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Abstract 10 

Host-microbe interactions are crucial for normal physiological and immune system development and are 11 
implicated in a wide variety of diseases, including inflammatory bowel disease (IBD), colorectal cancer 12 
(CRC), obesity, and type 2 diabetes (T2D). Despite large-scale case-control studies aimed at identifying 13 
microbial taxa or specific genes involved in pathogeneses, the mechanisms linking them to disease have 14 
thus far remained elusive. To identify potential mechanisms through which human-associated bacteria 15 
impact host health, we leveraged publicly-available interspecies protein-protein interaction (PPI) data to 16 
find clusters of microbiome-derived proteins with high sequence identity to known human protein 17 
interactors. We observe differential targeting of putative human-interacting bacterial genes in 18 
metagenomic case-control microbiome studies. In nine independent case studies, we find evidence that 19 
the microbiome broadly targets human proteins involved in immune, oncogenic, apoptotic, and endocrine 20 
signaling pathways in relation to IBD, CRC, obesity and T2D diagnoses. This host-centric analysis 21 
strategy provides a mechanistic hypothesis-generating platform for any metagenomics cohort study and 22 
extensively adds human functional annotation to commensal bacterial proteins.  23 

 24 

One-sentence summary 25 

Microbiome-derived proteins are linked to disease-associated human pathways by metagenomic and 26 
protein-protein interaction analyses.   27 
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Main Text  28 

Metagenomic case-control studies of the human gut microbiome have implicated bacterial genes in a 29 
myriad of diseases. Yet, the sheer diversity of genes within the microbiome (Li et al., 2014) and the 30 
limitations of functional annotations (Joice et al., 2014) have thwarted efforts to identify the mechanisms 31 
by which bacterial genes impact host health. In the cases where functional annotations exist, they tend to 32 
reflect the proteins’ most granular molecular functions (e.g. DNA binding, post-translational 33 
modification) rather than their role in biological pathways (Lloyd-Price et al., 2017) and few, if any, relate 34 
to host cell signaling and homeostasis. Associating any commensal bacterial gene and a host pathway has 35 
thus far required experimental approaches catered to each gene or gene function (Nešić et al., 2014; 36 
Plovier et al., 2017).  37 

Protein-protein interactions (PPIs) have revealed the mechanisms by which pathogens interact with host 38 
tissue through in-depth structural studies of individual proteins (Guven-Maiorov et al., 2017a; Hamiaux et 39 
al., 2006; Nešić et al., 2014), as well as large-scale whole-organism interaction screens (Dyer et al., 2010; 40 
Shah et al., 2018). These interactions are not limited to pathogens as many canonical protein-mediated 41 
microbe-associated molecular patterns (MAMPs) that directly trigger host-signaling pathways through 42 
pattern recognition receptors present on epithelial and immune tissues (Bhavsar et al., 2007) are 43 
conserved between pathogens and commensals (Lebeer et al., 2010), such as that between flagellin with 44 
Toll-like receptor 5 (TLR5). There is a growing recognition of the role for commensal-host PPIs in health 45 
(Table 1, Table S1): the Akkermansia muciniphila protein p9 binds intercellular adhesion molecule 2 46 
(ICAM2) to increase thermogenesis and glucagon-like peptide-1 (GLP-1) secretion, a therapeutic target 47 
for type 2 diabetes (T2D) (LeValley et al., 2020); the protein Fap2 from Fusobacterium nucleatum binds 48 
T cell immunoreceptor with Ig and ITIM domains (TIGIT), inhibiting natural killer cytotoxicity; and a 49 
slew of ubiquitin mimics encoded by both pathogens (Guven-Maiorov et al., 2017b) and gut commensals 50 
(Stewart et al., 2018) play a role in modulating membrane trafficking. Whereas these efforts have 51 
progressed on a one-by-one basis, we hypothesized that host-microbiome PPIs that underlie health status 52 
may be widespread and that a systems-level approach could serve to provide additional information, 53 
through annotation of human pathways, about the role of bacteria in modulating health.  54 

Currently, few experimentally-verified inter-species PPIs exist involving human proteins, totaling 15,252 55 
unique interactions in IntAct (Orchard et al., 2014), BioGRID (Oughtred et al., 2019), HPIdb (Ammari et 56 
al., 2016) and a set of manually curated PPI datasets (Fig. S1). Only a handful of these involve proteins 57 
pulled from the human gut microbiome. Expanding the commensal-human interaction network through 58 
state-of-the-art structural modeling (Guven-Maiorov et al., 2019) is untenable, as there are few sequences 59 
homologous to genes found in metagenomes represented in cocrystals from the Protein Data Bank 60 
(Burley et al., 2017) (PDB) (Fig. S2). In the absence of structure and experimental data, sequence identity 61 
methods have been used to great effect to infer host-pathogen PPI networks for single pathogens (Eid et 62 
al., 2016; Huo et al., 2015; Sen et al., 2016), but such approaches have not yet been applied at the 63 
community-level, as would be required for the human gut microbiome. Concerned over the reliability of 64 
interactions, we posited that we could leverage metagenomic case-control studies to hone in on those 65 
interactions relevant to disease, by focusing only on those interactions relevant to disease by virtue of 66 
their putative interactions with human proteins.  67 

Mapping microbiome proteins to known PPIs identifies potential mechanistic links to disease  68 
All pathogen-host interactions are initially implicated in virulence, whereas microbiome-associated 69 
disorders tend not to follow Koch’s postulates (Byrd and Segre, 2016). To distinguish PPIs that may be 70 
associated with health versus disease, we compared community-level PPI profiles in large case-control 71 
cohorts of well-established microbiome-associated disorders—namely inflammatory bowel disease (IBD)  72 
(Franzosa et al., 2019; Schirmer et al., 2018), colorectal cancer (CRC) (Feng et al., 2015; Hannigan et al., 73 
2018; Yu et al., 2017; Zeller et al., 2014), obesity (Le Chatelier et al., 2013), and T2D (Karlsson et al., 74 
2013; Qin et al., 2012) (Fig. 1A, Table S2). In order to build community-level PPI profiles, we associated 75 
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gene family abundances in these nine studies to a newly constructed database of bacterial human-protein 76 
interactors and the bacterial members of their associated UniRef clusters (Fig. S1), which represent 77 
homeomorphic protein superfamilies through sequence identity (Wu et al., 2004). For further assurance, 78 
we required microbiome proteins to have high amino-acid similarity (at least 70%) with the specific 79 
proteins with experimental evidence of interacting with human proteins. We noticed that proteins present 80 
exclusively in pathogenic organisms, such as the Clostridium difficile toxin B (TcdB) which binds 81 
frizzled 2 (FZD2), or expressed predominantly by pathogenic isolates, such as Finegoldia magna protein 82 
L, which binds immunoglobulin L chains, are consequently filtered out (Åkerström and Björck, 2009). 83 
We found that interspecies bacterial-human protein interface residues, in general, are highly similar, or 84 
even identical, between members of the same UniRef cluster filtered in the same manner (Fig. S3). 85 
Focusing on putative microbiome interactors with strong associations with disease weeds out a greater 86 
percent of interactions initially detected by yeast-2-hybrid (Y2H) methods and enriches for those that are 87 
based on affinity techniques (Fig. S4), and consequently removes the most “sticky” bacterial proteins 88 
(Fig. S5). The human protein with the highest degree remaining is nuclear factor NF-κB p105 subunit 89 
(NFKB1), a protein involved in immunodeficiency and bacterial infection, which was differentially 90 
targeted in CRC (in Vogtmann et al.). After applying a random forest classifier trained on each disease 91 
cohort (Fig. S6), we find 1,102 commensal bacterial protein clusters associated with disease, by virtue of 92 
their putative interactions with 648 human proteins (Table S3). 93 

Surprisingly, within the human proteins associated with CRC via the microbiome are a number of 94 
previously identified CRC-associated genetic loci (e.g. immunoglobulin 8 (IL-8), toll-like receptor 2 95 
(TLR2), selenoprotein P, the phospholipid scramblase 1, MDM4, and the histone acetyltransferase p300, 96 
among others. This represents a larger trend: moving from the 5,770 human proteins within the 97 
interaction network (‘HBNet’), to the 2,279 human proteins with bacterial interactors detected in human 98 
microbiomes (‘Detected’), to the 648 that are associated with disease (‘Disease-associated’), we observe 99 
increasing enrichment for proteins with previously-reported gene-disease associations (GDA) in CRC, 100 
diabetes, obesity, and IBD (Fig. 1B). These enrichments are even more pronounced when examining each 101 
specific disease cohort (Fig. S7). However, we see enrichment for microbiome-associated disorders in 102 
each of the cohorts, reflecting their associated relative risks (Jess et al., 2019; Jurjus et al., 2016; Kang et 103 
al., 2019; de Kort et al., 2017; Stidham and Higgins, 2018). In fact, out of all of the proteins with any 104 
GDA in the disease-associated set, 45.2% percent have more than one GDA for our diseases of interest. 105 
We suspected this may extend to autoimmune diseases, which are increasingly studied in the context of 106 
the gut microbiome (Gianchecchi and Fierabracci, 2019), and we confirm enrichment of GDAs for 107 
autoimmune disorders in the human proteins implicated by our method (Fig. 1B, Fig. S7). This 108 
concordance between known disease annotation and disease association demonstrates the utility of using 109 
PPIs to capture molecular heterogeneity that underlies microbiome-related disease.  110 

In evaluating the statistical significance of recurrent human functional annotations, we performed 111 
pathway enrichment analysis on the implicated human proteins and find proteins with established roles in 112 
cellular pathways coherent with the pathophysiology of IBD, CRC, obesity and T2D (Fig. 1C), namely 113 
those involving immune system, apoptosis, oncogenesis, and endocrine signaling pathways. Most 114 
enriched pathways include human proteins across the four types of disease cohorts analyzed, reflecting 115 
their associated relative risks (Jess et al., 2019; Jurjus et al., 2016; Kang et al., 2019; de Kort et al., 2017; 116 
Stidham and Higgins, 2018). Human proteins differentially targeted by microbiome-sourced proteins have 117 
roles in pathways involved in bacterial pathogenesis and underlying inflammation, such as the IL-12 118 
signaling pathway and clathrin-mediated endocytosis signaling. These pathways were expected due to 119 
shared evolutionary histories between the screened pathogens and gut microbiota and opportunism within 120 
the microbiome. The involvement in the clathrin-mediated endocytosis pathways (Fig. 1D) further hints at 121 
how commensal proteins may enter human cells. Pathways related to bile salt metabolism and cholesterol 122 
metabolism (LXR/RXR, TX/RXR and FXR/RXR activation pathways), which are also tied to immune 123 
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evasion (Alatshan and Benkő, 2021; Valledor et al., 2004) are also enriched, expanding the role of the 124 
microbiota in these pathways beyond their enzymatic functions.  125 

Within these pathways, we see specific examples of known molecular mechanisms for these diseases now 126 
implicated with microbiome-host PPIs: Actin-related protein 2/3 complex subunit 2 (ARPc2) (associated 127 
in the Schirmer et al., Feng et al., Yu et al. and Zeller et al. cohorts) regulates the remodeling of epithelial 128 
adherens junctions, a common pathway disrupted in IBD  (Franke et al., 2008). We see the targeting of 129 
mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) enriched in the Zeller et al. CRC 130 
cohort, which is in line with its role in inflammation (Chuang et al., 2016). DNA methyltransferase 3a 131 
(DNMT3A) is involved in chromatin remodeling and has been shown to be important for intestinal 132 
tumorigenesis (Weis et al., 2015), serve as a risk loci in genome-wide association studies (GWAS) studies 133 
for Crohn’s disease (Franke et al., 2010), mediates insulin resistance (You et al.) and has aberrant 134 
expression in adipose tissue in mice (Kamei et al., 2010). Concordantly, it was associated with the CRC, 135 
IBD, T2D and obesity microbiome studies we examined (Feng et al., Yu et al., Zeller et al., LeChatelier et 136 
al., Qin et al. and Schirmer et al.). This host-centric annotation is useful beyond large-scale analysis of 137 
metagenomic data, as it broadly enables hypothesis-driven research into the protein-mediated mechanisms 138 
underlying microbiome impacts on host health. 139 

Although the set of experimentally-verified interactions (HBNet) includes interactions originating from 140 
82 unique bacterial species, an initial concern was that a disproportionate number of bacteria-human PPIs 141 
are derived from high-throughput screens performed on a smaller number of intracellular pathogens, e.g. 142 
Salmonella enterica (Walch et al., 2021), Yersinia pestis (Dyer et al., 2010; Yang et al., 2011), 143 
Francisella tularensis (Dyer et al., 2010), Acinetobacter baumannii (Schweppe et al., 2015), 144 
Mycobacterium tuberculosis (Penn et al., 2018), Coxiella burnetii (Wallqvist et al., 2017), Chlamydia 145 
trachomatis (Mirrashidi et al., 2015) and Legionella pneumophila (Yu et al., 2015), Burkholderia mallei 146 
(Memisević et al., 2013), and Bacillus anthracis (Dyer et al., 2010); as well as one extracellular pathogen 147 
Streptococcus pyogenes (Happonen et al., 2019) (Table S4). Despite this bias, we find that homologs 148 
detected in patient microbiomes come from a set of 821 species that better reflects the phyla typically 149 
associated with human gut microbiomes (Fig. 1E).  150 

Microbiome proteins access human proteins by various means 151 
We next examined the localization of human protein targets. Amongst those human proteins in the 152 
detected and disease-associated sets, we saw increasing enrichment of genes expressed in epithelium, 153 
liver, adipose tissue and blood components (Fig. 2A). Although we presume many of the interactions 154 
occur within in the epithelial layer of the gastrointestinal tract, disease-associated human interactors were 155 
not especially localized to gastrointestinal tissue, nor any tissue in particular, with the exception of bone 156 
marrow (p=0.047, chi-square test) (Fig. S8). Impaired intestinal barrier function and the translocation of 157 
commensal bacteria, both of which feature in the pathogenesis of IBD (Ahmad et al., 2017), CRC (Genua 158 
et al., 2021) and other microbiome-associated disorders (Ruff et al., 2020), allow bacterial proteins to 159 
access tissues exterior to the gut. Nevertheless, we suspect that the absence of enrichment in gut tissues 160 
largely reflects the human tissues, cells, and fluids used for experimental interaction screening (e.g. HeLa 161 
cells (Walch et al., 2021), HEK293T (Mirrashidi et al., 2015), macrophages (Walch et al., 2021), plasma 162 
(Happonen et al., 2019), saliva (Happonen et al., 2019), spleen (Dyer et al., 2010; Yang et al., 2011), and 163 
lung (Schweppe et al., 2015)), thereby selecting proteins with more general expression patterns. This data 164 
underscores the need for screening using gastroenterological protein libraries to identify gut-specific host-165 
microbiome PPIs.  166 

At the cellular level, microbial proteins can access human proteins via several well-established means 167 
(Fig. 2B). Canonical MAMPs tend to involve surface receptors (e.g. TLRs, Nod-like receptors), which 168 
comprise 59.2% of the disease-associated interactors (Fig. 2C), although we cannot confirm their 169 
orientation. We expect that this may be an underestimate of the interactions involving human membrane 170 
interactors, as solubility issues preclude their representation in interaction screens. In addition to 171 
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canonical MAMP receptors, newly described surface receptors include: adhesion G protein-coupled 172 
receptor E1 (ADGRE1), a protein involved in regulatory T cell development (Lin et al., 2005); and 173 
receptor-type tyrosine-protein phosphatase mu (PTPRM), involved in cadherin-related cell adhesion 174 
(Brady-Kalnay et al., 1995), among others. Alternatively, several established host-microbiome PPIs 175 
(Table 1) involve human proteins that are secreted, such as the extracellular matrix protein laminin (Singh 176 
et al., 2018) and immune modulators, such as extra-cellular histones (Brinkmann et al., 2004; Murphy et 177 
al., 2014). Secreted proteins make up 34.8% of the disease-targeted human interactors, and include these, 178 
in addition to the cytokine IL-8, galectin-3, and complement 4A.  179 

Interestingly, a large number of disease-associated human interactors (178 proteins, or 29.1%) are 180 
exclusively intracellular (Fig. 2C), suggesting additional interaction schemes. MAM (microbial anti-181 
inflammatory molecule), a secreted protein from Faecalibacterium prausnitzii, can inhibit NF-κB 182 
signaling and increase tight junction integrity, whether it is introduced via gavage in mouse models, or 183 
when it is ectopically expressed from within intestinal epithelial cells in vitro (Xu et al., 2020), suggesting 184 
that it is uptaken by cells in vivo. Bacterial products or, in some cases, intact bacteria, may be endo-, pino- 185 
or transcytosed, a process that can be initiated by receptors (Malyukova et al., 2009; Tan et al., 2015), 186 
allowing bacterial proteins to access cytoplasmic and even nuclear targets. Alternatively, membrane 187 
vesicles, decorated with proteins and carrying periplasmic, cytoplasmic and intracellular membrane 188 
proteins as cargo, can be uptaken by human cells via endocytosis or membrane diffusion (Jones et al., 189 
2020). Although membrane vesicles have been well-documented in Gram-negative bacteria, an example 190 
of vesicle production by Gram positive segmented filamentous bacteria was recently shown to interact 191 
with intestinal epithelial cells and promote the induction of Th17 cells (Ladinsky et al., 2019). 192 

Accordingly, bacterial proteins interacting with human secreted and surface proteins would be expected to 193 
contain signatures of surface localization or extracellular secretion. Indeed, we find that 12.2% of the 194 
disease-associated microbiome proteins are predicted to contain signal peptides allowing for secretion by 195 
the Sec or Tat pathways (Fig. 2D), which are ubiquitous across phyla (Fig. S9). These systems typically 196 
work alongside additional secretion systems to situate proteins in the cell membrane or secrete them 197 
extracellularly, though their associated signal peptides are more difficult to predict (Green and Mecsas, 198 
2016; Hui et al., 2021). Another 16.6% of disease-associated proteins are predicted to be transmembrane, 199 
albeit with unknown orientation, potentially allowing for direct contact with live or intact bacteria, or 200 
bacterially-produced membrane vesicles. A small number of proteins were found destined for the cell 201 
wall (Fig. 2D). To our surprise, secreted and surface proteins were found to be negatively enriched in the 202 
disease-associated bacterial interactors.  203 

Finally, type 3, type 4 and type 6 secretion systems (T3SS, T4SS and T6SS) can be used to secrete 204 
proteins directly into human cells. Proteins with T3SS and T4SS signals make up a significant (13.6%), 205 
albeit diminishing portion of the disease-associated microbiome proteins (Fig. 2D). These proteins are 206 
mostly derived from gut Proteobacteria, to which these systems are generally restricted (Abby et al., 207 
2016) (Fig.2D, Fig. S9). Based on the bacterial cluster representatives from in the microbiomes from 208 
these nine cohorts, we find evidence that at least 79.0% and 58.9% of disease-associated clusters 209 
predicted to be secreted by T3SS and T4SS, respectively, have representative proteins found in organisms 210 
with the corresponding secretion systems (T6SS were excluded due to the limited availability of 211 
prediction tools). Nevertheless, the extent to which these systems, and orthologous systems in Gram 212 
positive bacteria (Madden et al., 2001), play a role in host-microbiome protein trafficking remains 213 
unknown. In total, this data suggests that there is not one single mechanism dominating host-microbiome 214 
interactions, but that interactions are facilitated by several means. 215 

Microbiome proteins gain host-relevant “moonlighting” annotations 216 
One of the major advantages of our work is that through this new interaction network, we vastly improve 217 
our ability to annotate host-relevant microbiome functions. 13.5% of our disease-associated bacterial 218 
clusters contain no members with annotated microbial pathways/functions in KEGG (Kyoto Encyclopedia 219 
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of Genes and Genomes) (Kanehisa et al., 2017) (Fig. 3A). Using similar homology searching against 220 
bacterial interactors, most of these genes can now be annotated according to the pathways of their human 221 
targets, obtaining a putative disease-relevant molecular mechanism (Fig. S10). Interestingly, most of the 222 
bacterial clusters with KEGG pathway annotations also gain a secondary human pathway annotation. Of 223 
those that could be annotated, disease-associated clusters are involved primarily in translation and central 224 
metabolism (Fig. 3B). This dual function is not entirely surprising, as a number of these have orthologs 225 
that have been previously identified as bacterial ‘moonlighting’ proteins, which perform secondary 226 
functions in addition to their primary role in the cell (Henderson, 2014). Mycoplasma pneumoniae GroEL 227 
and Streptococcus suis enolase, a protein involved in glycolysis, bind to both human plasminogen and 228 
extra-cellular matrix components (Hagemann et al., 2017; Henderson and Martin, 2013). Mycobacterium 229 
tuberculosis DnaK signals to leukocytes causing the release of the chemokines CCL3-5 (Lehner et al., 230 
2000). Streptococcus pyogenes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), canonically 231 
involved in glycolysis, can be shuffled to the cell surface where it plays a role as an adhesin, and can also 232 
contribute to human cellular apoptosis (Seidler and Seidler, 2013). These examples distinctly illustrate 233 
how bacterial housekeeping proteins are used by pathogens to modulate human health. In this study, we 234 
uncover commensal proteins that similarly may have ‘interspecies moonlighting’ functions and appear to 235 
be pervasive throughout our indigenous microbiota.  236 

Microbiome proteins may act on human targets as therapeutic drugs 237 
There is direct evidence for at least two commensal proteins which induce physiological effects on the 238 
host when delivered by oral gavage: purified A. muciniphila Amuc_1100 and F. prausnitzii MAM to 239 
ameliorate glucose intolerance and colitis, respectively (Plovier et al., 2017; Xu et al., 2020). We suspect 240 
that this may extend to additional commensal proteins. Consistent with this idea, we find that indeed 241 
many disease-associated human proteins are known drug targets (Table S5). For example, nafamostat 242 
mesylate is an anticoagulant that can bind complement protein C1R, suppresses coagulation and 243 
fibrinolysis and provides protection against IBD (Isozaki et al., 2006) and CRC (Lu et al., 2016). These 244 
human proteins are also differentially targeted in healthy patients by the transcriptional regulator spo0A in 245 
Lactobacilli, Streptococci and F. prausnitzii (Fig. 4A, Table S6). Imatinib mesylate (brand name: 246 
Gleevec) targets several Src family tyrosine kinases, including LCK, which is involved in T cell 247 
development and has a recognized role in inflammation (Kumar Singh et al., 2018). Bacterial proteins 248 
targeting these same kinases are consistently enriched in healthy controls across both IBD and three CRC 249 
cohorts we analyzed (Fig. 4B, Table S6). In addition, imatinib can also halt the proliferation of colonic 250 
tumor cells and is involved generally in inflammatory pathways, through its inhibition of TNF-alpha 251 
production (Wolf et al., 2005). 252 

We also find instances where the off-label effects or side effects associated with the drug match our 253 
microbiome-driven human protein association. For instance, the antimalarial drug artinemol targets 254 
human proteins that were found to be differentially targeted by IBD cohorts’ microbiomes (in Franzosa et 255 
al.): the RNA helicase DDX5, puromycin-sensitive aminopeptide (NPEPP), annexin A2 (ANXA2) and 256 
the splicing factor SFPQ (Fig.4C, Table S6). Whereas artinemol and related analogs have been shown to 257 
be effective at preventing dextran sulfate-induced colitis in mice (Hu et al., 2014; Yan et al., 2018) and 258 
wormwood, its natural source, has been established as a herbal treatment for IBD (Krebs et al., 2010), 259 
microbiota-derived proteins have greater association with IBD patients, suggesting that artinemol and 260 
commensal proteins may be acting on the same targets in opposing ways. Whereas the notion of 261 
microbiome-derived metabolites acting as drugs is well-appreciated (Donia and Fischbach, 2015; Wilson 262 
et al., 2019), this work broadens the scope of microbiome-derived drugs to include protein products acting 263 
through PPI. 264 

Discussion  265 
Here, we reveal an extensive host-microbiome PPI landscape. To achieve this, we benefit from existing 266 
methods in pathogen-host PPI discovery, further informed by community-level PPI profiles of genes 267 
differentially detected in human metagenomes. This work highlights host mechanisms targeted by the gut 268 
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microbiome and the extent to which these mechanisms are targeted across microbiome-related disorders. 269 
However, this network is far from complete. Few of the studies on which this interaction network is based 270 
were performed on commensal bacteria and intestinal tissue, and therefore, we may be missing 271 
interactions specific to our most intimately associated bacteria. In support of our method, among those 272 
host-microbiome PPIs that have been well-studied for both binding and their effect on human cellular 273 
physiology or disease pathophysiologies (Table 1, Table S1), we were able to associate over half of the 274 
PPIs with one or more metagenomic studies. In addition to large-scale PPI studies involving commensal 275 
bacteria and their hosts, further in-depth studies will be needed to fully characterize these mechanisms, 276 
such as whether these bacterial proteins activate or inhibit their human protein interactors’ pathways, and 277 
under what conditions these interactions take place.  278 

This platform enables a high-throughput glimpse into the mechanisms by which microbes impact host 279 
tissue, allowing for mechanistic inference and hypothesis generation from any metagenomic dataset. 280 
Pinpointing microbe-derived proteins like this that interact directly with human proteins will enable the 281 
discovery of novel diagnostics and therapeutics for microbiome-driven diseases, more nuanced definitions 282 
of the host-relevant functional differences between bacterial strains, and a deeper understanding of the co-283 
evolution of humans and other organisms with their commensal microbiota.  284 

Table 1. Examples of experimentally-verified host-microbiome PPIs that affect human cellular 285 
physiology and/or health. Designations include whether the bacterial proteins were detected within the 286 
nine metagenomic studies included in this analysis, and, if so, whether the human proteins were identified 287 
by our method as ‘disease-associated’. Extended information and citations are provided in Table S1.  288 

Bacterial protein 

(species origin) 

Human protein Evidence for role in disease Detection and 

Disease-association 

Amuc_1100  

(Akkermansia 

muciniphila) 

Toll-like receptor 

2 (TLR2) 

IL-1β, IL-6, IL-8, IL-10 and 

TNF-α production in PBMCs; 

Increase in barrier function;  

Improves glucose tolerance. 

Disease-associated  

Enolase (EnoA1)  

(Lactobacillus 

plantarum) 

Plasminogen Enhancement of tissue-type 

plasminogen activator (tPA)-

mediated conversion of 

plasminogen to plasmin. 

Disease-associated  

FadA 

(Fusobacterium 

nucleatum) 

E-cadherin Stimulates proliferation of 

human CRC cell lines; Activates 

β-catenin signaling pathways.  

Not disease-

associated 

Faf  

(Finegoldia magna) 

Histones H4 and 

H2B 

Binds histones and prevents 

antibacteriocidal activity.  

Not detected 

Fap2 (Fusobacterium 

nucleatum) 

TIGIT Inhibits natural killer and tumor 

infiltrating lymphocyte  

cytotoxicity and 

hemagglutination of red blood 

cells.  

Not detected 

FimH  

(commensal 

Escherichia coli)  

GP2 Initiates mucosal immune 

response via M cells. 

Not disease-

associated 

Flagellin (FliC) 

(commensal 

Firmicutes)  

Note: Direct binding 

has only been 

Toll-like receptor 

5 (TLR5) 

 

Induces MyD88-dependent 

signaling and activation of NF- 

κB. 

 

Not detected 
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demonstrated for 

Salmonella 

typhimurium, though 

flagellin from 

commensal Firmicutes 

stimulates TLR5.  

 

GelE (Enterococcus 

faecalis) 

GLP-1, gastric 

inhibitory 

polypetide, 

glucagon, leptin, 

PPY, PYY. 

MCP-1, TNF-α, 

mouse E-

cadherin, C3 and 

iC3b 

Barrier function;  

Contributes to intestinal 

inflammation. 

None are disease-

associated 

MAM 

(Faecalibacterium 

prausnitzii) 

ZO‐ 1, DDX3X, 

ANXA2, FASN, 

FLNA, FLOT2, 

HSP90AB1, 

HSPA1B, JUP, 

KRT18, MYH9, 

PRDX1, PUF60, 

RACK1, 

RSL1D1,  

RPL14, RPL24, 

YWHAZ 

Improves barrier function in 

vitro and in vivo; Increases ZO-1 

transcription; 

Inhibits NF-KB signaling. 

12/18 human 

interactors (black) are 

disease-associated 

Mub  

(Lactobacillus 

plantarum) 

Cytokeratins (1, 

4, 5, 6, 8, 9, 10), 

Hsp90,  

Laminin 

Pathogenic exclusion (decrease 

in the adhesion of 

enterotoxigenic E. coli to 

intestinal epithelial cells).  

Not detected 

p9 (Amuc_1631) 

(Akkermansia 

muciniphila) 

Intercellular 

adhesion 

molecule 2 

(ICAM2) 

Increases GLP-1 secretion and 

brown adipose tissue 

thermogenesis.  

Disease-associated 

SlpA  

(Lactobacillus 

acidophilus) 

DC-SIGN Th2 polarization of dendritic 

cells; Induction of IL-4 

expression. 

Not detected 
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Figures 586 
 587 
Figure 1. Human proteins differentially targeted by the microbiome in disease are enriched for 588 
relevant gene-disease associations. 589 
(A) The number of interspecies bacterial protein clusters (blue), human proteins (orange) and interactions 590 
(dark blue) in the human-bacteria PPI network; the number of bacterial protein clusters detected in 591 
patients from nine metagenomic studies that also have homology to experimentally-verified interactors 592 
and their putative human interactors; and the number of bacterial clusters and human proteins associated 593 
with disease through our metagenomic machine learning approach, by comparing abundances in cases 594 
(grey) and control (red). (B) Proportions of human proteins implicated in disease, according to their 595 
GDAs (GDAs > 0.1) in DisGeNET, within: all reviewed human proteins; HBNet; human interactors with 596 
detected bacterial proteins; and those human interactors with feature importances above the 90th percentile 597 
in their respective cohorts. p-values for enrichments are depicted by: * p<0.05; ** p<0.01; *** p<10-3; 598 
**** p<10-4 (Chi-square test). Total numbers of each set are noted in the legend. (C) Human cellular 599 
pathways (annotated by IPA) enriched in the set of human proteins within HBNet (left) and those detected 600 
across all nine metagenomic case-control studies (right) colored according to their Benjamini-Hochberg 601 
false discovery rate (BHFDR)-adjusted p-value. Only those pathways with BHFDR-adjusted < 0.05 in the 602 
disease-associated sets are shown. p-values for enrichments are depicted by: * p<0.05; ** p<0.01; *** 603 
p<10-3; **** p<10-4 (Fisher’s Exact test). (D) All human proteins within the Clathrin-Mediated 604 
Endocytosis Signaling pathway, as annotated by IPA, are depicted. Protein targets detected in the nine 605 
metagenomic studies are highlighted in orange. Those in the Disease-associated subset are in brown. 606 
Specific interactions and the nature of interactions were simplified, with boxes roughly representing 607 
proteins within the same signaling cascade and/or complex. (E) 106 species (left) with experimentally 608 
verified proteins in 3,056 bacterial protein clusters are mapped to 821 bacterial species (right) with 609 
homologs detected in patients’ metagenomes (right), representing a total of 1,698 clusters. Species are 610 
colored according to phylum.  611 

 612 
Figure 2. Bacterial proteins gain access to human proteins through a variety of mechanisms. 613 
(A) Proportions of human proteins in the HBNet, Detected and Disease-associated subsets are plotted 614 
according to their enrichments in tissues and fluids, as annotated using DAVID. Only those with 615 
significant enrichment between any two subsets are shown. p-values for enrichments are depicted by: * 616 
p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001 (EASE Score provided by DAVID, a modified Fisher 617 
Exact P-value; FDR-adjusted).  Total numbers of each set are noted in the legend. (B) A schematic 618 
depicting potential opportunities for bacterial proteins to access human proteins. Interactions may 619 
involve: (1) secreted human proteins, (2) bacterial proteins secreted into the extracellular space; (3) 620 
membrane vesicles that are endocytosed or can fuse with human cell membranes; (4) bacterial cellular 621 
lysate; (5) proteins injected into human cells by T3SS, T4SS and T6SS, (6) cells and their products that 622 
translocate as a result of barrier dysfunction or “leaky gut”, and/or (7) direct contact with M cells, 623 
dendritic cells (DC), or epithelial cells. (C) Proportions of human proteins in the HBNet, Detected and 624 
Disease-associated subsets, are plotted according to their subcellular locations, as annotated using Gene 625 
Ontology Cellular Component, is depicted. p-values for enrichments are depicted by: * p<0.05; ** 626 
p<0.01; *** p<0.001; **** p<0.0001 (Chi-square test). Total percentages for these subsets is listed at 627 
right, along with p-values. Total numbers of each set are noted in the legend. (D) Proportions of bacterial 628 
gene clusters in the HBNet, Detected and Disease-associated subsets are plotted according to their 629 
transmembrane and secretion predictions, annotated using TMHMM, EffectiveDB and SignalP. p-values 630 
for enrichments are depicted by: * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001 (Chi-square test). 631 
Total numbers of each set are noted in the legend. 632 
 633 
Figure 3. Human pathway annotation can be propagated through interactors to improve bacterial 634 
pathway annotation. 635 
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(A) Paired stacked bar plots showing the 1,102 disease-associated bacterial protein clusters according to 636 
whether they are able to be annotated by KEGG (left) and their inferred pathways according to the human 637 
proteins they target (right), as annotated by WikiPathways (Slenter et al., 2018). (B) Proportions of the 638 
bacterial clusters in the HBNet, Detected and Disease-associated subsets according to their COG 639 
functional categories are plotted. p-values are depicted by: * p<0.05; ** p<0.01; *** p<0.001; **** 640 
p<0.0001 (Chi-square test). Total numbers of each set are noted in the legend. 641 

 642 
Figure 4. Human proteins targeted by gut commensal proteins include known therapeutic drug 643 
targets. 644 
(A) Nafamostat, (B) imatinib and (C) artenimol target human proteins that are differentially targeted by 645 
bacterial proteins detected in the stated metagenomic studies. Log10 relative mean summed abundances of 646 
bacterial interactors in patients versus controls are provided. p-values were calculated by the Mann-647 
Whitney rank-sum test, * p<0.05; ** p<0.01; *** p<10-3; **** p<10-4). Full taxa and UniRef numbers for 648 
all bacterial proteins shown are provided in Table S6.  649 
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Methods  650 
 651 
Building a putative bacteria-human protein-protein interaction (PPI) network 652 
Interactions were downloaded from the IntAct database (Orchard et al., 2014), HPIdb 3.0 (Ammari et al., 653 
2016) and BioGRID (Oughtred et al., 2019) [June 2021], and supplemented with additional host-microbe 654 
interaction studies, whose interactions were added manually (PMIDs: 31227708, 34237247, 22213674, 655 
18937849, 8900134, 17709412, 19047644, 23954158, 24335013, 24936355, 25680274, 26548613, 656 
28281568, 29748286, 30072965, 30242281, 32566649, 32736072, 18808384, 22344444, 33820962, 657 
31611645, 32051237, 18941224, 19627615, 3125250, 19752232, 21441512, 19542010, 11113124, 658 
29335257, 21740499, 18541478, 9466265, 24204276, 23800426, 27302108, 25739981, 19907495, 659 
31503404, 25118235, 25788290, 21699778, 26755725, 14625549). Only interactions with evidence 660 
codes that indicated binary, experimental determination of the interaction between UniProt identifiers 661 
with non-matching taxa were preserved, thereby excluding co-complex associations, small molecule 662 
interactions, and predicted interactions. Uniref100/90 clusters containing human proteins and Uniref50 663 
cluster containing bacterial proteins were downloaded from UniProt [June 2021], to which interspecies 664 
protein interactors were mapped (Suzek et al., 2015).  PPIs comprising one Uniref100/90 cluster 665 
containing human proteins and one Uniref50 cluster containing bacterial proteins were retained for 666 
downstream analyses. Within each UniRef50 bacterial cluster, we further filtered the sequences such that 667 
only bacterial members of the cluster within 70% sequence similarity to the experimentally verified 668 
protein were labeled as putative interactors. Sequence similarity was calculated using a Smith-Waterman 669 
local alignment with the BLOSUM62 matrix via python’s parasail (Daily, 2016) library (v.1.1.17) and 670 
tallying the number of matches in the pairwise alignment that represent frequent substitutions (non-671 
negative BLOSUM62 scores), divided by the length of the experimentally-verified interactor.  672 

 673 
Processing of metagenomic shotgun sequencing data 674 
The datasets used in this study, with the exception of the PRISM dataset (Franzosa et al., 2019), were 675 
curated as part of ExperimentHub (Pasolli et al., 2017) (Table S1). Within each study, we removed 676 
samples that had abnormally low (less than 107) reads. We downloaded all protein abundance matrices, 677 
annotated at the level of UniRef90 clusters via HUMAnN3 (Beghini et al., 2021), and associated 678 
metadata. For PRISM, we processed data in a parallel manner, as outlined in Pasolli et al. (Pasolli et al., 679 
2017). For each study, we mapped UniRef90 bacterial clusters to UniRef50 clusters using DIAMOND 680 
(Buchfink et al., 2015) blastp, requiring greater than 90% sequence identity and greater than 90% 681 
coverage.  682 
 683 
Prioritization of disease-associated human targets 684 
For each patient, we generate a file of human proteins representing the cumulative abundances of their 685 
putative bacterial protein interactors. In each study, we filtered out proteins present in fewer than 5% of 686 
the cohort. To identify host-microbiome interactions that associate with disease, processed abundance 687 
matrices of putative human interactors were used to train a random forest machine learning classifier on 688 
the task of separating case and control patients and, after verifying that they achieve reasonable 689 
performance on the task using five-fold cross-validation with grid search-based hyperparameters tuning 690 
for each study (Fig. S6), we extract the average feature importance from 100 iteratively trained class-691 
balanced classifiers. Having used the scikit-learn (Pedregosa et al., 2011) implementation of the random 692 
forest algorithm, feature importance corresponds to the average Gini impurity of the feature in all splits 693 
that it was involved in. Gini feature importance is a powerful prioritization tool, as it can capture the 694 
multivariate feature importance (whereas simple metrics like log-odds ratio and corrected chi-squared 695 
statistics only capture univariate feature importance). We created a disease-associated set for the proteins 696 
that had feature importances above the top 90th percentile. As an alternative to calculating human protein 697 
abundances by summing the total bacterial abundances of their interactors, we tested the effect of first 698 
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normalizing bacterial abundances by their respective number of putative human interactors. This did not 699 
qualitatively change the conclusions drawn from our analyses.  700 
 701 
Human pathway annotation and enrichment analysis  702 
Disease annotations were extracted from all of GDAs from DisGeNET (Piñero et al., 2017) (June 2021). 703 
We additionally downloaded all reviewed human proteins from Uniprot (Ding et al., 2018) (June 2021), 704 
annotating them in the same manner, in order to accurately compare background label frequencies. 705 
Lacking a simple hierarchy of disease, we binned similar disease terms into the 5 larger categories 706 
relevant to our study. Human protein identifier labels are provided in Supplementary Note 1. We 707 
performed pathway enrichment analysis using QIAGEN’s Ingenuity® Pathway Analysis software (IPA®, 708 
QIAGEN Redwood City, CA, USA, www.qiagen.com/ingenuity). Sets of human proteins (HBNET, 709 
Detected, Disease-associated) were uploaded as UniProt identifiers into the desktop interface and 710 
submitted to their webserver for Core Enrichment Analysis was conducted only on human tissue and cell 711 
lines and IPA’s stringent evidence filter. Pathways were considered enriched if they had Benjamini-712 
Hochberg-corrected p values < 0.05. Subcellular locations for human proteins were obtained using GO 713 
Cellular Component terms associated with each protein in UniProt. We aggregated the following GO 714 
terms: Extracellular: Extracellular region (GO:0005576), Extracellular matrix (GO:0031012); Membrane: 715 
Cell surface (GO:0009986); Membrane (GO:0016020), Cell junction (GO:0030054); Cell projection 716 
(GO:0042995); and Intracellular: Cytoplasm (GO:0005737); Cell body (GO:0044297); Nucleoid 717 
(GO:0009295); Membrane-enclosed lumen (GO:0031974); Organelle (GO:0043226); Endomembrane 718 
system (GO:0012505); Midbody (GO:0030496). Tissue-specific RNA expression enrichment was 719 
performed using DAVID bioinformatics resources (Huang et al., 2009). Additionally, tissue-specific 720 
protein localization data was downloaded from Human Protein Atlas version 20.1 (Uhlen et al., 2010). 721 
We retained those with ‘enhanced’, ‘supported’ and ‘approved’ reliability. We additionally annotated all 722 
human proteins with any known drug targets from the DrugBank database (Wishart et al., 2018) and 723 
DrugCentral (June 2021) (Avram et al., 2021). 724 
 725 
Bacterial pathway, secretion, and taxonomy annotation 726 
For the purposes of annotation, we selected the representative bacterial sequence of each cluster. If there 727 
was no bacterial representative, we sorted sequences by their status in Uniprot (reviewed/unreviewed) and 728 
by their length and chose the top sequence. Bacterial taxonomy information is associated with each 729 
UniRef90 cluster by HUMANN3 (Beghini et al., 2021). We submitted all bacterial protein sequences to 730 
the KofamKOALA (Aramaki et al., 2019) KEGG orthology search resource to obtain orthology and 731 
pathway annotations. To obtain secretion information, we used several sources: we submitted our 732 
bacterial sequences to EffectiveDB (Eichinger et al., 2016) in order to obtain predictions for EffectiveT3 733 
(type 3 secretion based on signal peptide) and T4SEpre (type 4 secretion based on amino acid 734 
composition at the C-terminus). We used the single default cutoffs for T4SEpre, and chose the ‘selective’ 735 
(0.9999) cutoff for EffectiveT3. We obtained predictions for Sec and Tat pathway secretion using SignalP 736 
5.0  (Almagro Armenteros et al., 2019) for Gram positive and Gram negative bacteria using default 737 
settings. Transmembrane proteins or signal peptides were predicted using TMHMM (Krogh et al., 2001) 738 
(v.2.0c), with a threshold of 19 or more expected number of amino acids in transmembrane helices. 739 
Localization to the cell wall was predicted using PSORTb 3.0 (Yu et al., 2010) with default settings. We 740 
annotated secretion systems in species associated with each bacterial cluster by examining the core or 741 
minimal components of each secretion system, by searching their genomes using KEGG orthologous 742 
groups for each system using string cutoffs (identity > 40%; e-value < 0.00001; coverage > 80%): T3SS: 743 
sctR (K03226), sctS (K03227), sctT (K03228), sctU (K03229), and sctV (K03230); T4SS: virB4 744 
(K03199) and virD4 (K03205); Sec: secY (K03076), secE (K03073), and secG (K03075); and Tat: tatA 745 
(K03116) and tatC (K03118). We defined genomes in which have all minimal components of each system 746 
as organisms with functional corresponding secretion systems.  747 
 748 
Structural data for these microbiome-human PPIs  749 
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We measured the extent to which structural interfaces could be used to infer microbiome-human protein-750 
protein interaction by using DIAMOND (Buchfink et al., 2015) to query all amino acid sequences 751 
submitted to PDB (identity > 70%; coverage > 50%). In order to identify interface residues between each 752 
pair of chains in the cocrystal structures, we first use NACCESS 753 
(http://www.bioinf.manchester.ac.uk/naccess/) to calculate the solvent accessibility of each residue in 754 
each chain. Chains with an accessible surface area of 15 Å or more are considered surface residues. We 755 
then calculate the change in accessible surface area for each residue when other chains in the same crystal 756 
structures are introduced. Residues which have a change in solvent accessible surface area above 1 Å are 757 
determined to be interface residues. Cases in which human protein and bacterial proteins match their 758 
respective chains exclusively are in Table S7. We highlight one example in which there are uniquely 759 
mapped chains, where 1p0s chains H and E match human coagulation factor X and bacterial Ecotin, 760 
respectively (Fig. S11). 761 

To assess conservation of interface residues across bacterial members of the same UniRef cluster, we 762 
downloaded a list of all PDB structures which contain both human proteins and bacterial proteins, the 763 
UniRef50 cluster identifier for the bacterial protein, and all protein sequences in the corresponding cluster 764 
that also originate from bacterial proteomes from Uniprot. Using Clustal Omega, we then generated 765 
multiple sequence alignments for all the members of each UniRef50 clusters. We calculated interface 766 
residues on all pairs of chains in each structures and measured the BLOSUM62 similarity between 767 
bacterial interface residues and their corresponding amino acids in their respective UniRef50 cluster 768 
MSA. We then calculated the Jensen-Shannon divergence on the columns of the MSA containing 769 
interface residues.  770 
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Supplemental Note 1 771 

Terminology used for gene-disease associations 772 
The following terms from DisGeNet were used for each of the following broader disease annotations. For 773 
diabetes, we included all subtypes and diabetes-related phenotypes.  774 

CRC: ‘Colorectal Carcinoma’, ‘Colorectal Neoplasms’, ‘Adenocarcinoma of large intestine’, ‘Malignant 775 
tumor of colon’, ‘Hereditary Nonpolyposis Colorectal Neoplasms’, ‘Hereditary non-polyposis colorectal 776 
cancer syndrome’, ‘Hereditary Nonpolyposis Colorectal Cancer’, ‘Colorectal cancer, hereditary 777 
nonpolyposis, type 1’, ‘Hereditary nonpolyposis colorectal carcinoma’, ‘Colon Carcinoma’, ‘Colorectal 778 
Cancer, Susceptibility to, 4’, ‘Colorectal Cancer, Susceptibility to, on Chromosome 15’, ‘Colorectal 779 
Cancer, Hereditary Nonpolyposis, type 7 (disorder)’, ‘Colorectal Cancer, Hereditary Nonpolyposis, type 780 
5’, ‘Colorectal Cancer, Hereditary Nonpolyposis, type 8’, ‘Colorectal Adenomatous Polyposis, 781 
Autosomal Recessive’, ‘Colorectal Cancer, Hereditary Nonpolyposis, type 4’, ‘Colorectal Cancer, 782 
Susceptibility to, 10’, ‘Colorectal Cancer, Susceptibility to, 12’, ‘Familial Colorectal Cancer Type X’, 783 
‘Colorectal Cancer, Hereditary Nonpolyposis, type 6’, ‘Colorectal Cancer, Susceptibility to, 1’, 784 
‘Oligodontia-Colorectal Cancer Syndrome’ 785 

 786 
Diabetes: ‘Diabetes Mellitus, Experimental’, ‘Diabetic Nephropathy’, ‘Diabetes Mellitus, Non-Insulin-787 
Dependent’, ‘Diabetes Mellitus, Insulin-Dependent’, ‘Diabetes, Autoimmune’, ‘Brittle diabetes’, 788 
‘Diabetes Mellitus, Ketosis-Prone’, ‘Diabetes Mellitus, Sudden-Onset’, ‘Diabetic Retinopathy’, ‘Diabetic 789 
Cardiomyopathies’, ‘Diabetic cystopathy’, ‘Diabetes Mellitus’, ‘Complications of Diabetes Mellitus’, 790 
‘Neonatal diabetes mellitus’, ‘Gestational Diabetes’, ‘Alloxan Diabetes’, ‘Streptozotocin Diabetes’, 791 
‘Prediabetes syndrome’, ‘Diabetic Angiopathies’, ‘Microangiopathy, Diabetic’, ‘Diabetes Mellitus, 792 
Noninsulin-dependent, 1 (disorder)’, ‘Diabetic Neuropathies’, ‘Symmetric Diabetic Proximal Motor 793 
Neuropathy’, ‘Asymmetric Diabetic Proximal Motor Neuropathy’, ‘Diabetic Mononeuropathy’, ‘Diabetic 794 
Polyneuropathies’, ‘Diabetic Amyotrophy’, ‘Diabetic Autonomic Neuropathy’, ‘Diabetic Asymmetric 795 
Polyneuropathy’, ‘Diabetic Neuralgia’, ‘Nephrogenic Diabetes Insipidus’, ‘Diabetes Mellitus, Insulin-796 
Dependent, 22 (disorder)’, ‘Microcephaly, Epilepsy, and Diabetes Syndrome’, ‘Diabetes’, ‘Diabetes 797 
Mellitus, Insulin-Dependent, 12’, ‘Microvascular Complications of Diabetes, Susceptibility to, 3 798 
(finding)’, ‘Diabetes Mellitus, Neonatal, with Congenital Hypothyroidism’, ‘Phosphate Diabetes’, 799 
‘Diabetic encephalopathy’, ‘Microvascular Complications of Diabetes, Susceptibility to, 2 (finding)’, 800 
‘Insulin-resistant diabetes mellitus’, ‘Lymphedema-Distichiasis Syndrome with Renal Disease and 801 
Diabetes Mellitus’, ‘Lipoatrophic Diabetes Mellitus’, ‘Pregnancy in Diabetics’, ‘Maturity onset diabetes 802 
mellitus in young’, ‘Maturity-Onset Diabetes of the Young, type 14’, ‘Latent Autoimmune Diabetes in 803 
Adults’, ‘Monogenic diabetes’, ‘Diabetes mellitus autosomal dominant type II (disorder)’, ‘ Diabetes 804 
Mellitus, Permanent Neonatal’, ‘Diabetes Insipidus’, Microvascular Complications of OF Diabetes, 805 
Susceptibility to, 7 (finding)’, ‘Renal cysts and diabetes syndrome’, ‘Maturity-Onset Diabetes of the 806 
Young, Type 1’, ‘Fanconi Renotubular Syndrome 4 with Maturity-onset Diabetes of the Young’, 807 
‘Transient neonatal diabetes mellitus’, ‘Diabetes Mellitus, Transient Neonatal, 1’, ‘Diabetes Mellitus, 808 
Insulin-Dependent, 2’, ‘diabetes (mellitus) due to autoimmune process’, ‘Diabetes (mellitus) due to 809 
immune mediated pancreatic islet beta-cell destruction’, ‘Idiopathic Diabetes (Mellitus)’, Microvascular 810 
Complications of Diabetes, Susceptibility to, 4 (finding)’, ‘Diabetes Mellitus, Insulin-Dependent, 10’, 811 
‘Acquired Nephrogenic Diabetes Insipidus’, ‘Congenital Nephrogenic Diabetes Insipidus’, ‘Nephrogenic 812 
Diabetes Insipidus, Type I’, ‘Nephrogenic Diabetes Insipidus, Type II’, ‘ADH-Resistant Diabetes 813 
Insipidus’, ‘Diabetic Ketoacidosis’, ‘Non-insulin-dependent diabetes mellitus with unspecified 814 
complications’, ‘Diabetes Mellitus, Permanent Neonatal, with Neurologic Features’, ‘Developmental 815 
Delay, Epilepsy, and Neonatal Diabetes’, ‘Maturity-onset diabetes of the young, type 10’, ‘Diabetes 816 
Mellitus, Insulin-Resistant, with Acanthosis Nigricans’, ‘Maturity-onset Diabetes of the Young, type IV 817 
(disorder)’, ‘Diabetes Mellitus, Transient Neonatal, 3 (disorder)’, ‘Maturity-onset Diabetes of the Young, 818 
type 13’, ‘Diabetes Mellitus, Insulin-Dependent, 5’, ‘ Diabetes Mellitus, Insulin-Dependent, 7’, 819 
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‘Maturity-onset Diabetes of the Young, type 6 (disorder)’, ‘Gastroparesis with diabetes mellitus’, ‘Other 820 
specified diabetes mellitus with unspecified complications’, ‘Insulin-dependent diabetes mellitus 821 
secretory diarrhea syndrome’, ‘Severe nonproliferative diabetic retinopathy’, ‘Microvascular 822 
Complications of Diabetes, Susceptibility to, 5 (finding)’, ‘Central Diabetes Insipidus’, ‘Ataxia, 823 
Combined Cerebellar and Peripheral, with Hearing Loss and Diabetes Mellitus’, ‘Maturity-onset diabetes 824 
of the young, type 11’, ‘Microvascular Complications of Diabetes, Susceptibility to, 6 (finding)’, 825 
‘Diabetes Mellitus, Transient Neonatal, 2 (disorder)’, ‘Maturity-onset Diabetes of the Young, type 3 826 
(disorder)’, ‘Diabetes Mellitus, Insulin-Dependent, 20 (disorder)’, ‘Proliferative diabetic retinopathy’, 827 
‘Microvascular Complications of Diabetes, Susceptibiltiy to, 1(finding)’, ‘Maturity-onset Diabetes of the 828 
Young, type type 7 (disorder)’, ‘Diabetes Mellitus, Noninsulin-dependent, 5’ 829 
 830 
Autoimmune: ‘Autoimmune hemolytic anemia’, ‘Autoimmune Diseases’, ‘Autoimmune state’, ‘Celiac 831 
Disease’, ‘Lupus Erythematosus, Systemic’, ‘Diabetes, Autoimmune’, ‘Autoimmune Chronic Hepatitis’, 832 
‘Rheumatoid Arthritis’, ‘Ankylosing spondylitis’, ‘Multiple Sclerosis’, ‘Autoimmune 833 
Lymphoproliferative Syndrome’, ‘Experimental Autoimmune Encephalomyelitis’, ‘Lupus 834 
Erythematosus, Cutaneous’, ‘Chilblain lupus 1’, ‘Multiple Sclerosis, Acute Fulminating’, ‘Autoimmune 835 
thyroiditis’, ‘Autoimmune Lymphoproliferative Syndrome Type 2B’, ‘Autoimmune Interstitial Lung, 836 
Joint, and Kidney Disease’, ‘Lupus Vulgaris’, ‘Lupus Erythematosus, Discoid’, ‘Lupus Erythematosus’, 837 
‘Rheumatoid Arthritis, Systemic Juvenile’, ‘Neuritis, Autoimmune, Experimental’, Systemic Lupus 838 
Erythematosus 16’, ‘Ankylosing spondylitis and other inflammatory spondylopathies’, ‘Lupus Vasculitis, 839 
Central Nervous System’, ‘Lupus Meningoencephalitis’, ‘Neuropsychiatric Systemic Lupus 840 
Erythematosus’, ‘Lupus Nephritis’, ‘Vitiligo-associated Multiple Autoimmune Disease Susceptibility 1 841 
(finding)’, Chilblain Lupus 2’, ‘Latent Autoimmune Diabetes in Adults’, ‘Vitiligo-associated Multiple 842 
Autoimmune Disease Susceptibility 6’, ‘Autoimmune Disease, Susceptibility to, 1’, ‘Autoimmune 843 
Hepatitis with Centrilobular Necrosis’, ‘Polyendocrinopathies, Autoimmune’, ‘Polyglandular Type I 844 
Autoimmune Syndrome’, ‘Autoimmune Syndrome Type II, Polyglandular’, ‘Polyglandular Type III 845 
Autoimmune Syndrome’, ‘Autoimmune Polyendocrinopathy Syndrome, Type I, Autosomal Dominant’, 846 
‘Autoimmune Polyendocrinopathy Syndrome, type I, with Reversible Metaphyseal Dysplasia’, 847 
‘Autoimmune polyendocrinopathy syndrome, type 1’, ‘Multiple Sclerosis, Acute Relapsing’, ‘Multiple 848 
Sclerosis, Relapsing-Remitting’, ‘diabetes (mellitus) due to autoimmune process’, ‘Autoimmune 849 
Lymphoproliferative Syndrome, Type IA’, ‘Ras-associatedAutoimmune Leukoproliferative Disorder’, 850 
‘Autoimmune Lymphoproliferative Syndrome Type 1, Autosomal Dominant’, ‘Autoimmune Diseases of 851 
the Nervous System’, ‘Autoimmune Disease, Susceptibility to, 6’, ‘Autoimmune Lymphoproliferative 852 
Syndrome, Type III’, ‘Alpha/Beta T-cell Lymphopenia with Gama/Delta T-cell Expansion, Severe 853 
Cytomegalovirus Infection, and Autoimmunity, ‘Idiopathic Autoimmune Hemolytic Anemia’, 854 
‘Autoimmune Disease, Multisystem, Infantile-onset, 1’, ‘Systemic Lupus Erythematosus, Multisystem, 855 
11’, ‘T-cell Immunodeficiency, Recurrent Infections, and Autoimmunity with or without Cardiac 856 
Malformations’, ‘T-cell Immunodeficiency, Recurrent Infections, Autoimmunity, and Cardiac 857 
Malformations’, ‘Hyperthyroidism, Nonautoimmune’, ‘Autoimmune Disease, Multisystem, Infantile-858 
onset, 2’, ‘Autoimmune Disease, Multisystem, with facial dysmorphism’, ‘Syndromic multisystem 859 
autoimmune disease due to itch deficiency’, ‘Autoimmune Lymphoproliferative Syndrome, Type IIA’, 860 
‘Immunodeficiency, Common Variable, 8 with Autoimmunity’ 861 
 862 
Obesity: ‘Obesity’, ‘Pediatric Obesity’, ‘Adolescent Obesity’, ‘Childhood Overweight’, ‘Infantile 863 
Obesity’, ‘Infant Overweight’, ‘Adolescent Overweight’, ‘Abdominal obesity metabolic syndrome’, 864 
‘Obesity, Morbid’, ‘Obesity, Hyperphagia, and Developmental Delay’, ‘Obesity, Abdominal’, ‘Mental 865 
Retardation, Epilectic Seizures, Hypogonadism and Hypogenitalism, Microcephaly, and Obesity 866 
(disorder)’, ‘Obesity, Susceptibility to’, ‘Obesity, Visceral’, ‘Overweight’, ‘Obesity due to melanocortin 4 867 
receptor deficiency’, ‘ABDOMINAL Obesity-Metabolic Syndrome 1’, ‘Developmental Delay, 868 
Intellectual Disability, Obesity, and Feautres’, ‘Spastic Paraplegia, Intellectual disability, nystagmus, and 869 
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Obesity’, ‘Retinal Dystrophy and Obesity ‘, ‘Childhood-onset truncal obesity’, ‘Morbid Obesity and 870 
Spermatogenic Failure’, ‘Abdominal Obesity-Metabolic Syndrome 3’ 871 
 872 
IBD: ‘Ulcerative Colitis’, ‘Crohn Disease’, ‘Colitis’, "Crohn’s disease of large bowel", ‘Inflammatory 873 
Bowel Diseases’, ‘Necrotizing Enterocolitis’, "Crohn’s disease of the ileum", ‘IIeocolitis’, ‘Inflammatory 874 
Bowel Disease 17’, ‘Chronic left-sided ulcerative colitis’, ‘Inflammatory Bowel Disease 12’, 875 
‘Inflammatory Bowel Disease 19’, ‘Enterocolitis’, ‘Enterocolitis, Neutropenic’, ‘Inflammatory bowel 876 
disease 28, Autosomal Recessive’, ‘Inflammatory bowel disease 25, autosomal recessive’, ‘Inflammatory 877 
Bowel Disease 14’, ‘Inflammatory Bowel Disease 13’, ‘Inflammatory Bowel Disease 10’,’Inflammatory 878 
Bowel Disease 29’, ‘Autoinflammation with Infantile Enterocolitis’ ‘Crohn Disease-associated Growth 879 
Failure, Susceptibility to (finding)’, ‘Neutropenic colitis’, ;Inflammatory Bowel Disease, 880 
Immunodeficiency, and encephalopathy’, ‘Inflammatory Bowel Disease, Immunodeficiency, and 881 
Ecnephalopathy’, ‘Inflammatory Bowel Disease 16’ 882 
  883 
  884 
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Supplementary Figures 885 
 886 
Figure S1. Few bacterial-human interaction sequences populate the Protein Data Bank.  887 
A Venn diagram describing the number of detected bacterial clusters and human interactors in the nine 888 
metagenomic cohorts that have any matching structure (using BLASTp) in the PDB to at least one chain 889 
(medium blue) and whether their homologous structures appear on the same PDB cocrystal structure 890 
(dark blue). Only one PDB structure showed non-overlapping homology to both a human and bacterial 891 
protein.  892 
 893 
Figure S2.  An outline of our homology mapping procedure and alignment.   894 
Depiction of the interaction network inference and protein detection pipeline for bacterial/microbiome 895 
(blue)-human (orange) PPIs. 896 
 897 
Figure S3. Interface similarity between bacterial proteins within a UniRef cluster. 898 
Similarity, identity, and Jensen-Shannon divergence of interface residues across all bacterial members of 899 
the same UniRef cluster sourced from all cocrystal structures in the PDB with human and bacterial 900 
interactors.  901 
 902 
Figure S4. Disease-associated interactions are enriched for those based on affinity-based methods.  903 
The three largest categories of detection methods are shown (affinity-based methods, yeast-2-hybrid, 904 
mass spectrometry methods) as well as ‘Other’. p-values are only shown between ‘Detected’ and 905 
‘Disease-associated’ and are depicted by: * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001 (Chi-square 906 
test). Total numbers of each set are noted in the legend. 907 
 908 
Figure S5. Degree distribution for bacterial protein clusters and human proteins.  909 
The degree distribution per bacterial protein cluster (left) or human protein (right) in the HBNet, Detected 910 
or Disease-associated subsets.  911 
 912 
Figure S6. Performance metrics of the random forest (RF) classifier. 913 
(A) A heatmap of area under the receiver operating characteristic curve (AUROC), precision, recall, and 914 
F1-scores for random forests on the putative human interactors with the microbiomes of each 915 
metagenomic study with grid search-based hyper-parameter tuning, evaluated using five-fold cross 916 
validation. (B) Performance metrics of the RF classifier using only features above the 90th percentile.  917 
 918 
Figure S7. Gene-disease annotations are specific to each disease cohort.  919 
(A) The proportions of human proteins implicated in disease, according to their GDAs in DisGeNET 920 
(only GDAs with scores over 0.1 were considered) and grouped according to disease-specific cohorts, in 921 
the following subsets: all reviewed human proteins (totaling 20,371 proteins); HBNet (5,770 proteins); 922 
human interactors with detected bacterial proteins (2,279 proteins); and those human interactors with 923 
feature importances above the 90th percentile in their respective cohorts (648 unique proteins). p-values 924 
are depicted by: * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001 (Chi-square test). Total numbers of 925 
each set are noted in the legend. 926 
 927 
Figure S8. Protein localization and protein expression according to human tissue.  928 
Protein localization according to tissue, as annotated by the Human Protein Atlas. Only those with 929 
“enhanced”, “supported” or “approved” annotations were included. Total numbers of each set are noted in 930 
the legend. 931 
 932 
Figure S9. Secretion systems distribution varies across bacterial species.  933 
A heatmap (present/absent) of the required components for each secretion system (denoted using their KO 934 
numbers) present in each bacterial species (colored by phylum to the left) with at least one detected 935 
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protein associated with bacterial protein clusters in nine case-control cohort studies. The actual number of 936 
detected and disease-associated protein cluster representatives for each bacteria in any of the nine 937 
metagenomic studies is plotted to the right.  938 
 939 
Figure S10. Bacterial clusters gain putative human-relevant functions.  940 
Human pathways (annotated using WikiPathways) significantly enriched (FDR-adjusted p-values < 0.05) 941 
in either HBNet, the human proteins targeted by bacterial clusters detected in the metagenomic studies, or 942 
those human targets associated with disease in the metagenomic case-control cohort studies (disease-943 
associated). 953 out of 1,102 metagenomic cohort-associated human proteins were able to be annotated. 944 
Note that each bacterial protein cluster may gain multiple annotations, according to the roles of their 945 
human interactor(s). 946 
 947 
Figure S11. Cocrystal structure of blood coagulation factor Xa in complex with Ecotin M84R. 948 
Cluster Uniref50_Q1R9K8 contains several bacterial ecotins detected in human metagenomes. Using 949 
BLAST, we found high-quality matches between members of this cluster and the structure 1p0s:E (Ecotin 950 
precursor M84R) in the PDB (identity of 97.2%, eval=10-75). Our putative interactor to this cluster, 951 
coagulation factor X (P00742) likewise matched structure 1p0s:H (coagulation factor X precursor) 952 
(identity of 100%, eval=3.8x10-150). Chain E is shown in blue, and chain H in orange, with their interface 953 
residues highlighted as spheres. The linear model of both proteins is shown underneath. The linear 954 
model’s colored areas indicate the part of the proteins that were crystallized in this PDB, while the 955 
greyed-out areas indicate non-crystallized spans. The squares indicate the range of the BLAST match 956 
between our query proteins and the PDB reference sequences. Finally, ticks on the linear model indicate 957 
the location of interface residues as detected in this model. There are currently not enough published 958 
structures to perform this analysis on all interactions involving detected bacterial genes (Fig. S2, Table 959 
S7). 960 

 961 

  962 
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Supplementary Tables 963 

Table S1. Extended information on known experimentally verified host-microbiome interactions 964 
with evidence for a role in cellular physiology and/or human health. 965 
Information on the interaction detection method for human-microbiome PPIs that have been shown to 966 
affect cell physiology and/or human health. 967 
 968 
Table S2. Metagenomic samples used in this research.  969 
For each study, we list the sample numbers and labels in the cohort study.  970 
 971 
Table S3. Disease-associated human-microbiome PPIs. 972 
Human-microbiome PPIs are listed according to their UniProt and UniRef50 identifiers, human and 973 
bacterial protein names. 974 
 975 
Table S4. Number of human interactors according to the source of the experimentally-verified 976 
interactors. 977 
The number of human interactors, according to the species sourcing the initial experimentally verified 978 
interacting protein.  979 
 980 
Table S5. Human interactors that are known drug targets.  981 
For each disease-associated human protein, we list the drug interactor (annotated using DrugCentral and 982 
DrugBank) and the study in which it was found to be important.  983 
 984 
Table S6. Extended information for bacterial proteins targeting known drug targets in Figure 4. 985 
Bacterial clusters depicted in Fig. 4 are listed with their UniRef number and detected taxa, according to 986 
HUMANN3. 987 
 988 
Table S7. Cocrystal structures representing interactions in our dataset. 989 
All pairs of detected bacterial proteins and human proteins in the nine metagenomic datasets that have 990 
BLASTp matches to two different chains within the same PDB cocrystal structure (totaling 8 bacterial 991 
protein clusters and 10 human proteins). This list includes structures with at least one chain exclusive to 992 
each bacterial and human proteins.  993 
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Figure 1. Human proteins differentially targeted by the microbiome in disease are enriched for relevant gene-disease associations.
(A) The number of interspecies bacterial protein clusters (blue), human proteins (orange) and interactions (dark blue) in the human-bacteria PPI network; 
the number of bacterial protein clusters detected in patients from nine metagenomic studies that also have homology to experimentally-verified interactors 
and their putative human interactors; and the number of bacterial clusters and human proteins associated with disease through our metagenomic machine 
learning approach, by comparing abundances in cases (grey) and control (red). (B) Proportions of human proteins implicated in disease, according to their 
GDAs (GDAs > 0.1) in DisGeNET, within: all reviewed human proteins; HBNet; human interactors with detected bacterial proteins; and those human 
interactors with feature importances above the 90th percentile in their respective cohorts. p-values for enrichments are depicted by: * p<0.05; ** p<0.01; 
*** p<10-3; **** p<10-4 (Chi-square test). Total numbers of each set are noted in the legend. (C) Human cellular pathways (annotated by IPA) enriched 
in the set of human proteins within HBNet (left) and those detected across all nine metagenomic case-control studies (right) colored according to their 
Benjamini-Hochberg false discovery rate (BHFDR)-adjusted p-value. Only those pathways with BHFDR-adjusted < 0.05 in the disease-associated sets 
are shown. p-values for enrichments are depicted by: * p<0.05; ** p<0.01; *** p<10-3; **** p<10-4 (Fisher’s Exact test).  (D) All human proteins within 
the Clathrin-Mediated Endocytosis Signaling pathway, as annotated by IPA, are depicted. Protein targets detected in the nine metagenomic studies are 
highlighted in orange. Those in the Disease-associated subset are in brown. Specific interactions and the nature of interactions were simplified, with boxes 
roughly representing proteins within the same signaling cascade and/or complex. (E) 106 species (left) with experimentally verified proteins in 3,056 
bacterial protein clusters are mapped to 821 bacterial species (right) with homologs detected in patients’ metagenomes (right), representing a total of 1,698 
clusters. Species are colored according to phylum. 
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Figure 2. Bacterial proteins gain access to human proteins through a variety of mechanisms.
(A) Proportions of human proteins in the HBNet, Detected and Disease-associated subsets are plotted according to their enrichments in 
tissues and fluids, as annotated using DAVID. Only those with significant enrichment between any two subsets are shown. p-values for 
enrichments are depicted by: * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001 (EASE Score provided by DAVID, a modified Fisher 
Exact P-value; FDR-adjusted).  Total numbers of each set are noted in the legend. (B) A schematic depicting potential opportunities for 
bacterial proteins to access human proteins. Interactions may involve: (1) secreted human proteins, (2) bacterial proteins secreted into the 
extracellular space; (3) membrane vesicles that are endocytosed or can fuse with human cell membranes; (4) bacterial cellular lysate; (5) 
proteins injected into human cells by T3SS, T4SS and T6SS, (6) cells and their products that translocate as a result of barrier dysfunction 
or “leaky gut”, and/or (7) direct contact with M cells, dendritic cells (DC), or epithelial cells. (C) Proportions of human proteins in the 
HBNet, Detected and Disease-associated subsets, are plotted according to their subcellular locations, as annotated using Gene Ontology 
Cellular Component, is depicted. p-values for enrichments are depicted by: * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001 
(Chi-square test). Total percentages for these subsets is listed at right, along with p-values. Total numbers of each set are noted in the 
legend. (D) Proportions of bacterial gene clusters in the HBNet, Detected and Disease-associated subsets are plotted according to their 
transmembrane and secretion predictions, annotated using TMHMM, EffectiveDB and SignalP. p-values for enrichments are depicted by: 
* p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001 (Chi-square test). Total numbers of each set are noted in the legend.
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Figure 3. Human pathway annotation can be propagated through interactors to improve bacterial pathway 
annotation. (A) Paired stacked bar plots showing the 1,102 disease-associated bacterial protein clusters according to 
whether they are able to be annotated by KEGG (left) and their inferred pathways according to the human proteins they 
target (right), as annotated by WikiPathways. (B) Proportions of the bacterial clusters in the HBNet, Detected and 
Disease-associated subsets according to their COG functional categories are plotted. p-values are depicted by: * p<0.05; 
** p<0.01; *** p<0.001; **** p<0.0001 (Chi-square test). Total numbers of each set are noted in the legend.
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Figure 4. Human proteins targeted by gut commensal proteins include known therapeutic drug targets. 
(A) Nafamostat, (B) imatinib and (C) artenimol target human proteins that are differentially targeted by 
bacterial proteins detected in the stated metagenomic studies. Log10 relative mean summed abundances of 
bacterial interactors in patients versus controls are provided. p-values were calculated by the Mann-Whitney 
rank-sum test, * p<0.05; ** p<0.01; *** p<10-3; **** p<10-4). Full taxa and UniRef numbers for all bacterial 
proteins shown are provided in Table S6.

Figure 4 Click here to access/download;Figure;Figure 4_withcaptions.pdf
.CC-BY-NC-ND 4.0 International licenseunder a

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 
The copyright holder for this preprint (which wasthis version posted September 4, 2021. ; https://doi.org/10.1101/821926doi: bioRxiv preprint 

https://www.editorialmanager.com/cell/download.aspx?id=2278067&guid=d7ae6b62-c361-4f6a-af8a-04840807dd41&scheme=1
https://www.editorialmanager.com/cell/download.aspx?id=2278067&guid=d7ae6b62-c361-4f6a-af8a-04840807dd41&scheme=1
https://doi.org/10.1101/821926
http://creativecommons.org/licenses/by-nc-nd/4.0/


Experimentally verified, binary, 
cross-taxa PPIs are identified from Intact, 

BioGRID, HPIdb and manually curated publications

Protein
(taxa A) 

Determining bacterial protein abundances 
in case-control metagenomic studies

using HUMANN3

UniRef90 clusters

UniRef50 cluster
(>50% sequence identity

and ≥80% coverage to seed)

Bacterial interactors
are mapped to 

UniRef50 homology clusters

Homology 
cluster seed

Experimentally-
verified

interactor

Bacterial interactors are BLASTed to HBnet  and 
interactions are propagated

so long as proteins have suffient 
homology to experimentally-verified interactors

≥70% sequence similarity 
required between putative interactors 
and experimentally verified interactor

Clusters containing both 
human and bacterial homologs

are removed. X

HBNet

Detected

Human protein abundances inputted into 
random forest algorithm

“Disease-associated”

X

Human interactors
are mapped to 

UniRef90 homology clusters

UniRef90 cluster
(>90% sequence identity

and ≥80% coverage to seed)

Human proteins with Gini importances
above the 90th percentile are 

considered associated with disease

Protein
(taxa B) 

Figure S1.  An outline of our homology mapping procedure and alignment. 
Depiction of the interaction network inference and protein detection pipeline for bacterial/microbiome (blue)-human 
(orange) PPIs.
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Figure S2. Few bacterial-human interaction sequences populate the Protein Data Bank. 
A Venn diagram describing the number of detected bacterial clusters and human interactors in the nine metagenomic 
cohorts that have any matching structure (using BLASTp) in the PDB to at least one chain (medium blue) and whether 
their homologous structures appear on the same PDB cocrystal structure (dark blue). Only one PDB structure showed 
non-overlapping homology to both a human and bacterial protein. 
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Figure S3. Interface similarity between bacterial proteins within a UniRef cluster. Similarity, identity, and 
Jensen-Shannon divergence of interface residues across all bacterial members of the same UniRef cluster sourced from all 
cocrystal structures in the PDB with human and bacterial interactors. 
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Figure S4. Disease-associated interactions are enriched for those based on affinity-based methods. 
The three largest categories of detection methods are shown (affinity-based methods, yeast-2-hybrid, mass spectrometry 
methods) as well as ‘Other’. p-values are only shown between ‘Detected’ and ‘Disease-associated’ and are depicted by: * 
p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001 (Chi-square test). Total numbers of each set are noted in the legend.
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Figure S5. Degree distribution for bacterial protein clusters and human proteins. 
The degree distribution per bacterial protein cluster (left) or human protein (right) in the HBNet, Detected or Disease-asso-
ciated subsets. 
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Figure S6. Performance metrics of the random forest (RF) classifier.
(A) A heatmap of area under the receiver operating characteristic curve (AUROC), precision, recall, and F1-scores for random 
forests on the putative human interactors with the microbiomes of each metagenomic study with grid search-based hyper-pa-
rameter tuning, evaluated using five-fold cross validation. (B) Performance metrics of the RF classifier using only features 
above the 90th percentile. 
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Figure S7. Gene-disease annotations are specific to each disease cohort. The proportions of human proteins 
implicated in disease, according to their GDAs in DisGeNET (only GDAs with scores over 0.1 were considered) 
and grouped according to disease-specific cohorts, in the following subsets: all reviewed human proteins (totaling 
20,371 proteins); HBNet (5,770 proteins); human interactors with detected bacterial proteins (2,279 proteins); and 
those human interactors with feature importances above the 90th percentile in their respective cohorts (648 unique 
proteins). p-values are depicted by: * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001 (Chi-square test). Total 
numbers of each set are noted in the legend.
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Figure S8. Protein localization and protein expression according to human tissue. 
Protein localization according to tissue, as annotated by the Human Protein Atlas. Only those with “enhanced”, “supported” 
or “approved” annotations were included. Total numbers of each set are noted in the legend.
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Figure S9. Secretion systems distribution varies across bacterial species. 
A heatmap (present/absent) of the required components for each secretion system (denoted using their KO num-
bers) present in each bacterial species (colored by phylum to the left) with at least one detected protein associated 
with bacterial protein clusters in nine case-control cohort studies. The actual number of detected and disease-associ-
ated protein cluster representatives for each bacteria in any of the nine metagenomic studies is plotted to the right. 
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Figure S10. Bacterial clusters gain putative human-relevant functions. 
Human pathways (annotated using WikiPathways) significantly enriched (FDR-adjusted p-values < 0.05) in either 
HBNet, the human proteins targeted by bacterial clusters detected in the metagenomic studies, or those human 
targets associated with disease in the metagenomic case-control cohort studies (disease-associated). 953 out of 
1,102 metagenomic cohort-associated human proteins were able to be annotated. Note that each bacterial protein 
cluster may gain multiple annotations, according to the roles of their human interactor(s).
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Figure S11. Cocrystal structure of blood coagulation factor Xa in complex with Ecotin M84R.
Cluster Uniref50_Q1R9K8 contains several bacterial ecotins detected in human metagenomes. Using BLAST, 
we found high-quality matches between members of this cluster and the structure 1p0s:E (Ecotin precursor 
M84R) in the PDB (identity of 97.2%, eval=10-75). Our putative interactor to this cluster, coagulation factor X 
(P00742) likewise matched structure 1p0s:H (coagulation factor X precursor) (identity of 100%, eval=3.8 × 
10-150). Chain E is shown in blue, and chain H in orange, with their interface residues highlighted as spheres. The 
linear model of both proteins is shown underneath. The linear model’s colored areas indicate the part of the 
proteins that were crystallized in this PDB, while the greyed-out areas indicate non-crystallized spans. The 
squares indicate the range of the BLAST match between our query proteins and the PDB reference sequences. 
Finally, ticks on the linear model indicate the location of interface residues as detected in this model. There are 
currently not enough published structures to perform this analysis on all interactions involving detected bacterial 
genes (Fig. S2, Table S6).
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