologic 

properties of human cancer cell line models. As of November 2018, CCLE has data for 1,457 cell 
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lines comprised of over 136,000 data sets. Met500 is a resource profiling whole exome and 

transcriptome data from 500 adult patients with metastatic solid tumors of various lineages and 

biopsy site16. The Treehouse Childhood Cancer Initiative (https://treehousegenomics.soe.ucsc.edu/) 

is a resource that collects and distributes genomic and clinical data related to childhood cancers and 

contains over 11,000 tumor samples. The Genotype-Tissue Expression (GTEx; 

https://gtexportal.org/home/) contains genotype and expression data for almost 12,000 samples 

across 53 tissues from over 700 healthy donors (version V7). 

 For drug-related data, Connectivity Map (CMap; https://www.broadinstitute.org/connectivity-

map-cmap and https://clue.io/cmap) from the Broad Institute is a large database of chemical 

perturbations on various cell lines. Specifically, CMap contains data on transcriptional expression 

changes due to administration of various chemical compounds on various cell lines. To scale this 

project up, CMap evolved into the Library of Network-Based Cellular Signatures (LINCS; 

http://www.lincsproject.org/) project, where a “landmark gene set” or L1000 of a 978 gene panel has 

been used to characterize combinations of 41,847 small molecules, and 75 cell lines. 

OCTAD pipeline  

Overview of OCTAD 

The system includes four main components: OCTAD Dataset, OCTAD Core, OCTAD Desktop, 

and OCTAD Portal (Figure 1a). OCTAD Dataset stores all sample expressions, processed using 

Toil 17. OCTAD core includes all R functions needed for all analysis. OCTAD Desktop is an R 

markdown file which can run in a regular laptop. Its customized functions allow computational 

biologists performing more advanced analysis (Figure 1b). OCTAD portal is a front-end based 

on Python Flask and HTML5, supported by the back-end OCTAD core. We developed a simple 

four-step strategy to allow scientists without any programming skills to easily perform drug 
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candidate predictions (Figure 1c). We opted to use Python Flask and HTML5, as the portal uses 

advanced features such as sample visualization, job management, and parallel computing. 

 

Figure 1: Systems description. (a) system design, (b) workflow for drug prediction, and (c) web 

portal screenshot.  

 

OCTAD Dataset:  To minimize the batch effect from multiple studies, we use the same pipeline 

Toil developed by UCSC to process all raw RNA-Seq profiles. We estimated transcript 

abundance estimated from STAR 3 and RSEM 4. Because the UCSC Treehouse initiative has 

already used this pipeline to process samples publicly available, we use their processed 

samples and extend this pipeline to process new samples. This pipeline was verified in our 
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recent studies 5,6. Any new samples from the major RNA-Seq repositories including GEO, 

dbGAP, and EBI EGA can be easily processed by our pipeline. We have included samples from 

TCGA, TARGET, GTEx, and Met50, totaling 19,128 samples covering 40 cancer types (Figure 

2, Table 1). When possible, we also collected their clinical (e.g., age, gender) and molecular 

features (e.g., mutation status) that allow the selection of a specific set of disease samples. In 

addition to tissue samples, we compiled 66,612 compound gene expression profiles consisting 

of 12,442 distinct compounds profiled in 71 cell lines (with 83% of the measurements made 

primarily in 15 cell lines), using data downloaded from the LINCS consortium. Each profile 

includes the expression measurement of 978 ‘landmark genes’. The changes in the expression 

of these landmark genes were computed after compounds were tested in different 

concentrations (62% of the measurements were made in conditions under 10 μM) for 24 h 

(49%) or 6 h 10.  

 

Figure 2: OCTAD cancer maps  
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Table 1: Patient sample statistics 

Tissue Type 

Database Normal Adjacent Primary Recurrent Metastatic n 

St. Jude 

HGG 

0 0 66 0 0 66 

GTEx 7412 0 0 0 0 7412 

MET500 0 0 0 0 387 387 

TARGET 0 11 602 120 1 734 

TCGA 0 726 9366 44 393 10529 

Total 7412 737 10034 164 781 19128 

 

 

Disease signature creation: A disease gene expression signature is defined as a list of 

differentially expressed genes between a specific set of case samples and matched reference 

normal samples. Because of the dearth of matched adjacent normal tissues, we seek to 

leverage normal tissue samples from GTEx, a repository of tissue samples from healthy 

individuals. However, the technical variation between multiple resources and the high 

dimensional features makes the selection of normal samples challenging. Accordingly, we utilize  

new features encoded by deep learning (DL) autoencoder to select highly correlated normal 

samples given a set of disease samples as we demonstrated in our prior work 13.  With two 
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groups of samples, standard differential expression analysis methods (e.g., edgeR 18, Limma 

Voom19) could be performed, followed by enrichment analysis using enrichR 20.  

 

Reversal of cancer expression: In our earlier studies, we quantified the reversal of disease gene 

expression as RGES (Reversal Gene Expression Score), a measure modified from the 

connectivity score developed in other studies 4,21. To compute RGES score, we first rank genes 

based on their expression values in each drug signature. An enrichment score/s for each set of 

up- and down-regulated disease genes are computed separately using a Kolmogorov–Smirnov-

like statistic, followed by the merge of scores from both sides (up/down). The score is based on 

the amount to which the genes (up or down-regulated) at either the top or bottom of a drug-gene 

list ranked by expression change after drug treatment.  One compound may have multiple 

available expression profiles due to having been tested in various cell lines, drug 

concentrations, treatment durations, or even different replicates, resulting in multiple RGES for 

one drug-disease prediction. Therefore, we developed a summarization method to mitigate bias 

and to compute a score representative of the overall reversal potency of a compound to a 

particular cancer. We termed this score summarized RGES (sRGES) 10. We set a reference 

condition (i.e., concentration of 10 um, treatment duration of 24 hours) and used a model to 

estimate a new RGES if the drug profile under the reference condition was not available. We 

then weighted the RGES by the degree of correlation between the gene expression profiles of 

the disease and the cell line in which the compound was tested. We demonstrated that sRGES 

is correlated to drug efficacy (measured by IC50) and such correlation is retained even when 

the disease is not represented by cell lines of its own lineage in the drug expression databases. 

The analyses suggested the feasibility of applying this approach for large-scale screening of 

compounds for a given disease signature.      
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CAUTION 

Generation of sRGES using ranked genes rather than absolute magnitude is currently 

the superior approach. Previous attempts to use any form of absolute expression 

magnitude have resulted in less robust results. While computing sRGES, restricting 

the cell lines to the cancer of the same lineage used by LINCS L1000 causes 

significant loss in the number of drugs evaluated and has not been shown to improve 

specificity of results. 

 

 

Hit prediction and selection: Previous drug-repositioning efforts only considered a couple of 

thousand FDA-approved drugs with more potential to translate into the clinic, leaving over 

10,000 compounds in LINCS unused for a broad chemical space for discovery (Figure 3a). 

Including those unused compounds may increase the chance of discovering novel compounds.  

Among these compounds, 14% are commercially available in ZINC 7, one of the largest 

collections of commercially available compounds (Figure 3b). An additional 5% of compounds 

are structurally similar to ZINC compounds (Similarity > 0.9), leaving more than 80% 

compounds that are not directly purchasable (Figure 3b). According to synthetic accessibility 

scores 8, 70% of these inaccessible compounds can be easily synthesized (Figure 3c). This 

protocol added a number of enrichment analyses of drug hits including enriched MeSH terms, 

protein targets, and chemical scaffolds. MeSH pharmacological classification and protein targets 

of LINCS compounds were retrieved from PubChem 9 and ChEMBL10, respectively (Figure 

3d,e).  Chemical scaffolds of LINCS compounds are created using RDkit (see Supplementary 

Material) 11. We expect such information will facilitate the selection of representative compounds 

which could be quickly obtained for testing. 
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Figure 3. OCTAD compounds. (a) t-SNE plot of LINCS L1000 compounds colored by synthetic 

accessibility. This dataset covers both the traditional drug-like chemical space (purple dots) and 

novel chemotypes (green dots). (b) Reagent accessibility (in stock: available in ZINC, similar in 

stock: structurally similar to the compounds in ZINC, easy to synthesize: synthetic accessibility 

score < 4, and hard to synthesize: synthetic accessibility score >= 4), (c) Synthetic accessibility 

score distribution, (d) Mesh Pharmacological classification distribution, (e) Compound target 

distribution (compound targets were retrieved from ChEMBL).  

 

Selection of cell lines: We rank-transformed gene RPKM values for each CCLE cell line and 

then ranked all the genes according to their rank variation across all CCLE cell lines. The 1,000 

most-varied genes were kept as “marker genes” (we tried different gene sizes in the early 

preliminary analysis and did not find the large variation of results, so we decided to choose 

1,000 most-varied genes in this study). Given RNA-Seq profiles of a cell line and several patient 
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samples, we compute spearman rank correlation (across the 1,000 marker genes) between the 

cell line and each sample and the median value of computed spearman rank correlation values 

was defined as the transcriptome-similarity of the cell line with the patient samples.  

 

 

Overview of OCTAD Desktop and Web portal 

 

To enable users to make use of our pipeline, we release both a freely available and open source 

web portal and workflow in a computational pipeline. The web portal runs many of the OCTAD core 

functions in the backend but requires no programming expertise. It allows users to perform all parts 

of the pipeline including selecting case and control samples, performing differential expression 

analysis to generate a disease signature, and finally generating drug candidates. To make the 

process as efficient as possible, users can register for the web server and the various parts of the 

pipeline can be saved as jobs which will be saved for future visit. The web server is interactive and 

produces informative plots and tables that users can interact with and download. The web server 

also incorporates some, but not all, advanced features of the pipeline including auto-encoder 

recommended control sample selection. The full set of features of the web server can be found in 

both the Procedure section as well as the Supplementary Materials.  

The desktop version can not only perform all of the above components but also provides 

more flexibility and features.  The computational pipeline is built in the R framework and incorporates 

publicly available Bioconductor and R packages for processing and analyses. We provide a 

breakdown of the R pipeline in the Procedure section and Supplementary Materials. 

  

Availability 

The web portal can be used by anyone without the need for extensive domain knowledge or 

programming expertise. Users with genetics and molecular biology knowledge will find the results 

highly interpretable. In order to use the desktop version, a user will need to have basic skills in R, 
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Bioconductor packages, and knowledge of genomics data. The source codes are available in GitHub 

(Desktop version: https://github.com/Bin-Chen-Lab/octad_desktop; portal: https://github.com/Bin-

Chen-Lab/octad_portal). The web portal is available at http://octad.org. 

 

Alternative Methods 

The related datasets and analysis modules are publicly available yet isolated in distinct silos.  

Genomic data of cancer patients could be searched and visualized in platforms such as cBioPortal 

27, Oncoscape2 8, TumorMap 29. Massive RNA-Seq samples are processed by platforms such as 

Treehouse 17, Rcount 30, and ARCHS 31. Disease signatures could be created by R packages such 

as edgeR 18 and DESeq 32. A comprehensive enrichment analysis of disease signatures could be 

performed in Enrichr 20 and DAVID 33. Given a disease signature, clue.io could predict drug hits 

using LINCS data 12. To be able to predict drugs using public RNA-Seq profiles, researchers have to      

use different platforms and utilize various tools to accomplish the task. To address this issue, we 

developed a portal to streamline this process. We provide an agile desktop version that allows 

computational scientists to customize the code, and a web portal version that allows bench scientists 

and clinicians to easily navigate and predict drug hits. 

 

There are also a number of existing web resources, tools, and applications that can perform 

somewhat similar procedures and analyses. Rnama (https://rnama.com) is a freely available web 

application that allows for meta-analysis of publicly available RNA data, seamlessly extracted from 

GEO. Comparing case and control groups can be interactively performed which results in an 

interactive plot of differentially expressed genes. DEBrowser is an R shiny based package that 

creates an interactive dashboard to facilitate differential expression analysis and visualization of 

RNA count data 34. Users can upload their own data and the application allows for multiple QC steps 

and visualization. DrugSig is a web resource that allows for prioritizing potential drug repurposing 
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opportunities, allowing for users to submit up- and down-regulated genes from pre-computed 

disease differential expression profiles 35.  RE:fine drugs is an interactive dashboard that pre-

calculates potential drug repurposing opportunities combining information from previously published 

GWAS and PheWAS results 36. Users can search for a drug name, disease name, or gene symbol to 

see suggestions based on these levels of evidence. DeSigN is an interactive web tool that allows for 

prediction of drug efficacy against cancer cell lines 37. In this application, users can enter a list of up-

regulated and down-regulated genes to be compared against IC50 values to prioritize potential 

drugs. Drug Gene Budger is a web tool and mobile app to interactively rank drugs to modulate user-

specified genes based on transcriptomic profiles 38. Here, users can search for a specific gene and 

the tool prioritizes drugs to either up- or down-regulate them using CMAP, L1000, or CREEDS data. 

While the aforementioned tools and applications are indeed useful, none can perform the full gambit 

of steps necessary for this process. Further, the flexibility of our application, the incorporation and 

integration of multiple datasets, along with enhancements and incorporation of novel methodologies 

(e.g., autoencoder reference normal sample identification) makes OCTAD truly a unique and 

powerful resource.  

 

There are also many other computational resources and repositories that demonstrate the power of 

drug repurposing. The Drug Repurposing Hub contains an app that allows for dynamic search and 

exploration of annotated information pertaining to over 8,000 compounds including targets, 

mechanism of action, and even vendor information 12.  RepurposeDB 39 and repoDB 40 collect and 

curate information about known drug repurposing experiments. These, together with studies from 

other researchers, demonstrate the feasibility of applying a systems approach to screen drug hits in 

cancers.  
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Advantages, Limitations and Future Directions 

Our pipeline has several advantages. First, OCTAD covers nearly 20,000 open RNA-Seq 

samples from multiple sources processed in the same computational pipeline so that any 

pipeline effect is minimized. Coupling with the robust control sample selection module makes it 

possible to predict drugs for cancers or cancer subtypes with no empiric controls. Second, the 

one-stop drug prediction web portal allows clinicians and bench scientists who may not have 

sufficient programming expertise to run the various computational tasks necessary to prioritize 

drug hits for further experimental validation. Third, the flexible desktop-based R package allows 

advanced users to perform customized drug discovery computation. Fourth, collected molecular 

and clinical samples enable precise stratification of patient samples and prediction of drug 

candidates for subsets of patients. Fifth, our unique deep learning-based models enable 

appropriate selection of normal samples. Finally, an optimal outcome is generated thanks to the 

rigorous quality control in each step (i.e., in silico validation of drug hits). 

 

Despite these advantages of OCTAD, a few issues remain to address in future versions. First, 

the application is limited by the quality and structure of the input data, and some data sources 

provide more information than others, which restricts search functionality. For instance, TCGA 

provides a much more comprehensive coverage of clinical and molecular features than many 

individual studies. Similarly, these various datasets have different nomenclatures in which 

phenotypes and diseases are characterized. In future iterations, we will perform more intensive 

harmonization of these labels using common data model ontologies. For now, users will have to 

curate their selections based on necessity, but the application provides the framework to do so. 

Additionally, this pipeline is only focused on cancer. We envision this application could extend 

easily to other phenotypes. In future iterations of the web application, we will allow for more 

seamless integration of data from other sources and repositories, like GEO, SRA, EBI EGA, and 
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Treehouse. Furthermore, OCTAD utilizes only one repurposing methodology. Last but not least, 

as with all drug repurposing in silico exploration, predictions will have to go through extensive 

biological and clinical validation experiments in order to verify utility and efficacy.  

 

With the rapid advances of omics technologies, we envision that the system that we develop will 

greatly facilitate the use of other OMICS data (proteins, metabolites, single cells) in future 

therapeutic discovery. As indicated, identifying therapeutic treatments involves multiple biological 

systems and, as such, it is only natural that the drug discovery or repurposing process should 

involve multiple data types across domains. The types of data that exist to broadly assess 

therapeutics with phenotype are vast and cross several biological domains. These include, but are 

not limited to, genome, transcriptome, proteome, metabolome, epigenome, and microbiome. In the 

space of drug discovery and repurposing, it is important to not only look at these domains across 

different cell types and tissues, but also under different time points and conditions, particularly when 

exposed to drugs. There are also many models in which to perform such experiments, including 

animals (e.g., rodent, zebrafish), cell lines, organoids, xenografts, and tissues. 

 

Materials 

For web server (http://octad.org): Developed and tested in Google Chrome.  

 

For desktop version (https://github.com/Bin-Chen-Lab/octad_desktop): 

● R v.3.5.0 or newer (https://www.r-project.org)  

● RStudio (https://www.rstudio.com/) 

● Download dataset from https://s3-us-west-2.amazonaws.com/chenlab-data-public/octad 

 

Required Hardware for desktop version:  
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● Computer with ≥ 16GB RAM and at least 4 available CPU cores. 

● Hard drive with ≥ 50GB free. 

● A stable broadband internet connection. 

 

Procedure  

 

CRITICAL 

Note that an example workflow RMD and results can be found in the GitHub repository. It is highly 

recommended to tailor the workflow document to your needs rather than attempting to use any 

functions independently. 

 

 

Desktop version  

We illustrate the utility of the Desktop pipeline by highlighting a use-case for HCC: we provide code 

and data for investigating differential expression, pathway enrichment, drug prediction and hit 

selection, and in silico validation using an external dataset. In the Code folder of the Github directory 

you will find hcc_aenormal.Rmd. In this workflow, we will select case tissue samples from our 

compiled TCGA data and compute control tissues from the GTEx data. 

 

Note that our compiled data also contains adjacent normal TCGA HCC samples which can also 

serve as control tissues. However, we decided not to use them in our example to demonstrate more 

workflow features. Explanation of our functions can also be found in the supplement.  
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Setup 

Download code and data 

The project folder layout should include code and data. The code can be downloaded from 

https://github.com/Bin-Chen-Lab/octad_desktop/tree/master/Code. Data can be downloaded from 

https://s3-us-west-2.amazonaws.com/chenlab-data-public/octad (share in S3).  

 

Install required libraries 

A script to install required R packages can be found on the Chen Lab GitHub (https://github.com/Bin-

Chen-Lab/octad_desktop/tree/master/Code).  

 

Setup folders  

The folder setup should resemble the below: 

“~/desktop_pipeline/” 

“~/desktop_pipeline/code/” 

“~/desktop_pipeline/data/” 

“~/desktop_pipeline/results/” 

 

Variables “outputFolder”, “dataFolder”, and “CodeFolder” are required variables to indicate the R 

markdown file where the outputs should be stored, where the data is stored, and where the codes 

are stored, respectively. When using the provided workflow RMD, they are set automatically after a 

user changes the “base.folder” variable. 

 

Load Data 

 

These are the data that we compiled: 
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● metadata.RData: contains R elements: 'ensemble_info', 'merged_gene_info', 

'breastpam50', 'tsne', and 'phenoDF' 

● CCLE_OCTAD.RData: contains all R variables necessary for cell line evaluation step 

● encoderDF_AEmodel1.RData: matrix generated with AutoEncoder for control selection 

● random_gsea_score.RData: precomputed random gsea scores for faster enrichment 

analysis with increased power 

● cmpd_sets_chembl_targets.RData 

● cmpd_sets_ChemCluster_targets.RData 

● cmpd_sets_mesh.RData 

● cmpd_sets_sea_targets.RData 

● repurposing_drugs_20170327.csv: compiled list of FDA-approved drugs 

● octad.h5: contains gene expression data as log2 count and log2 tpm. 

● lincs_sig_info.csv 

● lincs_signatures_cmpd_landmark.RData 

 

 

Differential Expression 

Select Case 

 

CRITICAL STEP 

The case_id and control_id variables must be simple character vectors containing sample IDs which 

match those found in metadata and expression data. They are most easily generated by subsetting the 

metadata matrix “phenoDF”, but advanced users may assemble them using other means. 

 

Phenotype data contains tissue types such as normal, adjacent, primary, recurrent, or metastatic 

cancer. We will select for primary hepatocellular carcinoma. The code as below: 
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phenoDF_case  <- phenoDF %>% filter(cancer == ‘Liver Hepatocellular Carcinoma’, sample.type == 

‘primary’, data.source == ‘TCGA’) 

case_id        <- phenoDF_case$sample.id 

 

The sample ids for these cancer will be stored into the variable case_id.  

 

This code can be easily modified to select other cancers, or to select for mutation subtypes. We 

include mutation data in the datasets we provide, so it would be simple to filter cancer based on 

mutation status such as TP53 or MYC mutations. 

 

CAUTION 

Selected cases and controls are the two most important factors in achieving the best results when 

using this pipeline. There are several methods included in the provided code which evaluate controls 

relative to cases, but there are no built-in validation steps which evaluate cases. Each group of cases 

needs to be evaluated individually for validity by the investigator. 

 

 

Select Control 

 

In this workflow, we will compute correlating normal tissues from GTEx using encoded features of 

our dataset and the computeRefTissue function as below.  

 

normal_id = (phenoDF %>% filter(data.source == 'GTEX'))$sample.id 
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The pool of normal ids which will be drawn from to compute controls will be stored into the variable 

normal_id. 

 

Control_id <- computeRefTissue(case_id = case_id, normal_id = normal_id, expSet = dz_expr, 

control_size = 50) 

The default output of this function is to select the 50 top samples from the normal_id with the pool 

that has the highest median correlation to the case samples. The sample ids for control tissues will 

be stored into the variable control_id. 

Figure 4a shows the top 50 tissues highlighted in red that has the highest median correlation. The 

tsne distribution of case and control are highlighted in Figure 4b. 

Differential Expression 

Differential expression can be computed via edgeR, limma, or DESeq2. In our file we compute using 

edgeR. Since this function computes differentially expressed genes between case_id and control_id 

within the same data matrix, this can be used to find differentially expressed genes between any two 

groups.  

 

res = diffExp(case_id = case_id, control_id = control_id, expSet = dz_expr, normalize_samples = T, 

DE_method = ‘edgeR’) 

 

CAUTION 

To use a pre-computed differential expression signature, make sure it follows the precise format of the 

example dz_signature.csv. 

 

Batch Normalization 
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In the RMD code chunk we set normalize_samples = T which utilizes RUVSeq to mitigate batch 

effects 41. The options k, ntop_genes, are parameters used for RUVSeq and are only needed if 

normalize_samples is set to true. These options are used to compute an empirical set of control 

genes via edgeR. We suggest batch normalization when using heterogeneous samples e.g. TCGA 

cancers and GTEx normals as these will produce more conservative results.  The disease signature 

is visualized in a heatmap (Figure 4c). 

 

CAUTION 

Default hyperparameters were found to produce the best results in a handful of validation cases. These 

should be evaluated for appropriateness with each new case. 

 

 

sRGES 

 

The runsRGES function is used to compute the drugs that potentially reverses the disease 

signature. The code below shows to filter for significant genes by filtering for low p adjusted values 

and high log fold change values.  

dz_signature <- res %>% filter(padj < 0.001, abs(log2FoldChange) > 2) 

runsRGES(dz_signature = dz_signature) 

Note that in the runsRGES code requires use of our compiled LINCS1000 perturbation database. 

Since LINCS1000 only measures 978 genes, the disease signature are genes in the differential 

expression which overlaps with in the 978 genes of LINCS. The runsRGES will compute any 

dz_signature output that was generated by our diffExp function. Figure 4d is a sample output of 

drugs that are predicted either in clinical trials or launched.  
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CAUTION 

Final results include no significance scores. Using sRGES lower than -0.2 is a method found to 

produce the best results in a handful of validation cases. There is currently no known superior way to 

compare hits to aid in lead optimization. Similarly, comparing the magnitude of sRGES results across 

runs is inappropriate. 

 

Validate Results with CTRP (optional) 

As the pharmacogenomic database CTRPv2 consists of efficacy data of 481 drugs in 860 cancer 

cell lines 43. We leverage it for further in silico validation of our predictions, even without running any 

biological experiments. We used the HepG2 cell lines to validate our sRGES list. In our previous 

work, we’ve shown that RGES scores correlate with drug efficacy such as AUC or IC50 12. We 

model a simple regression to quickly validate our analysis (Figure 4e). Note that we generally use 

this analysis to optimize the pipeline for our disease of interest by changing various 

hyperparameters.  

 

Drug enrichment (optional) 

After calculation of sRGES on the L1000 compound dataset, drug enrichment analysis is used to 

summarize the result. The goal of this is to summarize and discover compounds that belong to a 

certain class, e.g. anti-inflammatories, EGFR inhibitors, dipines. We combined L1000 drugs into lists: 

MESH, CHEMBL, and CHEM_CLUSTER for MeSH term enrichment, target enrichment, and 

chemical structure enrichment, respectively. The enrichment score was calculated using ssGSEA 44. 

Figure 4f shows the enrichment of Antimetabolites, Antineoplastics in the prediction and Figure S2 

lists these compounds. 

 

This analysis provides much information for following candidate selection and experiment design. 

First, selecting candidates from the same enriched class (i.e., MeSH term, target) are more likely to 

be true positive candidates than random selection from the top list (Figure S2). Second, when the 
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ideal candidate is not available, it’s reasonable to choose an alternative from the same class. 

Sometimes, it is necessary to choose a new drug for testing (e.g., a second generation of one 

inhibitor for the same target). Lastly, since many compounds have multiple MOAs, this analysis 

would help interpret the MOA of promising compounds.  

 

Figure 4: Screen compounds targeting female luminal A breast cancer. (a) correlation between 

luminal A breast cancer tumor samples and all samples from normal organs. Highly correlated 
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samples (colored by red) were selected as control. (b) Distribution of selected samples in cancer 

map. (c) Disease signature visualization. (d) Top compounds that reverse the disease signature. (e) 

correlation between sRGES (predicted score) and drug efficacy data in vitro, and (f) enriched drug 

class. Drugs belonging to the Antimetabolite, Antineoplastic class are represented as black bars. 

 

Web Server version  

 

Portal Landing Page/Log-in 

At the landing page, users can either create a new account, login to their existing account, or go 

straight to creating a job (Figure 5). While having an account is not required to initiate the job, 

we recommend setting one up as it will save all active and past jobs. User account settings can 

be accessed on the top right of the header. Once in the main portal, a user’s Job History can be 

found in the tab on the side menu. Here, all jobs are listed and include information pertaining to 

disease of interest, status (e.g., Completed, In Progress, etc), creation time, as well as the 

ability to view and download all output. Users can also delete previous jobs. At the bottom of the 

screen, the details of the current job can be found by clicking the Summary button, the current 

job can be saved clicking the Save button, and navigating forward or backwards in the process 

can be done by clicking the Previous and Next buttons respectively. 

 

Creating a New Job: Hepatocellular Carcinoma 

Creating a job is separated into four sections: Case, Control, Disease Signature, and Drugs. In 

this procedure, we will go through all steps along with expected output. We will highlight 

hepatocellular carcinoma as our featured example. 
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Case Selection 

Upon entering the Case section, all samples available from all included database resources 

(see Materials; n =19,128) are displayed in a table at the bottom of the page, including: cancer 

type (Cancer), site of derivation (Site), and whether it is metastatic (Type and Metastatic Site 

columns). The user is able to interact with this table such as searching in the top right and 

viewing more information about the samples by clicking the green “+” button under More Info, 

which shows information like patient demographics and status for certain mutations. Users can 

manually select samples to include as well by selecting the check box at the left of the sample 

row. 

To begin a job, we can search for cancers of interest in the search box at the top of the 

page besides Disease Name, and multiple diseases can be selected. Users are then able to 

further refine their search by adding filters (e.g., Gender, Tissue Type, certain mutation status), 

which automatically update the selected samples below. Lastly, as before, samples can be 

manually added and removed by checking or unchecking rows in the table respectively. We can 

begin our search by typing “hepatocellular carcinoma” into the Disease Name search box and 

choose the corresponding option. Without any other filters added, we are left with 421 samples. 

We can proceed to select Control samples in the next section by clicking the Next button on the 

bottom of the screen. 

 

Control Selection 

After we click compute control samples, the portal will ask for if adjacent samples should be 

included if available and the number of control samples should choose. The portal will 

recommend control samples automatically. By using the DL method as recommended, we are 

left with 50 samples. These Control samples are highlighted along with the Case samples from 

before on the box plot against all other normal samples. Depending on the user’s goals, this can 
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be a good way to visually verify whether the current selections are adequate. We can continue 

to the Disease Signature section by clicking the Next button on the bottom. 

 

 

Disease Signature Generation 

With the Case and Control samples selected, we can now create the disease signature of 

interest. This section allows for multiple methods to accomplish this, specifically using either 

edgeR or limma. For this job, we will select edgeR and press Compute to begin. As indicated by 

the warning pop-up, this task can take a few minutes, so one benefit of creating an account is 

that the user can log out while this process is occurring (and even get notified by e-mail when 

the task is complete.). Once the signature generation is finalized, this section produces a 

heatmap of differentially expressed genes as well as a table below with these data. The criteria 

metrics can be set and changed here, specifically the p-value and fold change cut-offs. 

Changing these will affect the resulting plots and tables. This heatmap is interactive and can 

support sorting by each axis. The heatmap and table can be exported for reference.  

 In addition, we also integrate other tools and datasets to help make sense of the disease 

signature. For instance, we provide Gene Ontology pathway enrichments for both up- and 

down-regulated genes in the signature as both table and bar plots.   With the disease signature 

generated, we can proceed to the final stage of the job to calculate the RGES for all available 

drugs by clicking the Next button on the bottom panel. 

 

Candidate Drug Selection 

In this section, we can compare the disease signature to all drug signatures obtained from the 

LINCS resource.  
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Figure 5: screenshots of the web portal. (a) disease sample selection, (b) control sample selection, 

(c) drug prediction job submission, (e) job management, (f) log in page, (g) predicted drug list, and 

(h) result files. 

 

Job submission and tracking 

After submitting the job, the pipeline typically takes 10-20 minutes to run. Once it is finished, a 

notification email will be sent to the user’s email box. Users can also monitor job status through 

Job History. The results files are the same as those generated from the pipeline. 

Troubleshooting 

Please include information on how to troubleshoot the most likely problems users will encounter with 

the protocol. 

 

Desktop Version 

 

https://docs.google.com/spreadsheets/d/1Dy8HkC4zu50QUiAjxd-

8P1daVRamQZJD3bQj2F3Ykts/edit?usp=sharing 
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Web Portal Version 

 

[Table with Error messages and their meanings] 

 

Results 

In the procedure for the Desktop version, we demonstrated the ability of the OCTAD pipeline to 

select a case of primary cancers from TCGA, compute correlated reference tissues from GTEx 

to be used as control samples, and compute a differential gene expression signature to 

recommend candidate drugs. This current pipeline is a complete framework with increased 

functionality compared to our original iteration. For instance, instead of using DESeq to compute 

differential expression, we adopted a less time-consuming method edgeR. Further we      

integrated our methodology to select reference tissue from GTEx data, making possible the 

prediction of cancers without adjacent normal tissues. Lastly, we compiled more samples along 

with their clinical features, enabling prediction of candidates for a subset of patient samples. 

Here, using HCC as an example, we first demonstrate the consistence of results between the 

original method and the optimized one in every major step (i.e., disease signature creation, drug 

prediction, drug enrichment analysis). To illustrate the power of using OCTAD to screen 

compounds for identifying putative personalized therapeutics, we predict compounds specifically 

targeting MYC amplified lung cancer and PIK3CA mutant breast cancer. 

Comparison between Original Method and Current Pipeline 

We first compared the rank of differential expression log2 fold change from our original work 

which utilizes DESeq2 (noted as Pub) to the rank of differential expression in our current 
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pipeline which utilizes edgeR (noted as Adj); both utilize TCGA adjacent normal HCC as a 

reference control. Next, we compared the original results with our current pipeline using edgeR 

and computed GTEx normal tissues derived using top correlated autoencoder method (noted as 

AE), generated from the desktop procedure section. Finally, we compared the results with those 

derived from our online web portal (noted as Online) which also utilizes edgeR and normal liver 

tissue from GTEx database which was generated from the online procedure section.  

 

Figure 6: Evaluation of the results from major steps in HCC prediction. (a) consistency of 

disease signatures, (b) consistency of sRGES, (c) correlation with experimental data (IC50), 

and (d) consistency of enriched MeSH. Pub: the published work 10; adj: using edgeR and 

adjacent tissue as control; ae: using edgeR and normal tissues selected from the AutoEncoder 

approach; online: online web portal.  
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The correlation analysis of the differential expressions from different procedures shows that the 

workflow utilizing edgeR and adjacent tissues as control had the highest correlation to the 

original work (Figure 6a). In addition, both the online and desktop disease signatures are equal 

to each other as the parameters for them are the same (Figure 6a). Both online and desktop 

results utilizing GTEx as controls also retained high correlation to the original gene expression 

signatures, indicating that it’s feasible to use GTEx controls (Figure 6a).  

 

As subsequent drug prediction sRGES is computed using significant differential gene 

expression and we observed the little discrepancy of differential gene expression computed 

from multiple procedures, we then assessed if sRGES are also similar to the original. 

Unsurprisingly the workflow utilizing edgeR and adjacent tissues as control had the highest 

correlation to the original work. Both online and desktop results had lower but still significant 

correlation to the original work (Figure 6b). 

 

In our original work, we showed that sRGES correlated with drug efficacy data from CTRP 

database in which drugs were tested on cancer cell lines. We further compared the correlation 

of sRGES to the AUC of the corresponding drugs found in CTRP of liver cancer lineage.  AUC 

is computed as the median AUC across all the liver cancer cell lines. The significant correlation 

between drug efficacy data and sRGES computed from different procedures suggested the 

utility of using the workflow to in silico predict drug efficacy, even in the absence of adjacent 

tissue samples (Figure 6c).  

 

One of the pitfalls of using individual scores such as sRGES is the possibility for false positive 

and false negative predictions. An additional function of our workflow includes enrichment of 

drug targets such as via MESH terms. This allows for summary of drugs into classes to allow for 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/821546doi: bioRxiv preprint 

https://doi.org/10.1101/821546
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 

investigation of groups of drugs rather than individual compounds. A higher score indicates a 

MESH drug group to be efficacious against the cancer, whereas more lower and negative score 

indicates non-effective MESH drug group. We further compare the rank correlation of the MESH 

scores generated from the different procedures (Figure 6d). 

 

By summarizing the sRGES in classes of drugs we are able to examine clusters of drugs based 

on their mechanism of action e.g. MESH. Finding novel classes of drugs, e.g. anti-helminths, or 

unconventional chemical structures allows for generation of hypotheses that can be prioritized 

for experimentation. Furthermore, the pipeline also allows us to filter out for drug candidates 

which may have low value, for example, poor scores were given for anti-hypertensives 

compared to more conventional classes such as intercalating agents and HDAC inhibitors.   

Screening compounds targeting MYC-amplified lung adenocarcinoma 

Targeting MYC, an oncogene amplified in many cancers including lung adenocarcinoma, is 

under active research, however, MYC is considered as an undruggable target 45. One 

therapeutic strategy is to reverse the gene expression signature of these MYC-amplified tumors. 

Here, we ran the two sets of TCGA Lung adenocarcinoma through our pipeline. In one set we 

selected for cancer tissues with MYC amplification, defined as copy numbers of 1 or more. In 

the second set we selected for cancer tissues without the MYC amplification, defined as 0 copy 

numbers. Then we selected drug efficacy data from the CTRP non-small cell lung cancer cell 

lines with the MYC amplification as a validation set. The correlation for the MYC run was -0.415, 

while correlation for non-MYC run was -0.261 (Figure S3). This suggests that OCTAD may be 

used to search for candidates specifically targeting MYC-amplified cancers.  

Screening compounds targeting PIK3CA mutation in breast cancer  

Likewise, we applied OCTAD to screen compounds targeting tumors harboring PIK3CA 
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mutation. PIK3CA is highly mutated in cancers, yet undruggable 46. In this case we ran the two 

sets of TCGA Breast cancers through our pipeline. In one set we selected for cancer tissues 

with PIK3CA mutation. In the second set we selected for cancer tissues without the mutation. 

Then we selected for CTRP breast cell lines with the PIK3CA mutation to use as a validation 

set.  Similarly to the previous result, we found that mutated breast PIK3CA cancer correlates 

with corresponding CTRP cell lines better than non-mutated PIK3CA breast cancer. The 

PIK3CA mutant run has correlation of -0.370, with the non-mutant run at -0.273 (Figure S4). 

Summary 

The combination of clinical and molecular features could lead to numerous disease subtypes, 

each of which may have limited resources to study. Through leveraging open datasets and 

advanced machine learning methods, OCTAD aims to provide an effective means to screen 

compounds for one specific cancer subtype for further experimental testing. In this work, we 

optimized our pipeline and developed OCTAD, which we demonstrate can reproduce results 

from a previous study that are also consistent when selecting normal tissue data from a different 

database. Furthermore, the two new cases illustrate the potential of using OCTAD to screen 

compounds for a precisely defined patient groups, although subsequent experimental testing is 

desired to verify drug candidates.        
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