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Abstract 

Host-microbe interactions are crucial for normal physiological and immune system development and are 
implicated in a wide variety of diseases, including inflammatory bowel disease (IBD), obesity, colorectal 
cancer (CRC), and type 2 diabetes (T2D). Despite large-scale case-control studies aimed at identifying 
microbial taxa or specific genes involved in pathogeneses, the mechanisms linking them to disease have 
thus far remained elusive. To better identify potential mechanisms linking human-associated bacteria with 
host health, we leveraged publicly-available interspecies protein-protein interaction (PPI) data to identify 
clusters of homologous microbiome-derived proteins that bind human proteins. By detecting human-
interacting bacterial genes in metagenomic case-control microbiome studies and applying a tailored 
machine learning algorithm, we are able to identify bacterial-human PPIs strongly linked with disease. In 
9 independent case studies, we discover the microbiome broadly targets human immune, oncogenic, 
apoptotic, and endocrine signaling pathways, among others. This host-centric analysis strategy illuminates 
human pathways targeted by the commensal microbiota, provides a mechanistic hypothesis-generating 
platform for any metagenomics cohort study, and extensively annotates bacterial proteins with novel host-
relevant functions.  
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Manuscript 

Metagenomic case-control studies of the human gut microbiome have implicated bacterial genes in a 
myriad of diseases. Yet, the sheer diversity of genes within the microbiome and the lack of functional 
annotations have thwarted efforts to identify the mechanisms by which these bacterial genes impact host 
health. In the cases where functional annotations exist, they tend to refer to molecular function (e.g. DNA 
binding, post-translational modification) rather than their role in biological pathways1, and fewer even 
relate to host cell signaling and homeostasis. Obtaining a clearer idea of the health impacts of each gene 
has thus far required experimental approaches catered to each gene or gene function2,3.  

We hypothesized that host-microbiome protein-protein interactions may underlie health status and could 
serve to provide additional information, through annotation of human pathways, about the role of bacteria 
in modulating health. Protein-protein interactions (PPIs) have revealed the mechanisms by which 
pathogens interact with host tissue through in-depth structural studies of individual proteins3–5, as well as 
large-scale whole-organism interaction screens6,7. Although there are canonical microbe-associated 
patterns (MAMPs) that directly trigger host-signaling pathways through pattern recognition receptors 
present on epithelial and immune tissues8, such as flagellin with Toll-like receptor 5 (TLR5), several 
recent observations have further underscored a role for commensal-host PPIs in health: An integrase 
encoded by several Bacteroides species binds human islet-specific glucose-6-phosphatase-catalytic-
subunit-related protein (IGRP) thereby protecting against colitis9; a protease secreted by Enterococcus 
faecalis binds incretin hormone glucagon-like peptide 1 (GLP-1), a therapeutic target for type 2 diabetes 
(T2D)10; and a slew of ubiquitin mimics encoded by both pathogens11 and gut commensals12 play a role in 
modulating membrane trafficking.  

In the absence of experimental data, in silico homology modeling has been used to great effect to inform 
pathophysiology using inferred host-pathogen PPI networks11,13,14, but such approaches have not yet been 
applied to the human gut microbiome. Here, we leverage roughly 8,000 experimentally-verified binary 
inter-species PPIs from the IMEx Consortium members, as curated in the publicly-available IntAct 
database15 (Figure 1A), to gain insight into host-microbiome interactions. By propagating interactions to 
all bacterial proteins sharing the same UniRef homology clusters16, we expanded the set of human-
microbe PPIs to include over 1.6 million bacterial proteins and 4,186 human proteins, comprising more 
than 8 million interspecies interactions (Figure 1A, Extended Data Figure 1).  

Focusing on diseases where abundant information links microbiota with disease phenotypes and where 
large case-control cohorts exist—namely colorectal cancer (CRC)17–20, T2D21,22, inflammatory bowel 
disease (IBD)23,24 and obesity25 (Extended Data Table 1)—we then mapped quality-filtered metagenomic 
sequencing reads from nine case-control study cohorts to our database of bacterial human-protein 
interactors. Using stringent detection criteria, we find roughly 255,000 potential human-bacterial 
interactions across the human microbiome. Inferred bacterial interactors found in the human microbiome 
have strong homology with proteins with experimentally-verified human interaction data (Figure 1B, 
Extended Data Figure 2). We applied a random forest machine learning algorithm to differentiate between 
cases and controls in each study based on binary detection vectors of both bacterial protein clusters and 
targeted human proteins. We calculated a balance-aware forest-based feature importance metric26,27 to 
rank the disease-association of each bacterial or human protein relative to their detection frequency, 
hereby called ‘zboost’.  

We noticed that a disproportionate number of bacteria-human PPIs in IntAct were derived from high-
throughput screens performed on three intracellular pathogens: Yersinia pestis, Francisella tularensis and 
Bacillus anthracis6. Nevertheless, we find that patient-detected bacterial clusters are taxonomically 
diverse, not biased towards the originating classes of these three pathogens—Bacilli or 
Gammaproteobacteria—and rather, reflect the breadth of taxa typically associated with human gut 
microbiomes (Figure 1C, Extended Data Figure 3).  
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Overall, we are able to reasonably predict disease based on the detection of either bacterial or human 
interactors (Figure 1D).  Interestingly, our approach showed greater predictive capability in some datasets 
over others, even for the same disease. We suspect this variation may be due to the wide range of 
etiologies that give rise to these diseases, as is the case for CRC, which can be driven by germ-line 
mutation, immune status, diet and environmental factors28. Taking these studies together, the variation 
between the detected human interactors across participants could not be explained purely by the health 
status of the individual, the specific cohort, or any other available characteristic associated with the 
samples (Extended Data Figure 5). The only exception was one IBD study where ethnicity correlated with 
disease status, and was therefore excluded from the remainder of our analyses. 

We identify subsets of important bacterial interactors and their human targets that are predictive of 
disease (Figure 1D; Extended Data Figure 4). We applied two thresholds to generate protein sets for 
analysis: those with zboosts greater than 0 (zposbact and zposhum) and those with zboosts greater than the 
magnitude of the minimum zboost (zstrictbact and zstricthum). Within the larger human subsets (zposhum), 
we find proteins with established roles in cellular pathways coherent with the pathophysiology of CRC, 
IBD, obesity and T2D. For example, we find that DNA fragmentation factor subunit alpha (DFFA) is 
important in T2D (in the Qin et al. cohort), and is involved in death receptor signaling, an important 
pathway for the destruction of insulin-producing β-cells29. Collagen alpha-1(I) chain (COL1A1) is also a 
significant target associated with T2D (in the Karlsson et al. cohort), and plays a role in dendritic cell 
maturation and hepatic fibrosis/hepatic stellate cell activation pathways, capturing known comorbidities 
between T2D and hepatic steatosis and nonalcoholic steatohepatitis (NASH)30. Proteins important in CRC 
studies spanned expected bacteria-associated pathways, such as the direct sensing of enterotoxins, e.g. 
heat-stable enterotoxin receptor GUCY2C (in the Feng et al. and Zeller et al. cohorts); but also classical 
cancer-associated pathways, such as the maintenance of DNA integrity, e.g. protection of telomeres 
protein 1 (POT1) (in the Feng et al. and also the Qin et al. cohorts) and X-ray repair cross-complementing 
protein 6 (XRCC6) (in the Feng et al. and Yu et al. cohorts), the latter of which is required for double-
strand DNA break repair. We also find common targeting of human pathways across diseases that speak 
to their known shared etiologies and symptoms, for instance, actin-related protein 2/3 complex subunit 2 
(ARPc2) (in the Yu et al., Schirmer et al. and Karlsson et al. cohorts), a protein involved in remodeling 
epithelial adherens junctions, a process strongly associated with IBD31, CRC32 and, most recently, T2D33.  

These examples are illustrative of a larger trend of disease-associations driven by host-microbiome 
interactions. A more robust statistical analysis for overall pathway enrichment in the zposhum subset 
confirms significant enrichment in pathways involving the immune system, apoptosis, oncogenesis, and 
endocrine signaling, among others (Figure 1E). Although we see significant overlap in the pathways 
targeted across diseases, which may reflect their associated relative risks33–37, there is some disease-
specificity. For example, more human proteins in the antigen presentation pathway are differentially 
targeted in T2D and obesity cohorts than elsewhere. In the CRC cohorts, more zposhum proteins target the 
CD40 signaling, RANK signaling in osteoclasts, and TR/RXR activation pathways than other studies. 

We next sought to determine whether the human protein interactors that we associated with disease were 
enriched for relevant previously-reported gene-disease associations (GDA). We find many human targets 
associated with microbiome-related disorders, such as CRC, diabetes, autoimmune disease, obesity and 
IBD (Figure 2A). Although none of the cohorts we studied focused on the larger spectrum of autoimmune 
disease, these disorders are increasingly studied in the context of the gut microbiome38, and therefore we 
included them in our analysis. Interestingly, our disease annotations were ubiquitous (82.5% of the 
zstricthum subset had at least one GDA), but were not strictly isolated to the matching metagenomic 
cohort’s condition (Figure 2A, Extended Data Table 2). Across the larger zposhum subset, GDAs for these 
microbiome-associated disorders were enriched overall, with the exception of obesity, where annotation is 
generally scarce (Figure 2B). Surprisingly, in the CRC cohorts were a number of previously identified 
CRC-associated genetic loci, including well-known cancer genes: tumor protein p53, epidermal growth 
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factor receptor (EGFR), matrix metalloprotease 2 (MMP2), and insulin-like growth factor-binding protein 
3 (IGFBP3), among others.  

Our data suggest many molecular mechanisms that might be regulating human cellular functions through 
bacterial proteins. In order to better contextualize these mechanisms, we asked whether any of the human 
proteins in our dataset were already known to be drug targets. Using the Probes & Drugs database39, we 
find many zstricthum proteins are targeted by drugs (Extended Data Table 3). In many cases, those drugs 
are known to either treat or affect the pathogenesis of the microbiomes of patients with those diseases. For 
example, in both T2D cohorts, we found elevated zboost scores associated with human protein Rev-ErbA 
alpha (NR1D1), the target of the drugs GSK4112, SR9009 and SR9011, which inhibit the binding of Rev-
ErbA alpha with its natural ligand, heme (Figure 2C). These drugs have been shown to affect cellular 
metabolism in vitro and affect hyperglycaemia when given to mouse models of metabolic disorder40,41.  

We also find instances where our analysis of a particular disease cohort is consistent not with the 
therapeutic purpose of a drug targeted by human interactors in that microbiome, but with off-label effects 
or side effects associated with the drug. For example, we find that imatinib mesylate (brand name: 
Gleevec), has several human binding partners, including macrophage colony-stimulating factor 1 receptor 
(M-CSF1R) (Figure 2D), an important target found in CRC (in the Feng et al. cohort), and platelet-
derived growth factor receptor-β (PDGFR-B), an important target found in the obesity and T2D (in the Le 
Chatelier et al. and Qin cohorts, respectively). Literature on imatinib supports these findings: although 
imatinib is best known as a treatment for leukemia, it has been shown to affect glycemic control in 
patients with T2D42. Furthermore, imatinib can also halt the proliferation of colonic tumor cells and is 
involved generally in inflammatory pathways, through its inhibition of TNF-alpha production43. 

One of the major advantages of our work is that through homology mapping, we vastly improve our 
overall ability to annotate host-relevant microbiome functions. When we annotated the microbial 
pathways using KEGG (Kyoto Encyclopedia of Genes and Genomes)44, we found that 41.2% of the 
zposbact protein clusters found in human microbiomes lacked any pathway information (Figure 3A). Yet, 
these genes can now be annotated according to the pathways of their human targets, obtaining a putative 
disease-relevant molecular mechanism (Figure 3A, B). This host-centric annotation is useful beyond 
large-scale analysis of metagenomic data, but it broadly enables hypothesis-driven research into how 
these microbial proteins impact host health. 

We examined the means by which bacterial proteins may be interacting with host proteins and found that 
a majority of bacterial protein clusters (90.2% of zposbact) contain proteins that are transmembrane, are 
secreted by type 3 or type 4 secretion systems, and/or contain eukaryotic-like domains (Figure 3C), 
another marker for secretion. Of particular interest were bacterial proteins in this subset that have well-
known core functions, e.g. protein chaperones DnaK and GroL, RNA polymerases RpoB and RpoC, and 
canonical glycolysis enzymes, among others. A number of these proteins have been previously identified 
as ‘moonlighting’ proteins, which perform secondary functions in addition to their primary role in the 
cell45. Mycoplasma pneumoniae DnaK and enolase, a protein involved in glycolosis, from a number of 
pathogens, bind to both human plasminogen and extra-cellular matrix components46,47. Mycobacterium 
tuberculosis DnaK signals to leukocytes causing the release of the chemokines CCL3-548. Streptococcus 
pyogenes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), another protein involved in glycosylis, 
can be shuffled to the cell surface where it plays a role as an adhesin, and can also contribute to human 
cellular apoptosis49. These examples widely illustrate how bacterial housekeeping proteins are used by 
pathogens to modulate human health. In this study, we uncover commensal proteins that have 
‘interspecies moonlighting’ functions, which are not constrained to pathogenic organisms, but are 
pervasive throughout our indigenous microbiota.  

Here, we reveal for the first time an extensive host-microbiome PPI landscape. This work highlights the 
myriad host mechanisms targeted by the gut microbiome and the extent to which these mechanisms are 
targeted across microbiome-related disorders. However, this network is far from complete. Few of the 
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interaction studies on which this interaction network is based were performed on commensal bacteria and 
therefore, we may be missing interactions specific to our intimately associated bacteria. In addition to 
large-scale PPI studies involving commensal bacteria and their hosts, further in-depth studies will be 
needed to fully characterize these mechanisms, such as whether these bacterial proteins activate or inhibit 
their human protein interactors’ pathways.  

This platform enables a high-throughput glimpse into the mechanisms by which microbes impact host 
tissue, allowing for mechanistic inference and hypothesis generation from any metagenomic dataset. 
Much as recent studies have uncovered the mechanistic roles of commensal-derived small molecules in 
disease50, we shed light on a greater role for commensal-derived proteins. By focusing on proteins, our 
methods connect pharmacology, human genetic variation and microbiome diversity through tangible 
mechanisms, owing to the large amount of existing data on human proteins. Pinpointing those microbe-
derived proteins that interact directly with human proteins will pave the way for novel diagnostics and 
therapeutics for microbiome-driven diseases, more nuanced definitions of the host-relevant functional 
differences between bacterial strains, and a deeper understanding of the co-evolution of humans and other 
organisms with their commensal microbiota.   
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Figures 

Figure 1. Identifying human-interacting bacterial proteins within the gut microbiomes of T2D, 
obesity, IBD and CRC cohorts reveals enrichment for disease-associated pathways in human cells.  

(A) The number of interspecies bacterial proteins (blue), human proteins (orange) and interactions 
(dark blue) in the IntAct database; those inferred using homology clusters (UniRef); those 
determined to be present in the gut microbiomes from nine metagenomic studies; and those 
deemed important (zboost greater than zstrict, the magnitude of the minimum zboost) through our 
comparative metagenomic machine learning approach. If we use the zpos cutoff (zboost greater 
than zero), we find 40,663 important bacterial proteins (comprising 582 protein homology 
clusters), 1,156 important human proteins and 149,045 interactions between them. For zstrict, the 
bacterial proteins comprise 128 protein homology clusters.  

(B) Histograms showing the maximum and minimum percent identity per bacterial cluster between 
bacterial proteins with experimental verification and proteins detected in human microbiomes. 
The histograms are annotated with a gaussian kernel density estimate of the distribution. 

(C) The number of bacterial clusters that include members from each bacterial phyla and class. Note 
that most clusters contains proteins from more than one class and phylum. 

(D) Distributions of human proteins targeted in the gut microbiomes associated with each study 
according to their zboost scores (left). Numbers of proteins with zboost scores over zpos and 
zstrict are noted. Receiver-operator characteristic (ROC) curves for our random forests 
predictions for each dataset (right) based on bacterial (blue) proteins or their human interactors 
(orange), along with their corresponding AUC values.  

(E) Human cellular pathways overrepresented in the zposhum subset (Benjamini-Hochberg false 
discovery rate (BHFDR) ≤ 0.05). –log(BHFDR) of each pathway is displayed on the barplot to 
the left. The heatmap is colored according to the percent of pathway members differentially 
targeted in each case-control cohort. 

 
Figure 2. Human proteins differentially targeted by the microbiome in disease are enriched for 
particular gene-disease associations and contain known therapeutic drug targets. 

(A) Important human proteins (zstricthum) are plotted with their bacterial partners (gray), according to 
their disease-gene associations in the DisGeNet database: CRC (red), diabetes (blue), 
autoimmune disease (green), obesity (mauve) and IBD (brown).  

(B) Bar chart comparing the proportions of human proteins with disease-gene associations in 
important human proteins (zposhum) targeted by microbiomes and all human proteins in 
DisGeNet.  

(C) RevErbA alpha (NR1D1) binds several human proteins (not shown), DNA (not shown) and 
heme. GSK4112 competitively binds Rev-ErbA alpha, inhibiting binding with heme. ParE is a 
microbiome protein present in a diverse range of organisms and has a high relative risk associated 
with T2D.  

(D) Macrophage colony stimulating factor 1 receptor (CSF1R) is targeted by imatinib, among other 
drugs, as well as the uncharacterized bacterial protein YqeH, a protein that has a low relative risk 
associated with CRC. 

 
Figure 3. Human pathway annotation can be transferred across interactors to improve bacterial 
pathway annotation. 

(A) Paired stacked bar plots showing the disease-associated bacterial cluster pathways annotated by 
KEGG (left) and their inferred pathways according to the human proteins they target (right), as 
annotated by WikiPathways51.  

(B) Human pathways (annotated using WikiPathways) targeted by disease-associated bacterial 
clusters. The 75 human pathways with the most previously unannotated bacterial targeters 
(annotated using KEGG) are shown. 
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(C) The number of zposbact clusters plotted according to their transmembrane and secretion 
predictions, i.e. type 3 or type 4 secretion systems (T3SS or T4SS), and/or the presence of 
eukaryotic-like domains (ELDs).  

 
Extended Data Figures 
 
Extended Data Figure 1. An outline of our homology mapping procedure and alignment.   
Depiction of the interaction network inference and protein detection pipeline. Note that only bacterial 
proteins found to be human-interactors through the mapping procedure are used as candidates for 
detection in metagenomic studies. 
 
Extended Data Figure 2. Pairwise identity between proteins found in the human microbiome and 
those with experimentally verified interaction. 
Histogram showing the percent identity between all bacterial proteins with experimental verification and 
their corresponding detected proteins in human microbiomes. This histogram is annotated with a gaussian 
kernel density estimate of the distribution. 
 
Extended Data Figure 3. Taxonomic diversity in bacterial clusters detected in patients. 
Histogram showing the number of species, genera, families, orders, classes and phyla for bacterial 
clusters with members detected in human microbiomes.  
 
Extended Data Figure 4. Human protein interactors according to their zboost scores and log odds 
ratio.  
Volcano plots of the human protein interactors present in each study according to their zboost scores and 
log odds ratios in each case-control cohort study. 
 
Extended Data Figure 5. Clustering of cases and controls is not due to disease status, study or 
metadata, except for ethnicity in Nielsen et al.  
(A) Principal components analysis of detected human protein interactors for samples, according to study. 
(B) Principal components analysis of detected human protein interactors for all samples in nine 
metagenomic studies colored by disease status according to study. Controls are all colored together in 
blue. 
(C) Principal components analysis of detected human protein interactors in each study, separated by 
controls (blue) and cases (orange).   
 

Extended Data Tables 

Extended Data Table 1. Metagenomic studies used in this research.  
For each study, we list its focus, the labels in the cohort study, the patient count for each of the labels, 
how we grouped cases and controls, the number of detected bacterial clusters and inferred human 
interactors, and the number of important bacterial and human proteins, passing each of our thresholds: 
zpos (zboost greater than zero) and zstrict (zboost greater than the magnitude of the minimum zboost). 
 
Extended Data Table 2. Important human interactors that have known gene-disease associations. 
Listed are the important zstricthum proteins with gene-disease associations in DisGeNet, along with the 
study in which they are found to be important.  
 
Extended Data Table 3. Important human interactors that are known drug targets. For each human 
protein in the zsighum subset, we list the drug interactor and the study in which it was found to be 
important.   
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Methods 
 
Building a putative bacteria-human protein-protein interaction (PPI) network 
Interactions were downloaded from the IntAct database [August 2018]. Only interactions with evidence 
codes that indicated binary, experimental determination of the interaction between UniProt identifiers 
with non-matching taxa were preserved, thereby excluding co-complex associations, small molecule 
interactions, and predicted interactions. This resulted in a set of 296,103 interspecies PPIs. Interspecies 
protein interactors were mapped to their UniRef sequence clusters at the 100%, 90%, and 50% identity-
to-seed levels, which are publicly available through the UniProt web service. Given two UniRef 
homology clusters with a known PPI between their members, we map that interaction to all combinations 
of members from the two clusters. We perform this mapping at all levels of homology (and their 
combinations). From this large list of putative PPIs, we store only interactions between bacterial proteins 
and reviewed SwissProt human proteins. The latter step avoids the over-annotation of human isoforms or 
homologs, or non-verified human proteins. Overall we generate 8,808,328 bacteria-human PPIs involving 
1,613,641 bacterial proteins and 4,186 reviewed human proteins. This corresponds to 18,097 interactions 
between 33,123 UniRef clusters containing bacterial proteins and the aforementioned 4,186 reviewed 
human proteins.  
 
Detection of human-targeting proteins in metagenomic shotgun sequencing data 
Reads from nine metagenomic studies (Extended Data Table 1) were downloaded from the Sequence 
Read Archive (SRA) using fasterq-dump. Reads belonging to more than one replicate from the same 
patient were concatenated and treated as a single run. Reads were then dereplicated using prinseq 
(v0.20.2) and trimmed using trimmomatic (v0.36) with the following parameters:  
 

Dereplication 
perl prinseq-lite.pl -fastq {1} -fastq2 {2} \ 
        -derep 12345 -out_format 3 -no_qual_header \  
        -out_good {3} -out_bad {4}; 
 
{1,2} Refer to paired read input files 
{3,4} Refer to output filepaths 
 
Trimming 
java -Xmx8g -jar trimmomatic-0.36.jar \ 
        PE -threads 5 {1} 
        ILLUMINACLIP:{2}:2:30:10:8:true \ 
        SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MINLEN:50 
 
{1} Refer to input files 
{2} Is the path to a fasta file of Nextera TruSeq adapters  

 
Paired reads were combined into a single file and aligned to a protein library of all 1,613,641 human-
interacting bacterial proteins generated above. This read-to-protein alignment was performed using blastx 
through the diamond command line tool (v0.9.24.125). Read alignments were filtered to only consider 
results with an identity of at least 90% and no gaps. Bacterial proteins were considered detected with 
sufficient depth and coverage: more than 10 reads across 95% of the protein sequence, excluding 10 
amino acids at each terminus. We assign any bacterial protein detection to its corresponding UniRef 
homology cluster. Human-interacting bacterial clusters are marked as either ‘detected’ or ‘not detected’ 
for each patient in each study. For each patient, we also generate a file of human proteins that are targeted 
by their detected bacterial proteins based on our bacteria-human PPI network.  
 
Prioritization of disease-associated bacterial protein clusters and human targets 
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Each patient from each study can be represented as either (a) a binary vector of detected bacterial protein 
clusters or (b) a binary vector of targeted human proteins. We removed human proteins that were 
considered redundant based on the same exact bacterial protein partners in our database. We used either 
the bacterial protein clusters or the human interactors to separate case and control cohorts using a random 
forest machine learning algorithm. Though classically we could simply extract the average Gini 
coefficient of the trained random forest and use that as a proxy for feature importance, binary labels 
introduce a complication: the balance of each feature can limit or inflate the Gini coefficients for that 
feature. In order to avoid for this complication we use an empirical normalization method similar to 
previous work in the field, that we call zboost.  
 

zboost algorithm 
 
(1) Fit a random forest with 100 estimators (X=protein detection per patient , y=case/control labels), 
then extract and store the average Gini coefficient for each feature (𝐺𝑖𝑛𝑖$%&'( ) 
 
(2) For each feature, generate a random binary vector with similar balance, where each protein 
detection in each patient is a Bernoulli trial where:  
 

𝑃(1) = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙	𝑝𝑎𝑡𝑖𝑒𝑛𝑡	𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	𝑓𝑜𝑟	𝑡ℎ𝑎𝑡	𝑝𝑟𝑜𝑡𝑒𝑖𝑛 
 
(3) Fit a random forest with 300 estimators (X=random protein detection per patient, y=case/control 
labels), then extract and store the average Gini coefficient for each feature (𝐺𝑖𝑛𝑖$&;<( ) 
 
(4) Calculate the zboost of each feature as: 

𝑧𝑏𝑜𝑜𝑠𝑡( =
𝑎𝑣𝑔(𝐺𝑖𝑛𝑖$%&'( ) − 	𝑎𝑣𝑔(𝐺𝑖𝑛𝑖$&;<( )
max	(𝑠𝑡𝑑(𝐺𝑖𝑛𝑖$%&'( ), 𝑠𝑡𝑑(𝐺𝑖𝑛𝑖$&;<( ))

 

 
(5) Calculate the width of the zboost distribution, given as: 
 

𝑤𝑖𝑑𝑡ℎ = max(𝑧𝑏𝑜𝑜𝑠𝑡) − min	(𝑧𝑏𝑜𝑜𝑠𝑡) 
 
(6) Repeat 1-5 until the width of the zboost distribution does not increase for 200 iterations. 
 

 
An extra step of filtering is applied to avoid uninformative proteins (too rarely detected, or ubiquitous): 
any proteins where the minimum value in their expected contingency matrix (case/control vs. 
detected/not-detected) is less than 5 is removed from consideration. We apply the zboost algorithm to 
both the bacterial-protein and human-protein binary representations of each patient for all 9 studies. 
Additionally, we measure our performance on these tasks by training a separate random forest, with 200 
estimators, using 5-fold cross-validation.   
 
This work was implemented and applied to our datasets using python (v3.7.3), pandas52 (v0.25.1) and the 
scikit-learn53 library (v0.21.3). We used two thresholds when conducting analysis on the resulting data: 
zpos, where zboosts must be greater than zero, and zstrict, where zboost must be greater than the absolute 
value of the lowest zboost in that learning task.  
 
The high performance in the Nielsen et al. study, along with the lack of significant proteins using zboost 
(only two passing the zstrict threshold), led to the exclusion of this study from further analysis, as we 
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believe that the signal is driven by the demographic differences between cases and controls in this 
particular study. No available metadata explained the variation in the other metagenomic studies. 
 
Identity measurements 
For each bacterial cluster, we compared the sequence identity between the bacterial proteins with 
experimentally verified interactions with human proteins and the bacterial proteins detected in human 
microbiomes from the same UniRef cluster. Original interactors and their homologs were aligned using 
Smith-Waterman local alignment with a BLOSUM62 matrix via python’s parasail library (v.1.1.17). The 
identity was calculated as the number of exact matches in the alignment, divided by the total number of 
alignment columns. Note that this denominator results in  an under-estimation of the identity relative to 
UniRef’s cluster identities.  
 
Pathway enrichment analysis, disease and functional annotations 
We performed pathway enrichment analysis using QIAGEN’s Ingenuity Pathway Analysis (IPA)54 tool. 
All zposhum proteins were uploaded as UniProt identifiers into the interface. Core Enrichment Analysis 
was conducted on all human tissue and cell lines from all data sources under IPA’s stringent evidence 
filter. Pathways were considered enriched if they had both a -log(p-value) ≥ 1.3 and a Benjamini-
Hochberg False Discovery Rate less or equal to 5%. 
 
Disease annotations were extracted from all of gene-disease associations from DisGeNet (v.6.0). Lacking 
a simple hierarchy of disease, we binned similar disease terms into the 5 larger categories: 
 

CRC: Adenocarcinoma of large intestine, Hereditary non-polyposis colorectal cancer syndrome, 
Hereditary nonpolyposis colorectal carcinoma, Malignant neoplasm of colon stage IV, Malignant 
neoplasm of sigmoid colon, Malignant tumor of colon, Microsatellite instability-high colorectal 
cancer,  

 
Diabetes: Brittle diabetes, Familial central diabetes insipidus, Fibrocalculous pancreatic diabetes, 
Gastroparesis due to diabetes mellitus, Insulin resistance in diabetes, Insulin-dependent but 
ketosis-resistant diabetes, Insulin-dependent diabetes mellitus secretory diarrhea syndrome, 
Insulin-resistant diabetes mellitus, Insulin-resistant diabetes mellitus at puberty, Latent 
autoimmune diabetes mellitus in adult, Macroalbuminuric diabetic nephropathy, Maturity onset 
diabetes mellitus in young, Maturity-onset diabetes of the young, type 10, Maturity-onset diabetes 
of the young, type 11, Microalbuminuric diabetic nephropathy, Moderate nonproliferative 
diabetic retinopathy, Monogenic diabetes, Neonatal diabetes mellitus, Neonatal insulin-dependent 
diabetes mellitus, Non-insulin-dependent diabetes mellitus with unspecified complications, 
Nonproliferative diabetic retinopathy, Other specified diabetes mellitus, Other specified diabetes 
mellitus with unspecified complications, Pancreatic disorders (not diabetes), Partial nephrogenic 
diabetes insipidus, Prediabetes syndrome, Proliferative diabetic retinopathy, Renal cysts and 
diabetes syndrome, Severe nonproliferative diabetic retinopathy, Transient neonatal diabetes 
mellitus, Type 2 diabetes mellitus in nonobese, Type 2 diabetes mellitus in obese, Type 2 diabetes 
mellitus with acanthosis nigricans, Visually threatening diabetic retinopathy, diabetes (mellitus) 
due to autoimmune process, diabetes (mellitus) due to immune mediated pancreatic islet beta-cell 
destruction, diabetes mellitus risk, idiopathic diabetes (mellitus), postprocedural diabetes 
mellitus, secondary diabetes mellitus NEC 

 
Autoimmune: Addison's disease due to autoimmunity, Adult form of celiac disease, Aneurysm of 
celiac artery, Ankylosing spondylitis, Ankylosing spondylitis and other inflammatory 
spondylopathies, Arteriovenous fistulas of celiac and mesenteric vessels, Blood autoimmune 
disorders, Bullous systemic lupus erythematosus, Chilblain lupus 1, Dianzani autoimmune 
lymphoproliferative syndrome, Dilatation of celiac artery, Hyperthyroidism, Nonautoimmune, 
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Latent autoimmune diabetes mellitus in adult, Maternal autoimmune disease, Multiple sclerosis in 
children, Neonatal Systemic lupus erythematosus, Subacute cutaneous lupus, Systemic lupus 
erythematosus encephalitis, Venous varicosities of celiac and mesenteric vessels, Warm 
autoimmune hemolytic anemia, diabetes (mellitus) due to autoimmune process, lupus cutaneous, 
lupus erythematodes 

 
Obesity: Abdominal obesity metabolic syndrome, Adult-onset obesity, Aplasia/Hypoplasia of the 
earlobes, Childhood-onset truncal obesity, Constitutional obesity, Familial obesity, Generalized 
obesity, Gross obesity, Hyperplastic obesity, Hypertrophic obesity, Hypoplastic olfactory lobes, 
Hypothalamic obesity, Moderate obesity, Overweight and obesity, Overweight or obesity, 
Prominent globes, Simple obesity, Type 2 diabetes mellitus in nonobese, Type 2 diabetes mellitus 
in obese 
 
IBD: Acute and chronic colitis, Acute colitis, Allergic colitis, Amebic colitis, Chronic colitis, 
Chronic ulcerative colitis, Crohn Disease, Crohn's disease of large bowel, Crohn's disease of the 
ileum, Cytomegaloviral colitis, Distal colitis, Enterocolitis, Enterocolitis infectious, Eosinophilic 
colitis, Food-protein induced enterocolitis syndrome, Hemorrhagic colitis, IIeocolitis, Infectious 
colitis, Left sided colitis, Necrotizing Enterocolitis, Necrotizing enterocolitis in fetus OR 
newborn, Neonatal necrotizing enterocolitis, Non-specific colitis, Pancolitis, Pediatric Crohn's 
disease, Pediatric ulcerative colitis, Perianal Crohn's disease, Typhlocolitis, Ulcerative colitis in 
remission, Ulcerative colitis quiescent 

 
We annotated bacterial protein clusters with their corresponding KEGG pathways by blasting all detected 
bacterial proteins of interest against the KEGG prokaryotes peptide file using blastp. Results had an 
identity ≥43.9% and e-values below 0.00067. 
 
Human pathway annotation was performed using the mygene python library. Specifically, we queried 
pathway annotations from Wikipathways.  
 
We submitted our bacterial sequences to EffectiveDB55 in order to obtain predictions for EffectiveT3 
(type 3 secretion based on signal peptide), T4SEpre (type 4 secretion based on composition in C-
terminus), EffectiveCCBD (type 3 secretion based on chaperone binding sites), and EffectiveELD 
(predicts secretion based on eukaryotic-like domains). We used the single default cutoffs for T4SEpre, 
EffectiveCCBD, and EffectiveELD, and chose the ‘sensitive’ cutoff (0.95) rather than the ‘selective’ 
(0.9999) cutoff for EffectiveT3. Transmembrane proteins or signal peptides were predicted using 
TMHMM56 (v.2.0c), with a threshold of 19 or more expected number of amino acids in transmembrane 
helices. 
 
Drug target information was extracted from probes-and-drugs (04.2019 database dump). Bacterial 
taxonomy information was extracted from NCBI. UniProt identifiers and annotations were downloaded 
using UniProt SPARQL endpoint. 
 
Statistics 
 
For Figure 2B, p-values for the difference in the proportion of DisGeNet proteins and disease-associated 
proteins was calculated through a chi squared test (dof=1): The total number of DisGeNet and disease-
associated proteins is 17,549 and 767 respectively. For the labels CRC, Diabetes, Autoimmunity, Obesity, 
and IBD we find {2128, 355, 420, 195, and 1,029} DisGeNet genes against {133, 26, 34, 12, and 65} 
disease-associated genes respectively.  This corresponds to a chi squared statistic of 2.2e-5 (p=0.000022) 
for CRC, 1.4e-2 (p=0.013619) for Diabetes, 5.9e-4 (p=0.000587) for Autoimmunity, 0.3 (p=323067) for 
Obesity, and 3.6e-3 (p=0.003627) for IBD. 
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Figure 1

Figure 1. Identifying human-interacting bacterial proteins within the gut microbiomes of T2D, obesity, IBD and CRC cohorts reveals enrichment for disease-associated 
pathways in human cells. 
(A) The number of interspecies bacterial proteins (blue), human proteins (orange) and interactions (dark blue) in the IntAct database; those inferred using homology clusters (UniRef); 
those determined to be present in the gut microbiomes from nine metagenomic studies; and those deemed important (zboost greater than zstrict, the magnitude of the minimum zboost) 
through our comparative metagenomic machine learning approach. If we use the zpos cutoff (zboost greater than zero), we find 40,663 important bacterial proteins (comprising 582 
protein homology clusters), 1,156 important human proteins and 149,045 interactions between them. For zstrict, the bacterial proteins comprise 128 protein homology clusters. 
(B) Histograms showing the maximum and minimum percent identity per bacterial cluster between bacterial proteins with experimental verification and proteins detected in human 
microbiomes. The histograms are annotated with a gaussian kernel density estimate of the distribution.
(C) The number of bacterial clusters that include members from each bacterial phyla and class. Note that most clusters contains proteins from more than one class and phylum.
(D) Distributions of human proteins targeted in the gut microbiomes associated with each study according to their zboost scores (left). Numbers of proteins with zboost scores over zpos 
and zstrict are noted. Receiver-operator characteristic (ROC) curves for our random forests predictions for each dataset (right) based on bacterial (blue) proteins or their human 
interactors (orange), along with their corresponding AUC values. 
(E) Human cellular pathways overrepresented in the zposhum subset (Benjamini-Hochberg false discovery rate (BHFDR) ≤ 0.05). –log(BHFDR) of each pathway is displayed on the 
barplot to the left. The heatmap is colored according to the percent of pathway members differentially targeted in each case-control cohort.
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Figure 2. Human proteins differentially targeted by the microbiome in disease are enriched for particular gene-disease associations 
and contain known therapeutic drug targets.
(A) Important human proteins (zstricthum) are plotted with their bacterial partners (gray), according to their disease-gene associations in the 
DisGeNet database: CRC (red), diabetes (blue), autoimmune disease (green), obesity (mauve) and IBD (brown). 
(B) Bar chart comparing the proportions of human proteins with disease-gene associations in important human proteins (zpos hum) targeted 
by microbiomes and all human proteins in DisGeNet. 
(C) RevErbA alpha (NR1D1) binds several human proteins (not shown), DNA (not shown) and heme. GSK4112 competitively binds 
Rev-ErbA alpha, inhibiting binding with heme. ParE is a microbiome protein present in a diverse range of organisms and has a high relative 
risk associated with T2D. 
(D) Macrophage colony stimulating factor 1 receptor (CSF1R) is targeted by imatinib, among other drugs, as well as the uncharacterized 
bacterial protein YqeH, a protein that has a low relative risk associated with CRC.
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Figure 3. Human pathway annotation can be transferred across interactors to improve bacterial pathway annotation.
(A) Paired stacked bar plots showing the disease-associated bacterial cluster pathways annotated by KEGG (left) and their inferred 
pathways according to the human proteins they target (right), as annotated by WikiPathways. 
(B) Human pathways (annotated using WikiPathways) targeted by disease-associated bacterial clusters. The 75 human pathways with the 
most previously unannotated bacterial targeters (annotated using KEGG) are shown.
(C) The number of zposbact clusters plotted according to their transmembrane and secretion predictions, i.e. type 3 or type 4 secretion 
systems (T3SS or T4SS), and/or the presence of eukaryotic-like domains (ELDs). 
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Extended Data Figure 1
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Extended Data Figure 1. An outline of our homology mapping procedure and alignment.  
Depiction of the interaction network inference and protein detection pipeline. Note that only bacterial 
proteins found to be human-interactors through the mapping procedure are used as candidates for detection 
in metagenomic studies.
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Extended Data Figure 2. Pairwise identity between proteins found in the human 
microbiome and those with experimentally verified interaction.
Histogram showing the percent identity between all bacterial proteins with experimental 
verification and their corresponding detected proteins in human microbiomes. This histo-
gram is annotated with a gaussian kernel density estimate of the distribution.
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Extended Data Figure 3. Taxonomic diversity in bacterial clusters detected in patients.
Histogram showing the number of species, genera, families, orders, classes and phyla for bacterial 
clusters with members detected in human microbiomes. 
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Extended Data Figure 4

Extended Data Figure 4. Human protein interactors according to their zboost scores and log odds ratio. 
Volcano plots of the human protein interactors present in each study according to their zboost scores and log 
odds ratios in each case-control cohort study.
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Extended Data Figure 5 (A-B) 
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Extended Data Figure 5. Clustering of cases and controls is not due to disease status, study or metadata, 
except for ethnicity in Nielsen et al. 
(A) Principal components analysis of detected human protein interactors for samples, according to study.
(B) Principal components analysis of detected human protein interactors for all samples in nine metagenomic 
studies colored by disease status according to study. Controls are all colored together in blue.
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Extended Data Figure 5 (C) 

C

Extended Data Figure 5. Clustering of cases and controls is not due to disease status, study or meta-
data, except for ethnicity in Nielsen et al. 
(C) Principal components analysis of detected human protein interactors in each study, separated by 
controls (blue) and cases (orange).  
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