- 1 Testing the basic tenet of the molecular clock and neutral theory by using
- 2 ancient proteomes
- 3
- 4 Tiantian Liu and Shi Huang*
- 5
- 6
- 7 Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School
- 8 of Life Sciences, Xiangya Medical School, Central South University, 110 Xiangya
- 9 Road, Changsha, Hunan 410078, China
- 10
- 11 *Corresponding author: huangshi@sklmg.edu.cn
- 12
- 13 Key words: molecular clock, neutral theory, MGD theory, evolution, ancient proteins

15 Abstract

16	Early research on orthologous protein sequence comparisons by Margoliash in
17	1963 discovered the astonishing phenomenon of genetic equidistance, which has
18	inspired the ad hoc interpretation known as the molecular clock. Kimura then
19	developed the neutral theory and claimed the molecular clock as its best evidence.
20	However, subsequent studies over the years have largely invalidated the universal
21	molecular clock. Yet, a watered down version of the molecular clock and the neutral
22	theory still reigns as the default model for phylogenetic inferences. The seemingly
23	obvious tenet of the molecular clock on evolutionary time scales remains to be
24	established by using ancient sequences: the longer the time of evolutionary
25	divergence, the larger the genetic distance. We here analyzed the recently published
26	Early Pleistocene enamel proteome from Dmanisi and found that ancient proteins
27	were not closer to an outgroup than their orthologs from the extant sister species were.
28	Together with a previous study, the combined results showed that most ancient
29	proteins were in fact more distant to the outgroup. The results are unexpected from
30	the molecular clock but fully predicted by the notion that genetic distances or
31	diversities are largely at optimum saturation levels as described by the maximum
32	genetic diversity (MGD) theory.
33	

3

34 Introduction:

35	Since the early 1960s, protein and later DNA sequence comparisons have
36	become widely used in building evolutionary trees [1-4]. Margoliash in 1963
37	discovered an astonishing finding, genetic equidistance where sister species are
38	about equidistant to a simpler outgroup, and made an ad hoc interpretation of it by
39	assuming a molecular clock [2, 5]. The molecular clock hypothesis assumes a
40	constant and similar evolutionary rate among different species [1, 2, 5]. Thus, gene
41	non-identity between species is thought to be largely a function of time. The molecular
42	clock has been widely used in phylogenetic inferences and produced many
43	controversial conclusions contradictory to phylogenies built by other independent
44	methods, including the human relationship with the great apes and the origin of
45	modern humans in Africa rather than Asia.[6-8].
45 46	modern humans in Africa rather than Asia.[6-8]. The constant and similar mutation rate (i.e., molecular clock) interpretation of the
46	The constant and similar mutation rate (i.e., molecular clock) interpretation of the
46 47	The constant and similar mutation rate (i.e., molecular clock) interpretation of the equidistance result has not been verified by any independent observation and has on
46 47 48	The constant and similar mutation rate (i.e., molecular clock) interpretation of the equidistance result has not been verified by any independent observation and has on the contrary been contradicted by a large number of facts [9-15]. Nonetheless,
46 47 48 49	The constant and similar mutation rate (i.e., molecular clock) interpretation of the equidistance result has not been verified by any independent observation and has on the contrary been contradicted by a large number of facts [9-15]. Nonetheless, researchers have treated the molecular clock as a genuine reality and have in turn
46 47 48 49 50	The constant and similar mutation rate (i.e., molecular clock) interpretation of the equidistance result has not been verified by any independent observation and has on the contrary been contradicted by a large number of facts [9-15]. Nonetheless, researchers have treated the molecular clock as a genuine reality and have in turn proposed a number of theories to explain it [16-21]. The 'Neutral Theory' has found
46 47 48 49 50 51	The constant and similar mutation rate (i.e., molecular clock) interpretation of the equidistance result has not been verified by any independent observation and has on the contrary been contradicted by a large number of facts [9-15]. Nonetheless, researchers have treated the molecular clock as a genuine reality and have in turn proposed a number of theories to explain it [16-21]. The 'Neutral Theory' has found wide acceptance [19-21], even though it is widely acknowledged to be an incomplete

a Poisson process, with equal mean and variance of mutation rate. Experimental data
have shown that the variance is typically larger than the mean.
Ohta's "nearly neutral theory" explained to some extent the generation time issue
by observing that large populations have faster generation times and faster mutation
rates but remains unable to account for the great variance issue [27]. With the neutral
and nearly neutral theory, molecular evolution has been treated as the same as
population genetics or microevolution. However, the field still lacks a complete theory
as Ohta and Gillespie had acknowledged [28]. The field has unfortunately yet to pay
attention to the equidistance result, which has been considered by some as "one of
the most astonishing findings of modern science" [29, 30].
While it is widely acknowledged that there is no universal molecular clock (vastly
different species diverged for very long time do not have similar mutation rates), the
seemingly obvious tenet of the molecular clock notion and the neutral theory, i.e., the
longer the evolutionary divergence, the larger the genetic distance or sequence
divergence, remains widely popular in phylogenetic inferences and has yet to be
formally tested or established for species divergence over evolutionary time scales. A
most direct, simple, and strait forward test of the molecular clock would be to use
ancient proteins or DNAs from fossil species. Ancient fossil species are expected to
show less sequence divergence from an outgroup than its extant sister species
(Figure 1). Recent advances in protein sequencing methodology have made such test

75 feasible. We here analyzed the recently published Early Pleistocene enamel

76 proteome from Dmanisi [31] and found that ancient proteins are not closer to an

- 77 outgroup than their orthologs from their extant sister species are. The results are
- view of the molecular clock but are fully expected from a recently developed
- 79 alternative framework.
- 80

81 Materials and Methods:

- 82 Proteome sequences from Dmanisi were from the supplementary materials of the
- 83 article by Cappellini [31]. Identification of closest extent proteins and comparisons
- 84 with outgroups were performed using BLASTP against the protein database in
- 85 Genbank. Extent proteins with the highest identity to the ancient samples were
- 86 considered the closest extent proteins. Both the ancient and the extent orthologs were
- then aligned with the outgroup protein to determine which was closer to the outgroup.
- 88

89 Results:

90	The recently published Early Pleistocene enamel proteome from Dmanisi had a
91	total of 10 proteins from 6 different fossil samples [31]. The ancient species
92	represented include one Equidae, one Rhinocerotidae, and four Bovidae. Some
93	species such as Bovidae were represented by more than one sample and some
94	proteins were sequenced from more than one sample. However, different peptide
95	fragments were sequenced from different samples. Thus, each of the total 22 protein
96	sequences was unique and different from others.
97	Using the ancient sequences, we searched the Genbank to identify the orthologs

98 from the closest extant sister species. We then compared both the ancient and the

99	extant proteins to an outgroup. We first tested human as the outgroup to determine
100	which shared more identity with human. The peptide fragments of each protein were
101	each individually examined for identities between the outgroup and the sister species
102	consisting of the ancient species and it closest extant species. Gaps were not counted
103	and the same length and region of alignment were maintained for the ancient and its
104	extant sister species. The results from all peptide fragments of a protein were then
105	combined to obtain the total number of identical residues and the total alignment
106	length (Table 1, and Supplementary Table 1). For a total of 22 proteins, five among
107	them were too short to be informative in terms of revealing any differences between
108	the two sisters. Of the remaining 17 proteins, fifteen showed lower number of identical
109	residues between the ancient samples and the outgroup relative to between the
110	extant proteins and the outgroup while two showed the opposite, indicating that the
111	ancient proteins were significantly more distant to the outgroup human than the extant
112	proteins were (P<0.01, Chi squared test).
113	To verify the above results, we next tested a different outgroup Sus scorfa. Of the
114	24 proteins, four showed no difference between the sisters and hence were non
115	informative due to probably the short length covered; 15 showed lower number of
116	identical residues between the ancient samples and the outgroup relative to between
117	the extant proteins and the outgroup and 3 showed the opposite (Table 2), indicating
118	that the ancient proteins were significantly more distant to the outgroup Sus scorfa
119	than the extant proteins were (P<0.01, Chi squared test).

7

120	The ancient sequences analyzed above had all isoleucines converted into
121	leucines, as standard tandem mass spectrometry (MS/MS) cannot differentiate
122	between these two isobaric amino acids. Leucines are about 2 fold more frequent
123	than isoleucines in mammalian proteins. Thus, some leucines in the above analyzed
124	ancient samples may in fact be isoleucines and would cause artificial non-identities
125	with the outgroup. We next focused only on peptides that showed non-identities
126	between the ancient samples and the sister taxon in amino acid positions not
127	involving leucine/isoleucines. Three of five informative proteins showed lower identity
128	between the ancient and the outgroup human relative to that between its extant sister
129	taxon and human while two showed the opposite. With Sus scorfa as the outgroup,
130	two of four informative proteins showed lower identity between the ancient and the
131	outgroup relative to that between its extant sister taxon and the outgroup while two
132	showed the opposite (Table 3). As the number of informative proteins were limited,
133	the results were inconclusive with regard to ancient proteins being more distant to the
134	outgroup but did show such a trend. At least, there was no indication that the ancient
135	proteins were closer to the outgroup, as predicted by the molecular clock. Together
136	with a previous study of ours that showed four informative ancient proteins to be all
137	more distant to the outgroup [10], the combined studies showed that 7 or 6 ancient
138	proteins were more distant to the outgroup while 2 were closer. Overall, these results
139	were not expected by the molecular clock hypothesis.
140	

140

141 Discussion

142	Our results here showed that ancient proteins were not closer to an outgroup
143	than their orthologs from the closest extant species of the ancient taxon, confirming a
144	previous study of ours using ancient proteins [10]. These results remained even when
145	uncertain amino acid positions due to technical limitations such as
146	leucines/isoleucines were excluded from the analyses. The ancient proteins used
147	here were from ~2 million years ago and those from the previous study included a
148	dinosaur protein from 68 million years ago. The timeframe concerned is thus long
149	enough for ancient proteins to have lower number of substitutions than their orthologs
150	from their extant sister taxons. And yet 7 or 6 ancient proteins were more distant to
151	the outgroup while only 2 were closer. The results therefore were unexpected if the
152	basic tenet of the molecular clock and neutral theory is true that non-identities in
153	sequences is largely a function of time. That most of the ancient proteins were more
154	distant to the outgroup was even more unexpected from the molecular clock and
155	neutral theory. What then may explain the seemingly unexpected observations here?
156	In recent years, a more complete molecular evolutionary theory, the maximum
157	genetic distance or diversity (MGD) hypothesis, has been making steady progress in
158	solving both evolutionary and contemporary biomedical problems [6, 8, 25, 32-41].
159	That reality is largely at maximum genetic diversity or distance no longer changing
160	with time is <i>a priori</i> expected and supported by numerous facts [12, 25, 42, 43].
161	Genetic distance can increase with time up to a point when maximum saturation is
162	reached. At such maximum/optimum saturation, genetic distance would no longer be
163	related to time but are determined by physiological selection and environmental

164	selection. The MGD theory has solved the two major puzzles of genetic diversity, the
165	genetic equidistance phenomenon and the much narrower range of genetic diversity
166	relative to the large variation in population size [25, 26]. The primary determinant of
167	genetic diversity (or more precisely MGD) is species physiology with complex
168	physiology being compatible only with lower levels of random genetic
169	noises/diversities [25, 44]. The genetic equidistance result of Margoliash in 1963 is in
170	fact the first and best evidence for maximum distances rather than linear unsaturated
171	distances as mis-interpreted by the molecular clock and in turn the neutral theory [2, 6,
172	11, 23, 25, 43]. Two contrasting patterns of the equidistance result have now been
173	recognized, the maximum and the linear [6, 23]. The neutral theory explains only the
174	linear pattern, which however represents only a minority of any genome today. The
175	link between traits/diseases and the amount of SNPs shows an optimum/maximum
176	(Pareto optimum) genetic diversity level maintained by selection, thereby providing
177	direct experimental disproof for the neutral assumption for common SNPs [32-38].
178	More direct functional data invalidating the neutral assumption have also been found
179	[45].
180	The results here are fully predicted by the MGD theory (Figure 1). If the observed
181	genetic distance or non-identities of today and of the relatively recent past such as 2
182	million years ago as in the case of the Dmanisi samples here were at maximum
183	saturation, it would not be determined by time but by physiology and environmental
184	adaptations. As the ancient taxon and its closest present day sister species would be
185	very close in physiology, their genomes would be highly similar if not identical in those

10

186	parts involved in physiology. However, their genomes would be different in the parts					
187	involved in adaptation to environments since environmental conditions from ~2 million					
188	years ago are expected to be different from today. As the outgroup species are from					
189	the present day time, they are expected to share some adaptive variants with all					
190	present day species as a common adaptive strategy to today's environment. Hence,					
191	the sister species of the ancient taxon would be expected to be closer to the outgroup					
192	than the ancient is. The degree of this closeness would be related to the similarities					
193	between the ancient environments and today's.					
194	Using ancient protein or DNA sequences can be very effective in testing					
195	evolutionary theories. Our results here show that the basic tenet of the molecular					
196	clock and neutral theory does not hold for evolutionary time scales when maximum					
197	mutation saturation has been reached. This conclusion is expected to be further					
198	confirmed when more ancient sequences become available in the future.					
199						
200	Acknowledgments:					
201	Supported by the National Natural Science Foundation of China grant 81171880 and					
202	the National Basic Research Program of China grant 2011CB51001.					
203						
204	References:					
205 206 207	[1] Zuckerkandl E, Pauling L. Molecular disease, evolution, and genetic heterogeneity, Horizons in Biochemistry. New York: Academic Press, 1962. [2] Margoliash E, Primary structure and evolution of cytochrome c. Proc. Natl.					

207 [2] Margoliash E. Primary structure and evolution of cytochrome c. Proc. Natl.

208 Acad. Sci. 1963;50:672-9.

209 [3] Doolittle RF, Blombaeck B. Amino-Acid Sequence Investigations Of 210 Fibrinopeptides From Various Mammals: Evolutionary Implications. Nature 211 1964;202:147-52. 212 [4] Fitch WM, Margoliash E. Construction of phylogenetic trees. Science 213 1967:155:279-84. 214 [5] Kumar S. Molecular clocks: four decades of evolution. Nat Rev Genet 215 2005;6:654-62. 216 [6] Huang S. Primate phylogeny: molecular evidence for a pongid clade excluding 217 humans and a prosimian clade containing tarsiers. Sci China Life Sci 2012;55:709-25. 218 [7] Johnson MJ, Wallace DC, Ferris SD, Rattazzi MC, Cavalli-Sforza LL. 219 Radiation of human mitochondria DNA types analyzed by restriction endonuclease 220 cleavage patterns. J Mol Evol 1983;19:255-71. 221 [8] Yuan D, Lei X, Gui Y, Zhu Z, Wang D, Yu J, et al. Modern human origins: 222 multiregional evolution of autosomes and East Asia origin of Y and mtDNA. bioRxiv 223 2017:doi: https://doi.org/10.1101/106864. 224 [9] Huang S. Molecular evidence for the hadrosaur B. canadensis as an outgroup 225 to a clade containing the dinosaur T. rex and birds. Riv. Biol. 2009;102:20-2. 226 [10] Huang S. Ancient fossil specimens are genetically more distant to an 227 outgroup than extant sister species are. Riv. Biol. 2008;101:93-108. 228 [11] Huang S. The genetic equidistance result of molecular evolution is 229 independent of mutation rates. J. Comp. Sci. Syst. Biol. 2008;1:092-102. 230 [12] Huang S. Inverse relationship between genetic diversity and epigenetic 231 complexity. Nature Precedings 2008:doi.org/10.1038/npre.2009.1751.2. 232 [13] Pulquerio MJ, Nichols RA. Dates from the molecular clock: how wrong can 233 we be? Trends Ecol Evol 2007;22:180-4. 234 [14] Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford 235 University Press, 2000. 236 [15] Ayala FJ. Molecular clock mirages. BioEssays 1999;21:71-5. 237 [16] Van Valen L. Molecular evolution as predicted by natural selection. J. Mol. 238 Evol. 1974;3:89-101. 239 [17] Clarke B. Darwinian evolution of proteins. Science 1970;168:1009-11. 240 [18] Richmond RC. Non-Darwinian evolution: a critique. Nature 1970;225:1025-8. 241 [19] Kimura M. Evolutionary rate at the molecular level. Nature 1968;217:624-6. 242 [20] Kimura M, Ohta T. On the rate of molecular evolution. J. Mol. Evol. 243 1971;1:1-17. 244 [21] King JL, Jukes TH. Non-Darwinian evolution. Science 1969;164:788-98. 245 [22] Ayala FJ. Molecular clock mirages. BioEssays 1999;21:71-5. 246 [23] Hu T, Long M, Yuan D, Zhu Z, Huang Y, Huang S. The genetic equidistance 247 result, misreading by the molecular clock and neutral theory and reinterpretation 248 nearly half of a century later. Sci China Life Sci 2013;56:254-61. 249 [24] Kern AD, Hahn MW. The Neutral Theory in Light of Natural Selection. Mol 250 Biol Evol 2018;35:1366-71. 251 [25] Huang S. New thoughts on an old riddle: What determines genetic diversity 252 within and between species? Genomics 2016;108:3-10.

253 [26] Leffler EM, Bullaughey K, Matute DR, Meyer WK, Segurel L, Venkat A, et al. 254 Revisiting an old riddle: what determines genetic diversity levels within species? PLoS 255 Biol 2012;10:e1001388. 256 [27] Ohta T. Slightly deleterious mutant substitutions in evolution. Nature 257 1973;246:96-8. 258 [28] Ohta T, Gillespie JH. Development of Neutral and Nearly Neutral Theories. 259 Theor Popul Biol 1996;49:128-42. 260 [29] Denton M. Evolution: a theory in crisis. Chevy Chase, MD: Adler & Adler, 261 1986. 262 [30] Denton M. Evolution, still a theory in crisis. Seattle, WA: Discovery Institute 263 Press, 2016. 264 [31] Cappellini E, Welker F, Pandolfi L, Ramos-Madrigal J, Samodova D, Ruther PL, et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus 265 266 phylogeny, Nature 2019:574:103-7. 267 [32] Zhu Z, Lu Q, Wang J, Huang S. Collective effects of common SNPs in 268 foraging decisions in Caenorhabditis elegans and an integrative method of 269 identification of candidate genes. Sci. Rep. 2015:doi:10.1038/srep16904. 270 [33] Zhu Z, Yuan D, Luo D, Lu X, Huang S. Enrichment of Minor Alleles of 271 Common SNPs and Improved Risk Prediction for Parkinson's Disease. PLoS ONE 272 2015;10:e0133421. 273 [34] Lei X, Yuan J, Zhu Z, Huang S. Collective effects of common SNPs and risk 274 prediction in lung cancer. Heredity 2018:doi:10.1038/s41437-018-0063-4. 275 [35] He P, Lei X, Yuan D, Zhu Z, Huang S. Accumulation of minor alleles and risk 276 prediction in schizophrenia. Sci Rep 2017;7:11661. 277 [36] Lei X, Huang S. Enrichment of minor allele of SNPs and genetic prediction of 278 type 2 diabetes risk in British population. PLoS ONE 2017;12:e0187644. 279 [37] Gui Y, Lei X, Huang S. Collective effects of common SNPs and genetic risk 280 prediction in type 1 diabetes. Clin Genet 2017;93:1069-74. 281 [38] Yuan D, Zhu Z, Tan X, Liang J, Zeng C, Zhang J, et al. Scoring the collective 282 effects of SNPs: association of minor alleles with complex traits in model organisms. Sci China Life Sci 2014;57:876-88. 283 284 [39] Yuan D, Huang S. Genetic equidistance at nucleotide level. Genomics 285 2017:10.1016/j.ygeno.2017.03.002. 286 [40] Luo D, Huang S. The genetic equidistance phenomenon at the proteomic 287 level. Genomics 2016;108:25-30. 288 [41] Biswas K, Chakraborty S, Podder S, Ghosh TC. Insights into the dN/dS ratio 289 heterogeneity between brain specific genes and widely expressed genes in species of 290 different complexity. Genomics 2016;108:11-7. 291 [42] Huang S. Histone methylation and the initiation of cancer, Cancer 292 Epigenetics. New York: CRC Press, 2008. 293 [43] Huang S. The overlap feature of the genetic equidistance result, a 294 fundamental biological phenomenon overlooked for nearly half of a century. Biological 295 Theory 2010;5:40-52.

296 297 298 299 300 301 302 303	 [44] Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A, et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 2014;515:261-3. [45] Pontis J, Planet E, Offner S, Turelli P, Duc J, Coudray A, et al. Hominoid-Specific Transposable Elements and KZFPs Facilitate Human Embryonic Genome Activation and Control Transcription in Naive Human ESCs. Cell Stem Cell 2019;24:724-35 e5.
304	

- 305
- 306

307 Table 1. Identities between human as the outgroup and the ancient or present

308 day species

Comple	Protein	Length	Identities to Homo sapiens		
Sample			Ancient	Present	Difference
16857	COL1A2	613	546	554	-8
16639	AMELX	89	70	77	-7
16635	ENAM	249	184	189	-5
16635	AMELX	173	146	150	-4
16857	COL3A1	507	385	389	-4
16632	AMELX	139	117	120	-3
16632	MMP20	130	109	112	-3
16635	AMBN	118	102	104	-2
16635	AMTN	19	14	16	-2
16638	AMELX	50	41	43	-2
16635	MMP20	57	48	49	-1
16638	AMBN	139	119	120	-1
16639	AMBN	115	103	104	-1
16641	AMBN	92	82	83	-1
16641	AMELX	59	54	55	-1
16632	ALB	27	20	20	0
16632	ENAM	182	147	147	0
16638	MMP20	44	42	42	0
16639	ENAM	123	98	98	0
16641	ENAM	67	57	57	0
16635	ALB	106	77	76	1
16638	ENAM	126	106	105	1

311 Table 2. Identities between *Sus scrofa* as the outgroup and ancient or present

312 day species

Sample	Protein	Longth	Identities to Sus scorfa				
		Length	Ancient	Present	Difference		
16857	COL1A2	621	588 596		-8		
16639	AMELX	87	74	79	-5		
16632	AMELX	136	97	101	-4		
16635	AMELX	172	140	144	-4		
16635	AMBN	121	107	109	-2		
16638	AMBN	139	124	126	-2		
16638	ENAM	127	111	113	-2		
16857	COL3A1	367	307	309	-2		
16632	MMP20	126	113	114	-1		
16635	AMTN	25	13	14	-1		
16639	AMBN	118	108	109	-1		
16639	ENAM	122	103	104	-1		
16641	ENAM	75	66	67	-1		
16641	AMBN	99	91	92	-1		
16641	AMELX	58	54	55	-1		
16632	ALB	26	18	18	0		
16632	ENAM	183	143	143 0			
16638	AMELX	49	44	44	0		
16638	MMP20	44	42	42	0		
16635	ALB	110	78	77	1		
16635	ENAM	248	196	195	1		
16635	MMP20	44	37	34	3		

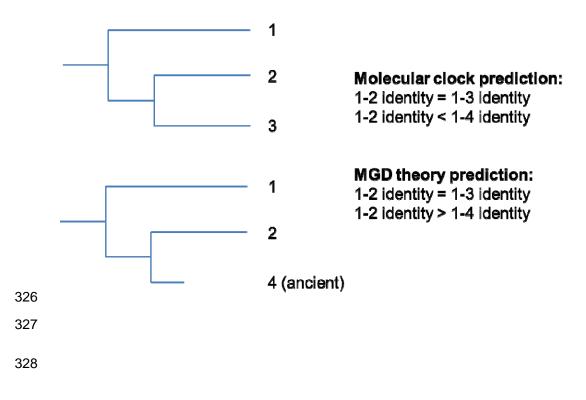
313

Table 3. Identities between the outgroup and ancient or present day species.

315 Amino acids differing between the ancient and its extant sister taxon are in bold.

Sample	Protein	Peptide	Length	Identities to human			Identities to Sus scorfa		
				Ancient	Present	Difference	Ancient	Present	Difference
16635	ALB	VFDELK P LVDEPV N LVKEN	19	13	11	2	15	13	2
16635	AMBN	ANQLNAPGRLGLMSSEEM PGGRGGPMAY	28	23	24	-1	24	25	-1
16635	ENAM	KQQSKTDPAPETQKPDQP QPEESPPKQHLKQPAATKH EEEARLPPAFPSFGNGLFP YHQP	70	35	37	-2	41	41	0
16635	MMP20	GPRK T FPGKXXMPHAP P HN PS	21	18	19	-1	18	16	2
16638	ENAM	FFG Y FGYHGFGGRPPYYSE EMFEDFEKPKEE	31	30	29	1	28	29	-1

316


15

318

319 Figure Legends:

320 Figure 1. Schemes for testing the molecular clock hypothesis by using ancient

- 321 proteins. Extant species are represented by numbers 1, 2, and 3. Ancient fossil
- 322 species is represented by the number 4 with 2 representing the closest extant sister
- 323 species of 4 and 1 representing the outgroup.
- 324

