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17 Abstract

18 Tidal marshes protect coastal communities from the effects of sea level rise and storms, yet they 

19 are vulnerable to prolonged inundation and submergence. Uncertainty regarding their 

20 vulnerability to sea level rise motivated the establishment of a monitoring network in the 

21 Delaware Estuary and Barnegat Bay. Using data collected through these efforts, we determined 

22 whether rates of tidal marsh sediment accumulation and elevation change exceeded local sea 

23 level rise and how these dynamics varied along geographic and environmental gradients. Marker 

24 horizons, surface elevation tables, elevation surveys, water level data, and water column 

25 suspended sediment concentrations were used to evaluate sea level rise vulnerability. Of 32 study 

26 sites, 75% had elevation change that did not keep pace with long-term rising sea levels (1969–

27 2018) and 94% did not keep pace with recent sea level rise (2000–2018). Mean high water rose 
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28 most rapidly in the freshwater tidal portion of the Delaware Estuary with rates nearing 1 cm yr-1 

29 from 2000–2018. We noted that greater sediment accumulation rates occurred in marshes with 

30 large tidal ranges, low elevations, and high water column suspended sediment concentrations. 

31 We found correlations between rates of shallow subsidence, increasing salinity, and decreasing 

32 tidal range. Marsh elevation and water level surveys revealed significant variability in elevation 

33 capital and summer flooding patterns (12–67% inundation). However, rapid increases in mean 

34 high water over the past 19 years suggests that all marsh platforms currently sit at or below mean 

35 high water. Overall, these data suggest that tidal marshes in the Delaware Estuary and Barnegat 

36 Bay are vulnerable to submergence by current rates of sea-level rise. While we observed 

37 variability in marsh elevation capital, the absence of strong correlations between elevation trends 

38 and environmental parameters makes it difficult to identify clear patterns of sea level rise 

39 vulnerability among wetlands.

40 Introduction

41 Tidal marshes can moderate some of the impacts of climate change including storm surge 

42 and wave attenuation, nutrient uptake and removal through denitrification, and mitigation of 

43 greenhouse gas emissions through carbon sequestration [1–3]. An analysis of damage caused by 

44 Hurricane Sandy in the U. S. Mid-Atlantic suggested that intact tidal marshes reduced flood 

45 damages by more than US $625 million and lower annual flood risks around Barnegat Bay, NJ 

46 by up to 70% [4]. Ensuring the existence of tidal marshes in coastal areas bordering high-value 

47 infrastructure over the coming decades is an important part of protecting coastal communities 

48 from increased flood risk due to sea level rise (SLR) and extreme weather events like hurricanes 

49 [4–6]. 
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50 Despite being assets for coastal community protection, tidal marshes are vulnerable to the 

51 impacts of SLR, especially when additional anthropogenic stressors reduce their elevation or 

52 accretionary capacity, such as declining sediment inputs and altered hydrology [7–10]. 

53 Accumulation of plant material in the soil and sediment accumulation interact to build elevation 

54 through dynamic feedbacks with sea level [11–16]. Declines in sediment availability caused by 

55 channel dredging, upstream damming, and changes in agricultural practices, coupled with 

56 hydrological changes, such as mosquito ditching, attenuate tidal marsh responses to sea level 

57 changes by reducing sedimentation rates and increasing inundation [9, 17,18]. Further, as rates of 

58 SLR increase, it is not clear whether marshes that may already be vulnerable to inundation and 

59 low sediment supply will be able to increase elevation at rates that would prevent submergence. 

60 SLR in the U. S. Mid-Atlantic is increasing faster than the global average due to steric 

61 sea level changes and geologic subsidence [19–23]. Long-term observations derived from local 

62 National Oceanic and Atmospheric Administration (NOAA) tidal gauges show that SLR in 

63 Delaware Estuary (ranging from 2.98 ± 0.19 to 4.63 ± 0.50 mm yr-1) and Barnegat Bay (4.09 ± 

64 0.15 mm yr-1) are nearly twice that of the early 20th century global average (1.7 mm yr-1)[23]. 

65 Projections of local SLR in Delaware suggest that rates will likely exceed 10 mm y-1 by 2100 for 

66 intermediate or high emission scenarios [24]. This projected rate approaches a critical threshold 

67 for tidal marsh elevation feedbacks, and suggests marsh drowning will occur [16]. Additionally, 

68 subsidence driven by local groundwater withdrawal [25] or historical land manipulations [26], 

69 such as diking, accelerates SLR locally and further expedites marsh drowning. In fact, tidal 

70 marsh loss due to submergence across the U. S. Northeast and Mid-Atlantic is already 

71 widespread [27–29]. 
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72 Extensive disturbances in Barnegat Bay and below average elevations relative to tides in 

73 the Delaware Bay suggests that tidal marshes in both estuaries have a high degree of 

74 vulnerability to accelerating rates of SLR [18, 30–36]. Tidal marsh losses and increased interior 

75 flooding have been documented in both estuaries [7, 26–27, 30–36], but no analyses of elevation 

76 dynamics across these areas have been completed to date. Further, elevation change data from 

77 other locations in the Mid-Atlantic and Northeast have shown that SLR frequently exceeds 

78 marsh accumulation [37–42]. 

79 The importance of maintaining Mid-Atlantic tidal marshes for community protection, 

80 combined with ongoing evidence of marsh drowning, motivated the establishment of a 

81 monitoring network. Two National Estuary Programs in collaboration with the Academy of 

82 Natural Sciences of Drexel University established this network to determine how tidal marshes 

83 in the Delaware Estuary and Barnegat Bay are responding to accelerated SLR 

84 (www.macwa.org). A variety of data were collected as part of these monitoring efforts, but this 

85 particular study focuses on surface elevation change and surface accretion rates. Our objectives 

86 were to: (1) compare rates of marsh sediment accumulation and vertical elevation change to 

87 long-term and contemporary rates of SLR, as well as contemporary rates of rise in mean high 

88 water for the Delaware Estuary and Barnegat Bay; (2) to determine how elevation capital, 

89 salinity, tidal range, and water column suspended sediments influence elevation dynamics among 

90 geographically distinct tidal marshes.

91 Materials and methods

92 Study Sites

93 The Delaware Estuary, located in New Jersey, Delaware, and Pennsylvania, contains over 

94 66,000 ha of tidal marsh [35]. It has a length of approximately 215 km from the fall line at 
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95 Trenton, New Jersey to its confluence with the Atlantic Ocean. Upstream of Wilmington, 

96 Delaware, the estuary is freshwater (<0.3‰) riverine and has a tidal range between 1.6 and 2.3 

97 m. Downstream of Wilmington, salinities gradually transition to polyhaline (20–25‰) with tidal 

98 ranges from 1.2 to 1.7 m. Freshwater, brackish, and saline tidal marshes exist along this estuarine 

99 gradient. Zizania aquatica, Peltandra virginica, Polygonum punctatum, and Nuphar advena are 

100 among many herbaceous perennial and annual species that dominate tidal freshwater marshes in 

101 the Delaware River. Halophytic grasses, such as Spartina alterniflora (syn. Sporobolus 

102 alterniflorus), Spartina patens (syn. Sporobolus pumilus) and Distichlis spicata, dominate the 

103 brackish and saline marshes of the Delaware Bay. Because of heavy development in the Trenton-

104 Philadelphia-Wilmington industrial corridor, only 16.7% of tidal freshwater wetlands remain in 

105 Pennsylvania from the pre-colonization extent (500 of ~3,000 ha) [35, 43] and at least six fresh 

106 intertidal plant species are extirpated from the tidal Delaware River [44]. Satellite imagery 

107 analyses suggest that marsh loss in the Delaware Estuary was ~80 ha y-1 from 1996–2010 [35]. 

108 Although wetland loss to development has declined, major threats remain. Marsh loss in the 

109 Delaware Estuary are occurring due to open water conversion linked to historical manipulations 

110 (e.g. diking, ditching), pervasive shoreline erosion, and anthropogenic limitations to sediment 

111 supplies (e.g. dredge spoil disposal, changes in agricultural practices, damming) [9, 26, 35, 44]. 

112 Barnegat Bay is a 520-km2 shallow lagoon bordered to the east by a 65 km long barrier 

113 island separating the bay from the Atlantic Ocean. The 9,200 ha of salt marsh [36] fringing the 

114 Barnegat Bay are polyhaline (>18‰) and dominated by S. alterniflora, S. patens, and D. spicata. 

115 Tidal ranges are approximately <0.2–0.7 m depending on bathymetry and distance from the 

116 Bay’s two inlets [45]. While northern Barnegat Bay is largely urbanized with extensive shoreline 

117 hardening (e.g. bulkheads), the southern region is less developed and contains more protected 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821827doi: bioRxiv preprint 

https://doi.org/10.1101/821827
http://creativecommons.org/licenses/by/4.0/


6

118 lands (i.e., the Edwin B. Forsythe National Wildlife Refuge holds ~14,800 ha) [46]. Estimated 

119 rates of salt marsh loss in the Barnegat Bay were ~6 ha y-1 from 1996–2010 [36]. Tidal marshes 

120 manipulation for mosquito population control have been extensive, with many marshes grid 

121 ditched and over 7,000 mosquito management ponds excavated [47]. Open marsh water 

122 management (OMWM), a mosquito management tactic, increases pond habitat to lure 

123 insectivorous fish to the high marsh, but the process also causes vegetation losses and affects 

124 elevation, as excavated peat is side-casted onto the marsh [18, 47].

125 Monitoring protocols

126 We established eleven monitoring sites in tidal marshes of the Delaware Estuary and 

127 Barnegat Bay, which varied in tidal range, salinity, and dominant vegetation type (Fig 1; Table 

128 1). For each site, three deep rod surface elevation tables (SET) were installed [48–49] between 

129 2010 and 2014 to measure marsh elevation change. Three feldspar marker horizon (MH) plots 

130 encircle each SET to measure short-term vertical sediment accumulation, or accretion [50]. 

131 Combined, the SET-MH technique distinguishes elevation change by surface and subsurface 

132 processes, and can provide estimates of resilience to SLR [42, 49, 51]. Here, we calculated 

133 shallow subsidence by subtracting elevation change from accretion rates, so that negative values 

134 represent declining subsurface elevations [51]. We read SET-MHs twice a year over the course 

135 of 5–7 years, depending on installation dates.

136 Fig 1.  Monitoring sites in the tidal marshes of the Delaware Estuary and Barnegat Bay.

137 Table 1. Site descriptions for the Delaware River, Delaware Bay, and the Barnegat Bay. 

Region Site Install 
Year Location Latitude, 

Longitude

Tidal 
Range 

(m)

Salinity 
(‰)

Dominant 
Vegetation

Delaware 
River

Crosswicks 
Creek 2011 Bordentown, 

NJ
40° 9.76’N, 
74° 42.51’W 2.4 0.10 Z. aquatica, P. 

virginica, P. 
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punctatum, and N. 
advena

Tinicum 2010 Philadelphia, 
PA

39° 53.05’N, 
75° 16.49’W 1.7 0.18

Z. aquatica, P. 
virginica, P. 
punctatum, and N. 
advena

Christina 
River 2010 Wilmington, 

DE
39° 43.29’N, 
75° 34.07’W 1.7 0.40

Typha 
angustifolia, P. 
virginica, P. 
punctatum, and N. 
advena

Dividing 
Creek 2012 Dividing 

Creek, NJ
39° 14.14’N, 
75° 6.76’W 1.7 17

S. alterniflora, S. 
patens, and D. 
spicata

Maurice 
River 2010 Bivalve, NJ 39° 15.95’N, 

74° 59.72’W 1.7 11
S. alterniflora, S. 
patens, and D. 
spicata

Dennis 
Creek 2011 South 

Dennis, NJ
39° 10.58’N, 
74° 51.74’W 1.6 16

S. alterniflora, S. 
patens, and D. 
spicata

Delaware 
Bay

Broadkill 
River 2014 Lewes, DE 39° 47.13’N, 

75° 10.75’W 1.1 27
S. alterniflora, S. 
patens, and D. 
spicata

Island 
Beach 2011 Seaside 

Park, NJ
39° 47.96’N, 
74° 6.10’W 0.2 27 S. alterniflora

Dinner 
Point 
Creek

2010 West Creek, 
NJ

39° 37.43’N, 
74° 16.20’W 0.6 26 S. alterniflora

Horse 
Point 2012 West Creek, 

NJ
39° 37.59’N, 
74° 15.43’W 0.6 26 S. alterniflora

Barnegat 
Bay

Reedy 
Creek 2010 Brick, NJ 40° 1.74’N, 

74° 5.07’W 0.2 20
S. alterniflora, S. 
patens, and D. 
spicata

138

139 We conducted topographic surveys of tidal marsh elevations in each location from 2014 

140 to 2018 using real-time kinematic GPS receivers (a Leica Viva GS14 GNSS Receiver and Viva 

141 CS15 field controller, or a Trimble R10 GNSS receiver and TSC2 data controller). Data 

142 collection followed National Geodetic Survey guidelines for the RT3 accuracy class (0.04–0.06 
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143 m horizontal; 0.04–0.08 m vertical precision): baselines <20 km, collection at 1 s intervals for 

144 15s, with a steady fixed height rover pole without use of a bipod [52]. 

145 We measured a suite of physicochemical parameters along five water quality stations 2–3 

146 times per year, in spring, fall, and/or summer. For each station, salinity was measured with a YSI 

147 (Professional Pro+, Xylem, Yellow Springs, OH) and samples were collected for further 

148 laboratory analyses, including total suspended sediment and dissolved nutrient concentrations 

149 (not reported). Additionally, we used existing available data and short-term water level logger 

150 deployments to determine local tidal datums for each site (Supporting Information).

151 Calculations and data analysis

152 Elevation capital, often expressed as marsh elevation relative to a tidal datum such as 

153 mean high water (MHW), is a useful proxy for tidal marsh vulnerability to SLR [14]. Tidal 

154 marshes with elevations near the upper limit of intertidal plant growth possess greater elevation 

155 capital and are more resilient to rising sea levels. Tidal datums relative to the National Tidal 

156 Datum Epoch (NTDE; 1983–2001) were computed for eight sites using the modified-range-ratio 

157 method on short-term water level measures derived from in-situ loggers (Supporting 

158 Information) [53]. This method is generally associated with accuracy of 2–3 cm for a 5-month 

159 period [54]. NOAA tide stations of Atlantic City, NJ, Lewes, DE, Cape May, NJ, or 

160 Philadelphia, PA served as controls. For Crosswicks Creek and the Christina River, tide ranges 

161 matched nearby NOAA tide stations (Newbold, PA and Delaware City, DE). Because these 

162 stations lacked datum conversions to the North American Vertical Datum 1988 (NAVD88), we 

163 obtained reference water levels by surveying water levels with real time kinematic surveys to 

164 permit conversion. We calculated average flooding times (%) for the median marsh elevations 

165 using 2016 or 2018 water level data. Elevation capital, expressed relative to MHW, was the 
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166 difference between median survey elevation (m NAVD88) and the elevation of local MHW (m 

167 NAVD88) relative to the National Tidal Datum Epoch (1983–2001).

168 To estimate rates of tidal marsh elevation change and sediment accumulation across the 

169 Delaware Estuary and Barnegat Bay, we constructed regressions of elevation and accretion 

170 against time [48, 51, 55–56]. We compared rates of accretion and vertical elevation change with 

171 local sea level rise (LSLR) trends derived from the nearest NOAA tide station [57]. We also 

172 compared trends in rates of elevation gain and sediment accretion with long-term (LT) (1969–

173 2018) and short-term (ST) (2000–2018) trends in SLR and, as well as ST (2000–2018) rates of 

174 increase in mean high water level (ST MHWR). To be conservative, we concluded that a site was 

175 gaining elevation or accreting sediment at rates significantly greater than SLR if its rate of rise 

176 (±SE) exceeded LSR. Associations were identified between key processes that determine marsh 

177 survival (elevation capital, elevation change, accretion, and shallow subsidence) with gradients 

178 in environmental conditions (salinity, tidal range, water column dissolved organic carbon, and 

179 suspended sediment concentration) using linear regression. 

180 Between 2011 and 2013, pond excavation associated with OMWM affected all of the 

181 SET-MHs at Dinner Point Creek in Barnegat Bay. We began monitoring in 2010-2012, prior to 

182 pond construction. In 2012, these activities casted ~0.20 m of sediment directly onto SET 1 

183 (Supporting Information). We then installed SET-MHs at Horse Point, an unaffected area 

184 adjacent to Dinner Point Creek. We excluded Dinner Point Creek SET 1 data from some 

185 analyses, where noted, because they were not representative of natural or ambient processes.

186 Results

187 Marsh elevation capital relative to MHW was variable among focal tidal marshes (Fig 2). 

188 In the Delaware Estuary, marshes along the Broadkill River, the Christina River, and Dennis 
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189 Creek possessed notable elevation capital, whereas Tinicum marshes sat low in the tidal frame. 

190 In Barnegat Bay, Reedy Creek and Island Beach had lower elevation capital compared to Dinner 

191 Point Creek and Horse Point. We found significant differences between long-term (i.e. NTDE) 

192 and current high tide flooding levels (Tables 2 and 3), suggesting most marshes, with the 

193 exception of Dinner Point Creek and Horse Point, sit well below the current MHW. Elevation of 

194 the marsh relative to MHW influenced accretion (R2=0.30, p<0.001) and elevation change 

195 (R2=0.13, p<0.05), such that sediment accretion and elevation change rates were greater for 

196 marshes sitting low in the tidal frame (Fig 3). However, elevation did not influence rates of 

197 shallow subsidence.

198 Fig 2. Frequency distribution of marsh elevations in Barnegat Bay and the Delaware 
199 Estuary relative to local MHW (NTDE) in meters. 
200 Vertical dashed line is 0.0 m MHW. 
201
202 Table 2. Median tidal marsh elevations relative to NAVD88, local MHW relative to the 
203 NTDE, and summer-fall mean high tide levels. Values were derived from 2016 water level 
204 data, with the exception of the Broadkill River, where data are from 2018.

Median Elevations (m)
Site NAVD88 MHW NTDE MHW 2016

% Time 
Inundated

Crosswicks Creek 1.10 -0.18 -0.29 20%
Tinicum 0.44 -0.37 -0.53 39%

Christina River 0.62 0.07 -0.34 30%
Dividing Creek 0.68 -0.04 -0.29 27%
Maurice River 0.67 -0.05 -0.30 25%
Dennis Creek 0.61 -0.03 -0.21 24%

Broadkill River1 0.39 0.02 -0.22 27%1

Reedy Creek 0.13 0.05 -0.21 67%
Island Beach 0.19 0.13 -0.09 42%
Horse Point 0.40 0.18 -0.01 12%

Dinner Point Creek 0.44 0.25 0.00 12%
205
206 Table 3. Long (1969–2018) and short-term (2000–2018) water level trends at NOAA 
207 harmonic tidal datum stations from linear regression of monthly mean tidal data.  

Mean sea level rise 
(mm yr-1)

Mean high water rise
 (mm yr-1)Tide gage Associated 

monitoring site(s) LT
1969–2018

ST
2000–2018

ST
2000–2018
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Philadelphia, PA Crosswicks Creek, 
Tinicum 4.03 6.39 9.53

Reedy Point, DE Christina River 4.16 5.60 7.11

Lewes, DE Broadkill River 3.96 6.72 7.77

Cape May, NJ
Dividing Creek, 

Maurice River, Dennis 
Creek

4.86 6.81 8.53

Atlantic City, NJ
Reedy Creek, Island 
Beach, Horse Point, 
Dinner Point Creek

4.69 5.75 7.71

208

209 Figure 3. Relationship between elevation capital relative to 2016 MHW and (A) elevation 
210 change, (B) accretion, and (C) shallow subsidence. 
211 Solid triangles are freshwater tidal marshes in the Delaware River, solid squares are salt marshes 
212 in the Delaware Bay, and hollow circles are salt marshes in the Barnegat Bay. There were no 
213 significant differences among estuaries.
214

215 Rates of LSLR and MHWR varied depending on the time period under consideration, 

216 with lower rates associated with longer time windows, and higher rates recorded over the past 19 

217 years (Table 3). Notably, LSLR was 44% greater over the past 19 years than over the last 50 

218 years, and over the past 19 years, the rise in MHW was significantly greater (30%) than LSLR 

219 (Table 3). The most rapid rate of rise was found for tidal marshes in the freshwater tidal portion 

220 of the Delaware Estuary, where MHWR has approached 1 cm yr-1 (0.95 cm yr-1), values that 

221 exceed even the most extreme forecasts for 21st century SLR rates (Najjar et al. 2000).

222 Comparisons of accretion and elevation change rates with LT LSLR show variability 

223 within and across estuaries and sites. Of the 32 surface elevation tables, excluding Dinner Point 

224 Creek SET 1, 75% had elevation trends that did not exceed rates of LT LSLR (1969–2018) 

225 (Supporting Information). When compared to ST LSLR and MHWR, only 6% and 4% of marsh 

226 areas had rates of elevation increase that kept pace, respectively. Accumulation deficits, or the 
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227 difference between LT LSLR and elevation change, varied from -4.12 to 10.8 mm yr-1 in the 

228 Delaware Estuary and -6.65 to 1.08 mm yr-1 in Barnegat Bay (Table 4) (Supporting Information). 

229 Table 4. Ranges of elevation change, accretion, and shallow subsidence summarized by 
230 tidal freshwater marshes in the Delaware River, salt marshes in the Delaware Bay, and salt 
231 marshes in Barnegat Bay. Median values are in brackets. In Barnegat Bay, Dinner Point Creek 
232 SET 1 was excluded from this table, due to dispersal of sediment from mosquito management 
233 practices causing anomalously high annual mean accretion and elevation change rates (>25 mm 
234 yr-1). Site-specific information is in Supporting Information.

Rates (mm yr-1)
Marsh type

Elevation Change Accretion Shallow Subsidence
Delaware River, freshwater 2.73 to 14.8 [4.5] 5.19 to 17 [9.5] -9.41 to 4.54 [-3.8]

Delaware Bay, saltwater 0.74 to 6.89 [4.9] 3.19 to 10.1 [5.5] -6.54 to 2.07 [-1.4]
Barnegat Bay, saltwater -1.96 to 5.77 [4.1] 1.91 to 6.72 [5.1] -5.76 to 3.61 [-1.4]

235

236 Processes of elevation change, accretion, and shallow subsidence varied between the two 

237 estuaries, as well as along the salinity gradient in the Delaware Estuary (Figs 4 and 5; Table 4). 

238 Intra-site variation of elevation change was large at some sites, with the largest range at Tinicum 

239 (8.82 mm yr-1). Twenty-four of the 32 (75%) SET-MHs experienced shallow subsidence 

240 (Supporting Information; excluding Dinner Point Creek SET 1). Seven (21%) SET-MHs 

241 experienced subsurface expansion and only one site (3%) had elevation changes that were 

242 loosely equivalent to accretion (Maurice SET 2). Shallow subsurface processes had a substantial 

243 role in elevation dynamics, whether it was due to subsurface expansion (presumably linked to 

244 belowground production) or consolidation. 

245 Fig 4. Accretion and surface elevation change for (A) the tidal freshwater marshes in the 
246 Delaware River and (B) salt marshes in the Delaware Bay. 
247 Horizontal dashed lines are LT SLR (1969–2018), ST SLR (2000–2018), or MHWR derived 
248 from the nearest NOAA tide gages (superscripts denote tidal station used for each site, north to 
249 south: (a) Philadelphia, (b) Reedy Point, (c) Cape May, and (d) Lewes. Error bars are standard 
250 error.
251
252 Fig 5. Accretion (MHs) and surface elevation change (SETs) for Barnegat Bay. 
253 Horizontal dashed lines are LT SLR (1969–2018), ST SLR (2000–2018), or MHWR derived 
254 from NOAA’s Atlantic City tide gage. Dispersal of the sediment across Dinner Point Creek SET 
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255 1 caused anomalously high annual mean accretion and elevation change rates (>25 mm yr-1) and 
256 so, those data were excluded. Error bars are standard error.
257
258 Associations among environmental parameters (salinity, tidal range, surface elevations, 

259 and water column suspended sediments) and accretion or elevation change rates were estuary-

260 dependent (Figs 6–8). In the Delaware Estuary, maximum accretion rates occurred in tidal 

261 freshwater marshes, where suspended sediment concentrations were low and tidal ranges were 

262 large. While accretion rates were positively associated with tidal range (R2 = 0.44, p<0.05) and 

263 water column suspended sediments (R2 = 0.33, p<0.05) in Delaware Estuary salt marshes, this 

264 association was not significant for freshwater marshes or salt marshes in Barnegat Bay. In salt 

265 marshes of the Delaware Estuary, subsurface process rates were more negative (subsidence) 

266 where salinities were lower (R2 = 0.42, p<0.05) and tidal ranges greater (R2 = 0.42, p<0.05).

267 Fig 6. Relationship between elevation change and (A) salinity, (B) tidal range, and (C) total 
268 suspended solids (TSS). 
269 Solid triangles are freshwater tidal marshes in the Delaware River (DF) and solid squares are salt 
270 marshes in the Delaware Bay (DS). Hollow circles are salt marshes in the Barnegat Bay (BB). 
271 Dispersal of the sediment across Dinner Point Creek SET 1 as part of construction of mosquito 
272 control ponds caused anomalously high (>25 mm yr-1) values for accretion (hollow stars) and so, 
273 those data were excluded from analyses.
274
275 Fig 7. Relationship between sediment accretion and (A) salinity, (B) tidal range, and (C) 
276 total suspended solids (TSS). 
277 Solid triangles are freshwater tidal marshes in the Delaware River (DF) and solid squares are salt 
278 marshes in the Delaware Bay (DS). Hollow circles are salt marshes in the Barnegat Bay (BB). 
279 Data from Dinner Point Creek SET 1 (hollow stars) were excluded from these analyses.
280
281 Fig 8. Relationship between shallow subsidence and A) salinity, (B) tidal range, and (C) 
282 total suspended solids (TSS). 
283 Solid triangles are freshwater tidal marshes in the Delaware River (DF), solid squares are salt 
284 marshes in the Delaware Bay (DS), and hollow circles are salt marshes in the Barnegat Bay 
285 (BB). Solid triangles are freshwater tidal marshes in the Delaware River, solid squares are salt 
286 marshes in the Delaware Bay, and hollow circles are salt marshes in the Barnegat Bay. RD

2 is the 
287 Delaware Estuary and RB

2 is for Barnegat Bay.
288
289 Sediment placement by OMWM at Dinner Point Creek SET 1 increased absolute 

290 elevations by more than 18 cm, but elevations have declined by 10 cm since 2013 (Supporting 
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291 Information). Rates of elevation change were 4.9 mm yr-1 (R2= 0.93, p < 0.05) before placement, 

292 then declined to -13.5 mm yr-1 (R2=0.83, p < 0.001) after placement. These rates are not 

293 representative of natural accretion or elevation change so the Dinner Point Creek SET 1 data 

294 point was removed from elevation change and accretion analyses. Rates of shallow subsidence at 

295 this location, however, were not anomalous so we retained those values.

296 Discussion

297 Few of the studied tidal marshes had rates of elevation change equal to or greater than LT 

298 or ST LSLR, suggesting that regional marsh loss may be associated with deficits in vertical 

299 accretion. Although accretion rates were comparable to LT LSLR, shallow subsidence offset the 

300 effects of surface accretion, and thus few sites had elevation change rates that “kept pace” with 

301 LT LSLR. From 1996–2010, tidal marsh area in Barnegat Bay and the Delaware Estuary 

302 declined by 199 ha yr-1 [35] and 194 ha yr-1 [36], respectively. Tidal marsh loss in Maryland 

303 [40], New York City [58], and Rhode Island [42] have been similarly linked to elevation changes 

304 less than LSLR. Losses, coupled with ongoing interior marsh loss and deterioration [27–28, 34, 

305 37], indicate that many marshes in this region are unable to maintain elevations relative to 

306 accelerating sea level rise. 

307 Rates of elevation change, accretion, and shallow subsidence varied across our study 

308 sites, which included tidal marshes in a coastal lagoon as well as in tidal freshwater and saline 

309 portions of a large coastal plain estuary. In the Delaware Estuary, rates of accretion and 

310 subsurface processes varied between salt (median values of 5.5 mm yr-1 for accretion and -1.4 

311 mm yr-1 for shallow subsidence) and freshwater marshes (median values of 9.5 mm yr-1 for 

312 accretion and -3.8 mm yr-1 for shallow subsidence). Differences in dominant vegetation structure 

313 and sediment sourcing contribute to higher rates of accretion in tidal freshwater marshes 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821827doi: bioRxiv preprint 

https://doi.org/10.1101/821827
http://creativecommons.org/licenses/by/4.0/


15

314 compared to salt marshes, as others have previously discussed [59–61]. In Barnegat Bay and 

315 Delaware Estuary salt marshes, magnitudes of elevation change (median values of 4.9 and 4.1 

316 mm yr-1, respectively) and accretion (median values of 5.5 and 5.1 mm yr-1, respectively) were 

317 comparable, despite higher salinities, lower suspended sediment concentrations, and smaller tidal 

318 ranges in Barnegat Bay. Previous findings suggest that in addition to sedimentation, organic 

319 production plays an important role in accretion for Barnegat Bay salt marshes [31]. 

320 As rates of elevation change and accretion rates are higher at lower elevations, it can be 

321 problematic to discern drowning or vulnerability to open water conversion without added context 

322 of elevation capital [58, 62]. For instance, accretion and elevation change rates at Tinicum 

323 mostly exceeded ST SLR, yet, these marshes sit low in the tidal frame (-0.47 m MHW), and they 

324 flooded 39% of the time during the 2016 growing season. As such, rising flood frequencies may 

325 drown vegetation at Tinicum before marshes that have greater elevation capital, but lower 

326 accretion rates. Similarly, in Barnegat Bay, Reedy Creek had lower elevation capital (0.05 m 

327 MHW) and flooding was frequent (67%), despite elevation change and accretion rates that were 

328 approximately equal with LT SLR. For tidal marshes with more elevation capital, like Horse 

329 Point (0.18 m MHW), lower elevation change or accretion rates likely reflect less sediment 

330 delivery due to less frequent tidal flooding. Thus, high accumulation or high elevation gains – 

331 rather than a symptom of high SLR resilience – may instead reflect submergence due to positive 

332 feedbacks between flooding frequency, sediment deposition, and high water column suspended 

333 sediment concentrations liberated by degrading or fragmenting wetlands.

334 Elevation processes, specifically accretion, do not wholly capture tidal marsh 

335 vulnerability to drowning or loss as other sediment dynamics also contribute to tidal marshes 

336 stability. In two Maryland-based studies, Ganju et al. [63–64] found that net sediment export 
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337 likely drove deterioration and instability of tidal marshes at Blackwater River, despite abundant 

338 suspended sediment and seemingly adequate accretion rates relative to sea level rise. Thus, 

339 Ganju et al. surmised that the release of organic marsh sediments through the deterioration 

340 process might subsidize suspended sediment concentrations and sedimentation rates [64]. In a 

341 follow-up study, Ganju et al. monitored sediment dynamics at two sites in our monitoring 

342 network: deteriorated Reedy Creek, where marshes are fragmenting, and Dinner Point Creek, 

343 which was relatively stable with a larger proportion of vegetated marsh area [65]. Those results 

344 similarly found that deterioration at Reedy Creek correlated with larger net export of sediments 

345 compared to Dinner Point Creek. From our results, rates of accretion and elevation change at 

346 Reedy Creek ranged from 4.52–6.72 mm yr-1 and 2.24–5.77 mm yr-1, respectively. Accretion and 

347 elevation change rates at Horse Point, located adjacent to Dinner Point Creek yet undisturbed 

348 from pond excavation, ranged from 5.39–5.87 mm yr-1 and 3.92–4.40 mm yr-1, respectively. Our 

349 findings ultimately support previous assertions that high rates of sediment accretion or elevation 

350 do not protect against marsh loss if they are a symptom of marsh degradation and fragmentation.

351 Although it is convention to compare tidal marsh elevation changes to LT LSLR trends to 

352 determine if accumulation debts are accruing [51], we find that ST LSLR or MHW trends more 

353 adequately represented changing inundation regimes in tidal marshes. Analysis of water levels 

354 suggest that SLR in our region was 44% greater during the 2000–2018 period than it was over 

355 the last 50 years (1969–2018), and in addition, rates of MHW rise over the past 19 years were 

356 nearly double rates of LT SLR (87% greater) (Table 3). In this study, ST LSLR and MHWR did 

357 not increase proportionately with LT LSLR across sites, so local conditions may contribute to 

358 how inundation patterns change in response to accelerating LSLR. A previous study on tidal 

359 datum changes in the U.S. similarly found that mean high water rose faster than mean sea level 
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360 at tidal gages in Atlantic City, NJ, Cape May, NJ, and Lewes, DE [66]. If local MHW rises faster 

361 than LSLR, comparing LT LSLR to elevation change rates could lead to underestimations of 

362 tidal marsh SLR vulnerability. Although differences between rates of elevation change and ST 

363 SLR or MHW presented in this study were concerning, these differences could also represent 

364 lags or shifts in tidal marsh elevation dynamics [16] that were not captured in this 8-year dataset, 

365 which only further monitoring might elucidate. 

366 Broadly, our results serve as a baseline to evaluate how patterns between elevation 

367 change and inundation become detrimental to tidal wetlands as SLR accelerates. Elevation 

368 changes relative to LSLR dynamically associate with tidal marsh elevation capital, and so, 

369 accretion is likely to increase with rising water levels. Although increased flooding facilitates 

370 greater accretion, temporal lags may exist between increasing depth and duration of floods and 

371 cumulative sediment accumulation [16]. Tidal marsh plants are most productive within a specific 

372 range of elevations relative to local tidal datum [11], so delays in elevation building by 

373 sedimentation leads to reduced plant production as rapidly rising water levels surpass optimal 

374 growth elevations. Indeed, many recent studies have attributed marsh losses to plant intolerance 

375 to excessive flooding caused by rising water levels [29, 67–70]. Subsequent vegetated area losses 

376 cause further destabilization through net sediment export [65]. A portion of our sites had 

377 accretion rates congruent with LT SLR and nearly all were well below ST SLR, thus we posit 

378 that sedimentation paces dynamically with LT SLR but lags behind ST SLR so that biological 

379 limitations associated with plant flood tolerance drives marsh deterioration or drowning. In 

380 future studies, it may be more pragmatic to ask whether marshes are “catching up” with SLR, 

381 rather than intrinsically “keeping pace.” 

382 Conclusions
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383 Rates of elevation change in most (96%) tidal marshes across the Delaware Estuary and 

384 Barnegat Bay have not kept pace with recent (2000–2018) rising water levels. Accumulation 

385 deficits, relative to LT LSLR (1969–2018), varied from -4.12 to +10.8 mm yr-1 in the Delaware 

386 Estuary and -6.59 to +1.08 mm yr-1 in Barnegat Bay. Overall, rates of elevation change, sediment 

387 accumulation, and shallow subsidence varied between estuaries and across sites. Relationships 

388 among these rates and salinity, water column suspended sediments, and tidal range differed by 

389 geography. We found that more recent water level information was useful in determining 

390 inundation frequency more precisely. Due to the importance of sustained tidal marsh acreage to 

391 coastal communities across the U. S. Mid Atlantic, we hope these data provide much-needed 

392 context for future intervention efforts focused on preventing losses due to rising sea levels in our 

393 region.
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631 Fig S1. Trends of elevation change at Dinner Point Creek SET 1 before and after it was 
632 abruptly buried with sediment as part of the adjacent construction of a mosquito 
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636

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821827doi: bioRxiv preprint 

https://doi.org/10.1101/821827
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821827doi: bioRxiv preprint 

https://doi.org/10.1101/821827
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821827doi: bioRxiv preprint 

https://doi.org/10.1101/821827
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821827doi: bioRxiv preprint 

https://doi.org/10.1101/821827
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821827doi: bioRxiv preprint 

https://doi.org/10.1101/821827
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821827doi: bioRxiv preprint 

https://doi.org/10.1101/821827
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821827doi: bioRxiv preprint 

https://doi.org/10.1101/821827
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821827doi: bioRxiv preprint 

https://doi.org/10.1101/821827
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821827doi: bioRxiv preprint 

https://doi.org/10.1101/821827
http://creativecommons.org/licenses/by/4.0/

