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Abstract

Many drugs investigated for the treatment of glioblastoma (GBM)
have had poor clinical outcomes, as their efficacy is dependent on ad-
equate delivery to sensitive tumor cell populations, which is limited
by the blood-brain barrier (BBB). Further complicating evaluation of
therapeutic efficacy, tumors can become resistant to anti-cancer drugs,
and it can be difficult to gauge the extent to which BBB limitations
and resistance each contribute to a drug’s failure. To address this
question, we developed a minimal mathematical model to characterize
these elements of overall drug response, informed by time-series bio-
luminescence imaging data from a treated patient-derived xenograft
(PDX) experimental model. By fitting this mathematical model to a
preliminary dataset in a series of nonlinear regression steps, we esti-
mated parameter values for individual PDX subjects that correspond
to the dynamics seen in experimental data. Using these estimates,
we performed a parameter sensitivity analysis using Latin hypercube
sampling and partial rank correlation coefficients. Results from this
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analysis combined with simulation results suggest that BBB perme-
ability may play a slightly larger role in therapeutic efficacy than drug
resistance. Our model and fitting technique to estimate parameters
from data may be a useful tool in aiding further exploration of these
challenges in future studies of drug efficacy with larger datasets.

1 Introduction

Glioblastoma (GBM) is an aggressive primary brain cancer that is notori-
ously difficult to treat due to its diffuse infiltration into surrounding normal-
appearing brain [10]. These diffusely invading GBM cells cannot be com-
pletely resected surgically [2], and are difficult to target with radiation ther-
apy while sparing normal brain [5]. As a result, clinicians rely on chemother-
apy to treat the full extent of the tumor. However, chemotherapeutic efficacy
can be limited in two main ways: there may be insufficient delivery across
the blood–brain barrier (BBB), and the tumor may develop resistance to
therapy.

The BBB acts to keep pathogens and many toxins out of the sensitive
brain tissue. Angiogenesis in dense tumor regions induces disruption of
the BBB, potentially allowing chemotherapeutic drugs to “leak” into these
tumor regions. Current dogma in neuro-oncology holds this as being largely
sufficient to treat the tumor, but GBM cells invade beyond these regions into
tissue where the BBB remains rather intact [19]. Further, tissue interstitial
pressure and drug properties such as lipophilicity and polarity may influence
the delivery of drugs across angiogenesis–induced BBB “leaks” [16]. Due to
these factors, it remains unclear whether the delivery of BBB–impermeable
antineoplastic agents reaches adequate concentrations throughout the tissue
to provide the anticipated therapeutic effect.

Drug insensitivity or resistance is also a key suspect behind unsuccessful
results treating GBM with molecularly–targeted therapies [7, 20]. GBMs
frequently present with gene mutations or amplifications for a number of
targets, such as epidermal growth factor receptor (EGFR), for which thera-
pies already exist [3,4,8,15,18]. Due to the spatial heterogeneity of GBM, it
is possible that these targets have been identified for a subpopulation of cells
predominant in the dense core of the tumor where biopsies were taken, but
are in fact less common in the invading portions of the tumor. This would
result in a significant population of cells being treated with drugs they are
not sensitive to, which could explain why trials with such targeted agents
have failed [1, 6, 11, 17]. It is notable, however, that many of these drugs
were not developed specifically for brain, but for cancers elsewhere in the
body and subsequently tried in brain cancer, again raising the question of
adequate delivery across the BBB.

“Specifically for EGFR or other kinase-targeted inhibitors, emergence of
compensatory signaling pathways may lead to acquired resistance to ther-
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apy.”
In order to explore both the contributions of inadequate delivery of ther-

apy across the BBB and drug resistance or insensitivity, we developed a min-
imal mathematical model based on preclinical experimental data. First, we
describe model development based on this data and steps to estimate param-
eter regimes via data-fitting. Next, we explore the global model parameter
sensitivity to understand how these parameters impact model outcomes. Fi-
nally, we run model simulations for the data–derived parameter regimes to
assess the relative contributions of drug distribution and sensitivity, and
discuss how it might be useful in assessing results from future experiments
comparing different PDXs or different drugs. Overall, our model suggests
that the influence of drug permeability may be more impactful than the de-
gree of resistance for a given baseline sensitivity. Thus, in order to improve
treatment outcomes, it is critical to determine predictors of drug distribu-
tion in individual patients’ tumors and surrounding brain tissue to ensure
invading tumor cells are adequately exposed to the therapy.

2 Treatment Exposure and Sensitivity Model

Our ordinary differential equation (ODE) model of tumor growth and treat-
ment response accounts for both variable treatment exposure and differential
sensitivity to treatment by different tumor subpopulations. Development of
this model was informed by experimental observations, which were also used
to determine relevant parameter regimes for running simuliations.

2.1 Experimental Data

The form of our model was based on experimental data testing an EGFR-
targeted antibody drug conjugate (ADC) [14]. These experiments were per-
formed using a patient–derived xenograft (PDX) model of GBM, in which
patient-derived GBM cells are implanted in rodents [9, 13]. The growth of
these preclinical tumors was monitored via bioluminescent imaging (BLI,
Figure 1). Since BLI flux is linearly correlated with tumor cell number [12],
this provided us with a close approximation of tumor cell populations across
time. Importantly, the PDX tumors were implanted both in the flank, where
there is no BBB, and in the brain, which allowed us to compare treatment
effect in tumors with and without BBB impediments to drug distribution.
Moreover, there were control groups in both sites (flank and intracranial)
that received no treatment.

In the untreated groups, BLI flux increased exponentially over time, in-
dicating exponential growth in the total tumor cell population. Treated
groups showed similar exponential growth in the absence of treatment at
early time points, followed by a precipitous decline with the initiation of
therapy (begun once tumors reached a set volume). This period of decline
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Figure 1: Example bioluminescence images for patient-derived xenografts.
Colors represent the BLI radiance in photons per second per area in cm
squared.., which is related to the BLI flux (measured in photons per second)
for the total area.

was relatively short–lived, and after that BLI flux increased exponentially
again, albeit at a slower rate. The precipitous decline in experimental tu-
mor volume followed by a trajectory of slower regrowth than that prior to
therapy suggested the presence of two distinct tumor cell populations: one
that responded to therapy (sensitive, denoted s), and one that continued to
grow in spite of therapy (resistant, denoted r). These cell populations are
assumed to proliferate at the same rate, ρ, differing only in their responses
to treatment. The ADC therapy (denoted A) was delivered every seven days
at dose Adose, and decays at rate λ. In response to therapy, which achieves
a fraction γ of the dosed concentration in the tumor tissue, cell death is
induced in each population at rates (µs,r), respectively. These dynamics are
schematized in Figure 2.

Figure 2: Schematic of patient-derived xenograft response to an antibody
drug conjugate, including key variables and parameters of the mathematical
model.

2.2 Model Equations

Our model consists of three coupled ordinary differential equations describ-
ing the dynamics of both cell populations (s, r) and the ADC (A):
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ds

dt
= ρs︸︷︷︸

proliferation

− γµsAs︸ ︷︷ ︸
drug-induced apoptosis

(1a)

dr

dt
= ρr︸︷︷︸

proliferation

− γµrAr︸ ︷︷ ︸
drug-induced apoptosis

(1b)

dA

dt
=

N∑
n=1

Adose(n)δ (t− 7n)︸ ︷︷ ︸
drug dose given at time t

− λA︸︷︷︸
drug decay

(1c)

where parameters and their definitions are outlined in Table 1, and their
derivations can be found in Section 2.3.

In the absence of the ADC, both sensitive and resistant tumor popula-
tions grow exponentially, at proliferation rate ρ. However, the two popu-
lations differ in sensitivity to the ADC, A, which is captured by the drug-
induced apoptosis rates µs and µr (for sensitive and resistant populations,
respectively). The terms for tumor cell death due to ADC are further mod-
ified by factor γ, which represents the proportion of cells exposed to ADC.
We assume that the ADC is readily distributed to flank PDXs such that tu-
mor cell exposure is high (γ = 1), but that the BBB limits this distribution
for intracranial PDXs (0 ≤ γ ≤ 1). In order to capture the ADC dynamics,
we let Adose(n) represent the nth dose, with doses administered every seven
days, as noted by the dirac delta function δ(t− 7n). The ADC then decays
at rate λ.

Table 1: Model Parameter Definitions and Values. Parameter value
ranges were estimated through fitting the model to experimental data or
parameters were confined to a value range by their theoretical meaning,
except in the case of ADC parameters, as described in Section 2.3.

Symbol Definition Value Range Units

ρ cellular proliferation rate 0.2 to 0.5 day−1

µs ADC-mediated sensitive cell kill rate 1 to 10 mg−1 day−1

µr ADC-mediated resistant cell kill rate zµs mg−1 day−1

q resistant proportion of implanted cells 0 to 1 unitless
z sensitivity factor between µs & µr 0 to 1 unitless
λ rate of ADC decay ln(2)/7 day−1

γ proportion of tumor exposed 0 to 1 unitless
Adose ADC given in a single dose 0.1 mg

This model can be solved analytically, as shown in Appendix A. For
simplification, at any given time t, C(t) represents the total number of cells,
calculated by the sum of sensitive s(t) and resistant r(t) cells. This total cell
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number was used in Section 2.3 for comparing with bioluminescence imaging
data, which shows the total tumor cell population. The initial resistant
proportion of total implanted cells is denoted by q = r0/C0. Similarly,
the extent to which resistant cells r are less sensitive to the agent than
the sensitive cells s is denoted by the ratio z = µr/µs, which is bounded
between 0 and 1 to ensure that µr is a fraction of µs in the regression-based
parameterization in Section 2.3. With these notational changes, we can then
write the analytical solution (derived in Appendix A) as

C(t) = C0e
ρt
(
qe−γzµs

∫
A(t)dt + (1− q)e−γµs

∫
A(t)dt

)
, (2)

where ∫
A(t)dt =

N∑
n=1

2nAdose(n)

(
e7nλ − eλt

)
θ(t− 7n)

λ
. (3)

Utilizing this solution (2), the model can be parameterized through compar-
ison of simulations to temporal BLI data.

2.3 Data-Based Parameter Estimation

Most model parameters were unknown, with the exception of ADC-specific
parameters: the timing of dose administration and dose amounts (Adose(n)),
as well as the half-life of the drug, which allowed us to solve for the drug
decay rate (λ). Dose amounts were adjusted for the weight of each animal
(5 mg/kg), so we applied the average initial animal weight of 20 g to obtain
the constant ADC dose, Adose = 0.1 mg used in simulations. All of the
remaining model parameters were determined through several iterations of
fitting the model via least squares regression to preliminary BLI data from
an experiment. The various arms of the experiment included untreated and
treated groups of subjects, as well as flank and intracranial tumor sites to
separate out BBB influences. By fitting the model to these various sub-
groups, we are able to identify and estimate each of the parameters, as
described below.

Step 1: Fit to untreated data to estimate growth rate, ρ. When
fitting the model to untreated data, since the ADC is not injected (A =
0), the model’s treatment components zero out and only an exponential
growth function remains: C(t) = C0e

ρt. Fitting this model function to
untreated data via least squares regression with the lsqcurvefit function
in Matlab R© (MATLAB Release 2018b, The MathWorks, Inc., Natick,
Massachusetts, United States) (Figure 6), we were able to obtain estimates
of the tumor proliferation rate ρ and the number of viable implanted PDX
cells C0. (Note that while a consistent number of cells are initially implanted
for each subject, C0 is in fact unique for each, as a variable number of cells
die off, possibly due to an inability to establish themselves in the proper
microenvironment for growth.) This yielded subject-specific values for ρ
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and C0, and the mean ρ was recorded as the net proliferation rate for the
cells of the particular PDX line used in the experiments grown in either the
flank or intracranial setting.

Step 2: Fit to treated flank data to estimate µs, z, and q. Using
the estimated net proliferation rate, ρ, from the previous step, we proceed
to fit the treated data in the flank. We assume the flank-specific estimate
of ρ remains the same in the treated case as untreated, since the microenvi-
ronment remains similar and any effects on growth can be encapsulated in
the treatment effect term. Additionally, since the tumor was injected in the
flank, there is no BBB effect to limit the proportion of tumor exposed to
the ADC, such that the exposure parameter γ = 1. Pairing this with other
known parameters (see Table 1), the only remaining unknown parameters
are the cell death rates due to drug, µs and µr, and proportion of implanted
cells that are resistant, q. Using the definition z = µr/µs and the analyti-
cal solution of the model (2), we can then apply a nonlinear least squares
regression (again using lsqcurvefit) to fit subject-specific parameters for
parameters µs, z, and q (Figure 6).

Step 3: Fit to treated intracranial data to estimate γ, z, and
q. Proceeding to fit the data from treated intracranial tumors, we apply
the same approach to estimate parameters as in the flank, this time assum-
ing that the intracranial-specific estimate of ρ from the untreated setting
remains the same for the treated intracranial tumors due to a similar mi-
croenivronment. We further assume that the cell death rate due to therapy
for the sensitive tumor subpopulation, µs, is the same intracranially as in
the flank setting and estimate parameter γ, the fraction of tumor exposed
to therapy.

Figure 3: Summary of the series of steps used to estimate model parameter
values through fitting the model to different experimental data sets.

At the conclusion of these steps (summarized in Figure 3), all unknown
model parameters had net and individual estimates (listed in Table 1). Us-
ing these values then allowed us to run simulations in a reasonable range
of parameter values, as well as to perform a model sensitivity analysis to
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understand how variability in these values affect model outcomes.

3 Results

3.1 Parameter Sensitivity Analysis

Due to the uncertainty and variability in our parameter estimates, it was
important to better characterize the effects of parameters on model results.
To do this, we conducted a parameter sensitivity analysis via Latin hyper-
cube sampling (LHS) and partial–rank correlation coefficients (PRCC). To
perform the LHS analysis, we first drew 1000 equiprobable samples for each
unknown parameter, including the initial condition C0, from a statistical
distribution of values. These distributions were informed by our fits of the
preliminary data when available; in the case of the unitless parameters, we
assumed a uniform distribution on the interval [0, 1]. These samples were
then randomly paired in a Latin hypercube scheme to run a series of 1000
Monte Carlo simulations. Using these simulation results, we then computed
PRCCs between each parameter and two different model outcomes across all
time points: the total number of tumor cells and the fraction of tumor that
is resistant (Figure 4). Further details for about this method and the code
files used are available on GitHub: https://github.com/scmassey/model-
sensitivity-analysis.

3.1.1 Total tumor population depends most strongly on prolifer-
ation rate, followed by treatment response parameters.

At early time points, particularly before the initiation of therapy, the tumor
population is strongly positively correlated with both the initial number of
cells implanted, C0 and proliferation rate ρ (Figure 4A). However by 30 days,
or after approximately three doses of therapy, the population is strongly
positively correlated with ρ and the effect of C0 begins to wane. At the same
time, drug sensitivity of the s cell population, µs, and exposure to drug, γ
are strongly negatively correlated. Resistance factor z, which determines
the fraction of drug sensitivity remaining in the r cell population, is also
negatively correlated, but less strongly, and only reaches a PRCC value of
−0.5 after 100 days. This suggests that resistance z is less impactful than
the baseline sensitivity of the tumor population and the distribution of drug
in the tissue.

As expected from our substitution of µr = zµs, which results in the
coefficient −γzµs in the term describing drug induced apoptosis for the
equation describing the r population (1b), which mirrors that for the s
population (1a), −γµs, parameters γ and µs track together in the sensitivity
analysis (overlapping lines in Figure 4). Thus, sensitivity analysis is unable
to compare the differential impacts of these two parameters. However, we
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note that since we had preliminary data in both the treated flank as well
as the treated intracranial PDX settings, we were able to obtain parameter
estimates for these by keeping γ = 1 in the flank setting, and assuming that
µs is the same intracranially as in flank.

Figure 4: Partial rank correlation coefficients (PRCC) of parameters with
respect to (A) tumor cells and (B) fraction of resistant cells (r/(s + r) =
r/C), visualized across simulation time.

3.1.2 Resistant fraction of tumor driven by initial resistant pro-
portion, followed by treatment response parameters.

Prior to the initiation of therapy, only parameter q, the fraction of initially
implanted cells that are resistant, is correlated with the proportion of total
tumor that is resistant (Figure 4B). Once treatment is initialized, q remains
highly positively correlated, and this correlation decreases slightly over time
during the course of treatment.

Three other parameters show correlation with the fraction of tumor that
is resistant following initiation of therapy, all of which involve drug response.
Parameters γ and µs, representing the degree of exposure to drug and base-
line sensitivity of the cells, respectively, are both positively correlated and
track together, while parameter z, representing the fraction of treatment sen-
sitivity remaining in resistant cells, is negatively correlated with the fraction
of tumor that is resistant. Further, the PRCC values do not vary over the
time of the simulation after treatment is initiated and sustained. These cor-
relations are consistent with expectations from the behavior of the system
described by the model.
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3.2 Simulation Results

To more fully explore the effect of parameters on model predicted outcomes,
we ran simulations for varied values of the parameters relating to treat-
ment response: γ, µs, and z, or exposure to therapy, sensitivity to therapy,
and degree of reduced sensitivity to therapy in resistant cells, respectively.
Codes used to run simulations and plot the results may be found on GitHub:
https://github.com/scmassey/treatment-exposure-sensitivity-model.

3.2.1 Treatment exposure is especially important for tumors with
lower baseline sensitivity

Comparing simulation results across a range of values for parameters γ and z,
we see that γ plays a larger influence on total tumor cells for a given baseline
sensitivity than does z. That is, our model suggests that exposure to ther-
apy is more impactful on total tumor burden than the degree of resistance,
which is consistent with the parameter sensitivity results of Section 3.1.1.
The simulations also indicate that for higher sensitivity, treatment can be
effective at lower levels of exposure (Figure 5, compare heatmaps for µs = 3
vs µs = 7).

3.2.2 Same total tumor burden, different fractions of sensitive vs
resistant subpopulations

Further, we observed that there can be distinct differences in the dynamics
of the individual cell populations underlying simulations that show the same
resulting overall tumor cell population level (Figure 5A,B). Looking at long
time scales (> 50 days)—in this case at 12 weeks or 84 days, the average
survival time of the treated subjects—we are able to observe the effect of
an extended time of treatment in the simulations. It is particularly notable
that one simulation retains a large proportion of treatment sensitive cells
(Figure 5A), while another is made up almost entirely of treatment resistant
cells (Figure 5B). These two simulations share the same baseline sensitivity,
µs, and the same level of exposure, γ, differing only in the degree z to which
the resistant subpopulation is insensitive to the ADC.

3.3 Parameter Estimation for comparing across subjects and
experimental groups

While only performed for a small set of data, we note that our parameter
estimation procedure may be useful for comparing results within and across
experiments. In this small data set, the variation in growth curves between
the five treated flank and intracranial subjects was associated with differ-
ences in estimated parameter values. (This data, with overlaid simulations
using the fitted parameter estimates are shown in Figure 6.) Comparing
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Figure 5: Simulation results for varied γ and z. Top row: heatmaps show
total tumor cells at 84 days (12 weeks) post tumor initiation, across ten
values each of γ and z, for three values of µs. Recall that µr = zµs, such
that it is straightforward to compute the corresponding µr value for a given
z value in each of the heatmaps. Bottom row: three particular simulations
corresponding to the labels in the heatmap associated with µs = 5.

these values within and across different treatments may provide clues as to
the origins of heterogeneous trial results.

4 Discussion

Our Treatment Exposure and Sensitivity model describes tumor growth and
treatment response incorporating the effects of the BBB on tumor exposure
to therapy as well as differential therapeutic sensitivity. It is important
to note that tumor heterogeneity may actually provide for many subpop-
ulations with varying levels sensitivity to therapy; we assumed that these
cluster towards more or less sensitive, reducing these to two subpopulations.
Additionally, the therapy may have an effect not only through induction of
tumor cell apoptosis, but could also reduce tumor proliferation. Because our
data does not provide for an ability to distinguish between these effects, both
are encapsulated in the µs,r therapeutic effect parameters. This assumption
allows us to use the estimates of ρ obtained through fitting the model to
untreated flank and intracranial experimental groups in the treated flank
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Figure 6: Tumor growth assessed by bioluminescence imaging flux (dashed
lines), with model fits (solid lines). On the right panel, the shaded region
indicates the time before treatment initiated. Note that the y-axis is log
scaled.

and intracranial settings.
Parameter sensitivity analysis of the model highlighted the necessity of

having the flank and intracranial treatment groups for practical identifia-
bility in obtaining estimates for γ and µs. This “tradeoff” between ther-
apeutic sensitivity (µs) and exposure (γ) was also observed in simulations
and is expected given our model formulation. However, the emergence of
this dynamic in the creation and parameter estimation of our model under-
scores that this relationship should be carefully considered in the design of
experimental studies for new glioma therapies.

Sensitivity analysis also revealed that parameter ρ is the strongest pos-
itive influence on total cell population, as expected, and distinguished be-
tween the effect of reduced therapeutic sensitivity (z) and exposure to ther-
apy (γ) in reducing the total tumor population. Not only is there a difference
in the magnitude of correlation between parameters γ and z with total tumor
burden, there is also a difference in the temporal dynamics of the change in
these correlations over time. Further, most correlation coefficients between
parameters and total tumor burden change most dramatically at earlier
time points, and after approximately 50 days, change relatively little. This
suggests that experiments conducted to examine the relationship between
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exposure and sensitivity to therapy should focus on collecting time course
data more densely for the first 7 weeks as compared to longer times. It is
also notable that the correlation coefficients between parameters and the re-
sistant fraction of the tumor is quite stable over time. Simulations confirmed
the greater impact of therapeutic exposure (γ) relative to reduction in sen-
sitivity (z) foreshadowed by the sensitivity analysis. More importantly, they
revealed that for a particular tumor burden at any single time, there can
be several parameterizations that fit the data but correspond to different
fractions of resistant cells. This indicates that time course data is essential
for detecting differences in the contributions of γ and z.

Finally, because the model we have presented is minimal and reduces
mechanisms down to a few key parameters, it has greater utility for fit-
ting experimental data to estimate these parameters for individuals. Hav-
ing these individual parameterizations is key to understanding the extent
to which drug exposure and resistance each contributed to variations in
outcome. We anticipate using this approach in the future for comparing
experimental groups with additional PDX lines as well as other therapies,
characterizing the differences in outcome results between those groups. This
will enable us to determine whether there is any consistency in parameter
values within groups, which may lead to improved understanding of patterns
behind drug failures and identification of tumor characteristics that might
suggest candidates who would benefit most from an emerging therapy.
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H.J.: A common mutant epidermal growth factor receptor confers en-
hanced tumorigenicity on human glioblastoma cells by increasing pro-
liferation and reducing apoptosis. Cancer Res; Cancer Research 56(21),
5079–5086 (1996)

[16] Ningaraj, N.S.: Drug delivery to brain tumours: challenges and
progress. Expert opinion on drug delivery 3(4), 499–509 (2006)

[17] Reardon, D.A., Desjardins, A., Vredenburgh, J.J., Gururangan, S.,
Friedman, A.H., Herndon, J.E., Marcello, J., Norfleet, J.A., McLendon,
R.E., Sampson, J.H., et al.: Phase 2 trial of erlotinib plus sirolimus in
adults with recurrent glioblastoma. Journal of neuro-oncology 96(2),
219–230 (2010). DOI 10.1007/s11060-009-9950-0

[18] Reardon, D.A., Lassman, A.B., van den Bent, M., Kumthekar, P., Mer-
rell, R., Scott, A.M., Fichtel, L., Sulman, E.P., Gomez, E., Fischer,
J., et al.: Efficacy and safety results of abt-414 in combination with

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/822585doi: bioRxiv preprint 

http://dx.doi.org/10.1158/0008-5472.CAN-14-0721
http://dx.doi.org/10.1158/0008-5472.CAN-14-0721
http://dx.doi.org/10.1016/j.celrep.2012.12.013
http://dx.doi.org/10.1016/j.celrep.2012.12.013
https://doi.org/10.1093/neuonc/noy148.280
https://doi.org/10.1093/neuonc/noy148.280
https://doi.org/10.1101/822585
http://creativecommons.org/licenses/by-nc-nd/4.0/


radiation and temozolomide in newly diagnosed glioblastoma. Neuro-
Oncology 19(7), 965–975 (2017). DOI 10.1093/neuonc/now257. URL
http://dx.doi.org/10.1093/neuonc/now257

[19] Van Tellingen, O., Yetkin-Arik, B., De Gooijer, M., Wesseling, P., Wur-
dinger, T., De Vries, H.: Overcoming the blood–brain tumor barrier for
effective glioblastoma treatment. Drug Resistance Updates 19, 1–12
(2015)

[20] Wen, P.Y., Kesari, S.: Malignant gliomas in adults. New England
Journal of Medicine 359(5), 492–507 (2008)

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/822585doi: bioRxiv preprint 

http://dx.doi.org/10.1093/neuonc/now257
https://doi.org/10.1101/822585
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Analytical Solution to Model

Here we present the derivation of the analytical solution for model sys-
tem (1). Recall that the system consists of the following differential equa-
tions, which describe the growth of two tumor cell populations with differ-
ential drug sensitivity, s and r, and drug level, A:

ds

dt
= ρs− γµsAs (4a)

dr

dt
= ρr − γµrAr (4b)

dA

dt
=

N∑
n=1

Â(n)δ (t− 7n)− λA (4c)

where Â is a vector containing the consecutive drug doses administered,
such that Â(n) is the dose on the nth pulse (of which there are at most N
drug pulses), and 7n denotes the time of the nth pulse (every 7 days). The
parameters are given in Table 1 of the main text.

Because the equation for A in the system (4) is independent of s
and r, we first solve (4c) for A. First, observe the following rearrangement:

dA

dt
=

N∑
n=1

Â(n)δ (t− 7n)− λA (5)

=⇒ A′ + λA =
N∑
n=1

Â(n)δ (t− 7n) (6)

Notice that we can use the method of integrating factors, introducing a
factor of eλt:

eλtA′ + λeλtA = eλt
N∑
n=1

Â(n)δ (t− 7n) (7)

so that ∫ (
eλtA′ + λeλtdtA

)
=

∫
eλt

N∑
n=1

Â(n)δ (t− 7n) dt (8)

=

∫ (
eλtA

)′
=

∫
eλt

N∑
n=1

Â(n)δ (t− 7n) dt (9)

Integrating the left hand side, and moving the integral inside the sum on
the right hand side:

eλtA =
N∑
n=1

Â(n)

∫
eλtδ (t− 7n) dt (10)
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Then, integrating the right hand side, we have

eλtA =

N∑
n=1

Â(n)e7nλθ (t− 7n) , (11)

where θ is the heaviside function.

Now, since λ = ln(2)/7 (i.e., the half life is 7 days), we have the
coefficient

e7nλ = e7n ln(2)/7 = eln(2)n = 2n, (12)

so the right hand side of (11) becomes

eλtA =

N∑
n=1

2nÂ(n)θ (t− 7n) . (13)

Rearranging, we have our solution for A:

A =

N∑
n=1

2nÂ(n)e−λtθ (t− 7n) . (14)

Now we solve for s and r, and use the fact that (4a) and (4b) differ only by
parameter µs versus µr to obtain both simultaneously:

ds

dt
= ρs− γµsAs (15)

=⇒ ds

s
= ρdt− γµsA(t)dt (16)

Integrating both sides:∫
ds

s
= ρ

∫
dt− γµs

∫
A(t)dt (17)

ln(s) = ρt− γµs
∫
A(t)dt+ c1, (18)

where c1 is a constant of integration to be determined from the initial
condition.

Since the solution for s in (18) depends on
∫
A(t)dt, we must inte-

grate (14): ∫
A(t)dt =

∫ N∑
n=1

2nÂ(n)e−λtθ (t− 7n) dt (19)

=

N∑
n=1

2nÂ(n)

∫
e−λtθ (t− 7n) dt (20)
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To use integration by parts, such that
∫
u′v = uv −

∫
uv′, choose

u = e−λt, v = θ(t− 7n) (21)

u′ = −λe−λtdt, v′ = δ(t− 7n)dt (22)

Then we have:∫
e−λtθ (t− 7n) dt = − 1

λ

∫
−λe−λtθ (t− 7n) dt (23)

= − 1

λ

(
e−λtθ (t− 7n)−

∫
e−λtδ (t− 7n) dt

)
(24)

= − 1

λ

(
e−λtθ (t− 7n)− e−7nλθ (t− 7n)

)
+ cn (25)

=
−
(
e−λt − e7nλ

)
θ (t− 7n)

λ
+ cn (26)

=

(
e7nλ − e−λt

)
θ (t− 7n)

λ
+ cn (27)

where cn is a constant of integration. Thus, (20) becomes:∫
A(t)dt =

N∑
n=1

2nÂ(n)

(
e7nλ − e−λt

)
θ (t− 7n)

λ
+ c2, (28)

where c2 is the sum of all the cn.

Now we can insert (28) into (18), giving

ln(s) = ρt− γµs
N∑
n=1

2nÂ(n)

(
e7nλ − e−λt

)
θ (t− 7n)

λ
+ c2 + c1 (29)

or, letting c0 = c2 + c1 (30)

ln(s) = ρt− γµs
N∑
n=1

2nÂ(n)

(
e7nλ − e−λt

)
θ (t− 7n)

λ
+ c0 (31)

Solving for s then, we find

eln(s) = exp

(
ρt− γµs

N∑
n=1

2nÂ(n)

(
e7nλ − e−λt

)
θ (t− 7n)

λ
+ c0

)
(32)

s = ec0 exp

(
ρt− γµs

N∑
n=1

2nD̂(n)

(
e7nλ − e−λt

)
θ (t− 7n)

λ

)
(33)

Denoting exp(c0) = s0, we arrive at our solution for s:

s = s0 exp

(
ρt− γµs

N∑
n=1

2nÂ(n)

(
e7nλ − e−λt

)
θ (t− 7n)

λ

)
. (34)
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The solution for r is similar:

r = r0 exp

(
ρt− γµr

N∑
n=1

2nÂ(n)

(
e7nλ − e−λt

)
θ (t− 7n)

λ

)
. (35)

Now, we assume that the s cells are more sensitive to drug than the
r cells, such that µs > µr. Defining z to be the ratio z = µr/µs, we can
substitute µr = zµs, and in our fitting process, solve for this degree of
differential sensitivity between the s and r cell populations.

Additionally, for fitting purposes, we can combine the cells into one
total population: C = s + r. To do this, we write the initial condition
C0 = s0 + r0, and let s0 = qA0 such that q represents the proportion of C0

that is made up of cells that are more drug–sensitive. This gives:

C = qC0 exp

(
ρt− γzµr

N∑
n=1

2nÂ(n)

(
e7nλ − e−λt

)
θ (t− 7n)

λ

)

+ (1− q)C0 exp

(
ρt− γµr

N∑
n=1

2nÂ(n)

(
e7nλ − e−λt

)
θ (t− 7n)

λ

)
(36)

Because this is a lengthy expression, in the main text we write

C(t) = C0e
ρt
(
qe−γzµs

∫
A(t)dt + (1− q)e−γµs

∫
A(t)dt

)
, (37)

where
∫
Adt denotes the summation in (20).
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