
Assembling a corpus of phosphoproteomic annotations using
ProtMapper to normalize site information from databases and
text mining

John A. Bachman1, Benjamin M. Gyori1, Peter K. Sorger1

1 Laboratory of Systems Pharmacology, Department of Systems Biology,
Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115

Abstract

A major challenge in analyzing large phosphoproteomic datasets is that information on
phosphorylating kinases and other upstream regulators is limited to a small fraction of
phosphosites. One approach to addressing this problem is to aggregate and normalize
information from all available information sources, including both curated databases and
large-scale text mining. However, when we attempted to aggregate information on
post-translational modifications (PTMs) from six databases and three text mining systems,
we found that a substantial proportion of phosphosites were positioned on non-canonical
residue positions. These errors were attributable to the use of residue numbers from
non-canonical isoforms, mouse or rat proteins, post-translationally processed proteins and
also from errors in curation and text mining. Published mass spectrometry datasets from
large-scale efforts such as the Clinical Proteomic Tumor Analysis Consortium (CPTAC) also
localize many PTMs to non-canonical sequences, precluding their accurate annotation. To
address these problems, we developed ProtMapper, an open-source Python tool that
automatically normalizes site positions to human protein reference sequences using data
from PhosphoSitePlus and Uniprot. ProtMapper identifies valid reference positions with
high precision and reasonable recall, making it possible to filter out machine reading errors
from text mining and thereby assemble a corpus of 29,400 regulatory annotations for 13,668
sites, a 2.8-fold increase over PhosphoSitePlus, the current gold standard. To our knowledge
this corpus represents the most comprehensive source of literature-derived information
about phosphosite regulation currently available and its assembly illustrates the importance
of sequence normalization. Combining the expanded corpus of annotations with
normalization of CPTAC data nearly doubled the number of CPTAC annotated sites and
the mean number of annotations per site. ProtMapper is available under an open source
BSD 2-clause license at https://github.com/indralab/protmapper, and the corpus of
phosphosite annotations is available as Supplementary Data with this paper under a
CC-BY-NC-SA license. All results from the paper are reproducible from code available at
https://github.com/johnbachman/protmapper_paper.

Introduction

Advances in protein mass spectrometry have made it possible to obtain precise information
on large numbers of protein post-translational modifications (PTMs). These modifications,
phosphorylation in particular, play a role in cell fate decisions and information processing
under a wide variety of conditions. Efforts are currently underway to collect ’omic data on
human proteins and their modifications in large numbers of tumors to advance the diagnosis
and treatment of disease. The Clinical Proteomic Tumor Analysis Consortium (CPTAC;
https://proteomics.cancer.gov/programs/cptac) is typical of these efforts [1, 2]. CPTAC is a
national (now international) effort to accelerate the understanding of the molecular basis of
cancer through the application of large-scale proteome and genome analysis.
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Generating mechanistic insight from this type of data requires functional annotations,
ideally the identity of the enzymes mediating specific PTMs (e.g., kinases that phosphorylate
a specific site) as well as the effects of PTMs on protein function. This information that is
typically gleaned from “low throughput” functional studies in the literature. Among PTMs,
phosphorylation has long been of interest for its role in cellular dynamics and disease [3].
Unfortunately, the proportion of experimentally observed phosphosites that have one or
more functional annotations is very low, estimated at around 3% for regulatory annotations
and below 3% for annotation of functional effects [4]. New approaches are needed not only
to generate new information about the function and regulation of PTMs, but also to make
the most effective use of existing information in literature and databases.

To enable functional analysis of proteomic data on PTMs, measured sites are typically
referenced to annotated sites and, when available, to information on the enzymes that add
and remove that the PTMs. Such information is currently available from databases such as
PhosphoSitePlus [5], SIGNOR [6] and Reactome [7]. These databases were assembled by
manual curation but automated text mining has also been used to extract information on
PTMs from the literature [8, 9]. Ideally, functional analysis would involve the use of
information aggregated from as many of these databases and text mining tools as possible.
However, we show in this paper that inconsistencies in the way site positions for PTMs are
recorded make information aggregation difficult. In many cases, sites of phosphorylation
extracted by human curators or by text mining algorithms cannot be matched to protein
reference sequences. Inconsistencies can be traced to the use of site positions from
non-human species, non-canonical isoforms, processed forms of the protein sequence, and
curation or text mining errors. These inconsistencies result in mismatched sites when
attempts are made to link mass spectrometry data to regulatory information.

This problem is compounded by the fact that processing pipelines for mass spectrometry
data often map peptide sequences present in multiple isoforms of the same protein to the
database identifiers for a non-canonical isoform (despite the fact that the peptide in
question is found in both the canonical sequence and the isoform). As a result, many PTMs
in mass spectrometry datasets do not match known site positions in databases or literature.
Many known functional annotations are therefore missed, exacerbating the already poor
coverage of PTM annotations and potentially affecting the biological interpretation of
phosphoproteomic experiments.

Here we present two resources: an open source software tool, ProtMapper, that resolves
inconsistencies among PTM annotations and experimentally identified sites; and a large
corpus of regulatory phosphosite annotations aggregated from six databases and three text
mining tools using this method. Site normalization via ProtMapper resolves inconsistencies
among these sources by mapping non-reference sites to known phosphorylation sites in the
Uniprot human reference sequence whenever possible. The goal of the approach is both to
find annotations for previously undescribed PTM positions and to correctly assemble
annotations for known positions (thereby improving our understanding of the underlying
biology). The final assembled corpus contains 29,400 regulatory annotations for 13,668
distinct sites, a 2.8-fold increase over PhosphoSitePlus which is currently the most
comprehensive and accurate source of information on protein phosphorylation. By way of a
biological application, we show that the use of data aggregated and normalized by
ProtMapper nearly doubles the number of annotated sites in CPTAC Breast Cancer and
Ovarian Cancer datasets, with roughly one-third of the increase attributable to the mapping
of site annotations and experimental peptides to the correct reference sequences.

2/20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 29, 2019. ; https://doi.org/10.1101/822668doi: bioRxiv preprint 

https://doi.org/10.1101/822668
http://creativecommons.org/licenses/by/4.0/


Results

Pathway databases and literature contain annotations of human
PTMs that do not match reference sequences

To construct a corpus of phosphosite annotations we aggregated information from curated
databases and available text mining systems (Figure 1A). Databases included
PhosphoSitePlus [5], SIGNOR [6], HPRD [10], NCI-PID [11], Reactome [7], and the BEL
Large Corpus (http://www.openbel.org). Text mining was performed using multiple
systems having complementary strengths, including REACH [9], Sparser [12], and
RLIMS-P [13]. REACH and Sparser were run on a text corpus that included both abstracts
and full-text articles; RLIMS-P results were obtained from the iTextMine service [14]
(Methods). Each information source was mined for phosphorylation reactions that included
a residue and position on a target substrate. Available information on upstream regulators
(e.g. the relevant kinase) and downstream effects was also extracted. Information on the
functional consequences of PTMs was drawn primarily from pathway databases in the form
of a precondition for a protein to participate in a downstream reaction (e.g., MAPK1
phosphorylated at T185 and Y187 phosphorylates RPS6KA1).

Databases such as Uniprot [15] and NCBI RefSeq Protein [16] catalog the sequences for
all protein isoforms arising from alternative splicing of a gene product and they also specify
a reference or “canonical” isoform. The designation is based on multiple criteria such as
length, prevalence, similarity to orthologues, etc. (see
https://www.uniprot.org/help/canonical_and_isoforms). In assembling a corpus of
PTM annotations, we observed frequent mention of PTMs at sites that did not match the
corresponding reference sequence, i.e., the phosphorylatable residue was not present at that
position. For example, the positions of the T and Y residues in the T-X-Y activation motif
of human MAPK1 (mitogen-activated protein kinase 1, also known as ERK2) are variously
recorded as lying at amino acid positions 183/185, 184/186, and 185/187. The TXY motif is
actually found between residues 185-187 in the reference sequences listed by the Uniprot [15]
and NCBI RefSeq [16] databases (Figure 1B). The resulting erroneous assignment of a single
set of PTMs to multiple distinct positions prevents database annotations and
literature-based evidence on a phosphorylation event essential for cell proliferation from
being accurately aggregated and used (Figure 1A).

To measure the extent of the mis-annotation problem, we extracted phosphorylation site
data from multiple sources and compared PTM positions to Uniprot reference sequences [15];
specifically, we asked whether the residue reported to be phosphorylated actually exists at
that location. We found that the total number of unique site annotations, and the fraction
of annotations that had valid residue positions in the reference sequence, varied substantially
between sources (Figures 1C, 1D; Table 1). Among databases, PhosphoSitePlus had by far
the largest number of unique site annotations (16,415) (Figure 1C), and the second-highest
proportion of annotations associated with valid sites (99.2%) with matching residues in the
reference sequence (Figure 1D, Table 1). This likely reflects the fact that PhosphoSitePlus is
actively maintained by a team of curators. Text mining contributed a large number of site
annotations, with both REACH and Sparser independently extracting over 12,000 unique
site annotations, more than any database except PhosphoSitePlus (1C; Table 1) Over 40%
of these annotations were associated with sites that did not match the reference sequence
but it was not clear a priori whether these represented machine reading errors or legitimate
and simply non-canonical protein sequence positions (Figure 1D, Table 1).
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Source Total Annot. Valid Valid Pct. Invalid Invalid Pct. Mapped Mapped/Invalid (Pct.)
1 psp 16,415 16,280 99.2 135 0.8 75 55.6
2 signor 7,765 7,735 99.6 30 0.4 17 56.7
3 hprd 5,529 5,321 96.2 208 3.8 43 20.7
4 pid 1,792 1,408 78.6 384 21.4 289 75.3
5 reactome 1,349 963 71.4 386 28.6 51 13.2
6 bel 1,346 1,087 80.8 259 19.2 89 34.4
7 reach 12,575 7,225 57.5 5,350 42.5 1,461 27.3
8 sparser 12,360 7,375 59.7 4,985 40.3 1,538 30.9
9 rlimsp 4,967 3,341 67.3 1,626 32.7 475 29.2

Table 1. Annotations linked to valid, invalid, and mappable sites, by source.
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Figure 1. Inconsistencies in reported positions of PTMs. (A) Interpreting phosphoproteomic
data requires linking experimentally observed phosposites to annotations assembled from both
curated databases and literature. (B) An example of inconsistent site positions for the T/Y
activation motif in human MAPK1. Relevant sequence of the canonical isoform from Uniprot
is shown above with T and Y residues shown in blue. “Occ.” denotes the total number of
occurrences (reactions or sentences) across all sources; “Sources” denotes the number of sources
reporting the site at the given position. Non-canonical positions are shown in red; canonical
positions in blue. (C) Number of unique site annotations found in human reference sequence,
by source. A site annotation consists of a unique combination of regulator, substrate, residue,
position. (D) Percentage of unique site annotations matching human reference sequence, by
source.

Site inconsistencies can be traced to the original literature as well
as curation and text mining errors

By reviewing extracted site information we found that many non-canonical site positions
were attributable to inconsistency in the numbering of site positions in the original source
literature. These non-canonical positions were then propagated by human curators and text
mining systems when PTM annotations were generated (Table 2). Four common causes of
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non-canonical positions in primary research papers arose from the use of residue numbering
corresponding to: (i) mouse or rat proteins when describing human PTMs, (ii)
non-canonical protein isoforms (generated by alternative splicing), (iii) other members of a
multi-gene family, and (iv) proteins processed post-translationally as opposed to the primary
protein sequence (Table 2).

We also identified examples of curator and machine-reading errors. Curator errors
included misannotation of a serine site as a threonine, or the incorrect annotation of a site
from a closely related protein (e.g., curators of NCI-PID annotated JAK2 kinase as having a
phosphosite at Y485, whereas Y485 is actually a phosphosite on the erythropoietin receptor
precursor - EPOR - a protein to which JAK2 binds; Table 2).

Type of inconsistency Example Site Description
Site position from other species BAD S112 Mouse site, corresponds to human S75
Site position from other isoform RPS6KB1 T389 Position from isoform Alpha II
Site position from other family member RPS6KA6 S221 Position from RPS6KA1
Initial methionine cleavage in mature protein LCK Y393 Y394 in reference sequence
Signal peptide cleavage in mature protein EGFR Y1173 Position after cleavage of initial 24aa
Curator error: wrong residue BRAF T151 Should be BRAF S151
Curator error: site from wrong protein JAK2 Y485 Site on EPOR where JAK2 binds
Text mining error: misidentified protein HNRNPU S268 Ambiguous “p120” in sentence refers to CTNND1
Text mining error: site from wrong protein IRS1 T308 Site for AKT1, mentioned in same sentence
Text mining error: misidentified site TP53 S1 “Text S1” extracted as site

Table 2. Types of inconsistencies for sites in curated databases and text mining results.

Text mining systems made a variety of errors including incorrect identification of gene
and protein names (incorrect grounding) which then led to assignment of PTM sites to the
wrong protein. For example, in the sentence “p120’s phosphorylation at S268 was found to
contribute to cellular foci formation” [17], the ambiguous label “p120” was misidentified as
gene HNRNPU, whereas it is clear from the context of the paper that the authors were
referring to the CTNND1 gene, which also has “p120” as a synonym. In other cases,
machine readers linked sites to the wrong protein in a sentence, for example in the phrase
“phosphorylation of IRS-1 and subsequent activation Akt at Thr308” (sic) [18], the site T308
was incorrectly associated with IRS1 rather than AKT. A third type of error resulted from
the mis-identification of site-like text, for example the extraction of a (non-existent)
phosphoserine site TP53 S1 from the text “...as determined by p53 stabilization and
phosphorylation (see Figure S3 and Text S1 )” [19] (Table 2). While these sources of site
inconsistencies are diverse they all interfere with the generation of phosphoproteome
networks and the analysis of mass spectrometry data (Figure 1A).

Normalizing phosphosite information by mapping sites to human
reference sequences

To unify information from curated databases, text mining, and experimental data we sought
to implement a systematic method that addresses the inconsistencies in PTM positions
described above by correctly normalizing sites to positions in human reference sequences
(Figure 2A). The method was implemented in a new open-source Python tool, ProtMapper,
whose source code is available at https://github.com/indralab/protmapper.
ProtMapper also includes other tools useful for analysis of proteomic data, including a
wrapper around PhosphoSitePlus site information, mappings between Uniprot and NCBI
RefSeq Protein identifiers and gene symbols, and sequence lookup for both NCBI RefSeq
Protein and Uniprot (Figure 2B).
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Figure 2. Mapping invalid sites to human reference sequence positions. (A) The ProtMapper
maps identifiers and site positions for phosphosite annotations experimental phosphopeptides to
corresponding positions on the human Uniprot reference sequence. (B) ProtMapper Software
Architecture. Site normalization is implemented in the api.py module, which draws on additional
modules for ID normalization, protein sequences, and phosphosite information. Resource files are
downloaded as needed at run time using functions in resources.py. (C) Site normalization
procedure. A site, including residue and position, is checked for validity against the Uniprot
reference sequence. If invalid, a series of mappings are attempted, starting with a curated
mapping table and proceeding through positions for known phosphorylation sites after signal
peptide cleavage (if any); known phosphosite positions from human isoforms and mouse and
rat orthologues; and known phosphosites at position - 1, a common inconsistency due to the
cleavage of the initial methionine of the protein. (D) PhosphoSitePlus site groups. If a known
phosphorylation site with the given position is found on an alternative sequence (e.g., the mouse
ortholog), it can be mapped back to the human reference position via PhosphoSitePlus site groups,
which link together corresponding sites from human isoforms and non-human orthologs. (E)
Counts of valid, mappable, and invalid/unmappable site annotations, by source. (F) Percentages
of valid, mappable, and invalid/unmappable site annotations, by source.
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For site information obtained from curated databases and text mining, the goal of site
normalization is to determine the most likely reference position (if one exists) for a reported
position that does not match the reference sequence. For 134 frequently occurring
non-canonical site positions we manually curated mappings to canonical sequences. When
normalizing site positions ProtMapper checks this resource first; if a mapping is not found
in this set, it determines whether a non-canonical position is a known site of
phosphorylation on a closely related protein sequence (Figure 2B). The search of related
sequences includes human protein isoforms, mouse and rat proteins, and proteins processed
by cleavage of a signal peptide or initiator methionine. The alternative possibilities are
tested sequentially in a fall-through fashion with the most conservative options considered
first: for example, if a non-canonical site position can be associated with a known
phosphorylation site on an alternative human isoform, the corresponding reference position
is returned and positions on mouse or rat orthologs are not considered (2B). A site is
considered to be a known phosphorylation site if it is listed as such in PhosphoSitePlus,
which aggregates mass spectrometry datasets and extensive literature curation ( [5]).
Mappings are determined by whether two sites for different sequences are included in the
same PhosphoSitePlus site group. A site group lists corresponding positions among
homologous sequences (human and non-human proteins and isoforms), allowing positions of
known phosphorylation sites to be mapped between sequences without additional sequence
alignment. For example, the (invalid) site human pBAD-S112 can be mapped correctly to
human pBAD-S75 because murine pBAD-S112 and human pBAD-S75 are in the same site
group (Figure 2C). Note that PhosphoSitePlus site groups do not include corresponding
gene positions among paralogs, so mappings between gene family members are not
automatically handled by this procedure (e.g., mapping the activating site T308 on the
kinase AKT1 to the corresponding T309 on AKT2).

When ProtMapper was applied to the corpus of PTM annotations we assembled from
text mining and databases we were able to identify reference human positions for many
previously invalid site annotations (Figures 2D and E, Table 1). Among the databases
examined, NCI-PID had the largest fraction of initially erroneous PTM site annotations that
could be associated with a canonical residue (75% ”mappable” site annotations). This likely
reflects the fact that the 134 site mappings that we manually curated during the course of
ProtMapper development were drawn primarily from this database. In absolute numbers,
text mining systems were by far the largest source of both non-canonical, and subsequently
mappable, site annotations. For 11,961 invalid site annotations cumulatively extracted by
REACH, Sparser, and RLIMS-P, ProtMapper identified reference sequence positions for a
total of 3,474 (29%; Table 1). The percentage of mapped sites was very similar among the
individual systems, with 27%, 31%, and 29% of annotations mapped for REACH, Sparser,
and RLIMS-P respectively. The use of ProtMapper increased the proportion of text mined
site annotations having reference sequence positions by 14-21%, depending on the text
mining system (valid and mapped annotations vs. valid annotations alone).

Accuracy of automatically inferred mappings for literature-derived
sites

The approach that ProtMapper uses to normalize sites has the potential both to miss
legitimate mappings to reference positions (false negatives) and to erroneously associate
reference positions with unknown sites (false positives). This is a particular problem for
normalization of text-mined sites due to the high frequency of technical errors (Table 2. To
determine the accuracy of ProtMapper when applied to sites mined from the literature, we
generated a frequency-weighted random sample of 100 sites from the total pool of invalid
sites generated by machine reading. We then manually curated these sites and their
mappings by reading the underlying papers. Manual curation could only be performed on a
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sample of sites because it was laborious, requiring careful inspection of the original source
literature followed by an examination of the assignment to a canonical position. Criteria for
curation of reading and mapping accuracy are described in Methods. The dataset
containing the sites, ProtMapper mappings and assessment of correctness is also available at
https://github.com/johnbachman/protmapper_paper.

Overall, our manual analysis of ProtMapper results yielded estimates of 95% precision
and 74% recall, showing that ProtMapper is robust to Type I error (Table 3). Of the 100
invalid, text-mined PTM sites in our sample, 43 were attributable to text mining errors of
the types described in Table 2. Mapping of such mis-extracted sites to a reference sequence
would represent a false positive from a mapping perspective but only two such erroneous
mappings were observed. For example, in the sentence “phosphorylation of IRS-1 and
subsequent activation Akt at Thr308” (sic), the site T308 was incorrectly associated with
IRS1 due to a reading error (Table 2; row 52 in curation dataset). There is no threonine at
position 308 on IRS1, but there is a threonine at position 309 that is known to be
phosphorylated based on PhosphoSitePlus. ProtMapper incorrectly associated “Thr308”
with IRS1-T309 under the assumption that it is an off-by-one inconsistency arising from
cleavage of the initiator methionine. Only one other reading error resulted in an erroneous
mapping to a human reference sequence (row 62 in curation dataset), resulting in a site that
did not correspond to the one described in the source text. In the remaining 41 cases, sites
incorrectly recovered from text by NLP were not mapped to a canonical sequence by
ProtMapper (Table 3).

The remaining 57 of 100 sites were correctly extracted from the source literature by the
NLP systems. Among these, 42 sites (74%) were correctly mapped to a reference sequence
(true positive mappings), and 15 (26%) were unmapped (false negative mappings) for
reasons described in greater detail below. We did not encounter any instances of false
positive mappings in which a site that had been extracted correctly by NLP was mapped to
an incorrect reference position based on the context of the original article. These data show
that ProtMapper achieves good performance from the perspective of both Type I and Type
II error.

Category Count
True positive 42
True negative 41
False positive 2
False negative 15
Total 100

Precision 0.95
Recall 0.74
F1 0.83

Table 3. Summary of results for mapping invalid sites extracted from the literature using machine
reading, with a sample size of 100 sites.

To determine which mapping rules were used most frequently by ProtMapper and
evaluate their accuracy (Figure 2B), we grouped curation results for the 100 sites described
above according to the type of mapping (Table 4). Although sample sizes were too low to
make statistically rigorous conclusions, we found that the two Type I errors described above
resulted from use of the “off-by-one” rule used to correct for residue number inconsistencies
arising from initiator methionine cleavage (Figure 2B. Inactivating the “off-by-one” rule
increased precision to 1.0 and reduced recall to 0.68. We therefore made use of this rule
optional in ProtMapper allowing the precision/recall tradeoff to be tuned for different use
cases.

To investigate the causes of false negative mappings (correctly text-mined sites for which
ProtMapper identified no reference sequence positions), we manually examined the
sentences in which the sites were mentioned. In some cases site positions referred to
orthologous proteins in organisms for which PhosphoSitePlus did not contain
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Mapping type Number (total) Number (correct)
Inferred mouse site 13 13
Manually curated mapping 10 10
Inferred methionine cleavage 7 5
Reference mismatch between UniProt and PSP 6 6
Inferred alternative isoform 4 4
Inferred signal peptide cleavege 4 4

Table 4. Total and correct site mappings of different types in the curation dataset

phosphorylation information (for example site S381 on Xenopus protein Msi2 (row 61 in
curation dataset). In other cases, the invalid site was due to an error in the primary article
itself, for example a reference to tyrosine 828 as “T828” (rather than Y828; row 77). In
these and all other cases examined, it was possible to infer a site corresponding to the
human reference sequence by manual curation of the source text and related information but
we did not find systematic errors that would serve as the basis for further automated
mapping functions. We determined, for example, that allowing S, T and Y to be freely
substituted for each other increased the rate of Type I error.

Text mining tools identify many uncurated regulators of
phosphorylation

We obtained a combined corpus of 29,400 regulatory annotations of 13,668 human sites after
normalizing information from all sources with ProtMapper (Figure 3). The full corpus of
regulatory annotations along with the underlying sentences for text mined annotations are
available as Supplementary Data.

What do text mining and site normalization contribute to presently uncurated
information about kinases, phosphosites and their regulation? Overall, we found that the
combined corpus contains 2.8 times as many regulatory annotations (29,400 vs. 10,366) and
1.9 times as many human sites (13,668 vs. 7,044) as PhosphoSitePlus alone. To investigate
the specific contributions of text mining and the various databases, we measured the overlap
of regulator-site pairs between (i) PhosphoSitePlus, the largest curated database, (ii) other
widely used pathway databases (HPRD, Signor, NCI-PID, Reactome, and the BEL Large
Corpus), and (iii) the aggregated output of the REACH, Sparser, and RLIMS-P text mining
systems. Overlap was measured following site normalization by ProtMapper and sites that
were either invalid in or unmappable to a reference sequence were excluded (thereby
emphasizing precision over recall).

Text mining extracted one or more upstream regulators for a total of 8,949 sites, of
which 5,311 (59%) had no regulatory annotations in PhosphoSitePlus, and 4,395 (49%) had
no regulatory information in any of the curated databases (Figure 3A). Text mining also
identified 15,850 unique regulator-site pairs of which 12,470 were absent from curated
databases and PhosphoSitePlus (Figure 3B). Text mining extracts information not only
about kinases that directly phosphorylate a target site, but also kinases that lie further
upstream as well as non-kinase regulators (e.g., growth factors). REACH and Sparser also
use FamPlex identifiers, a taxonomy of protein families and complexes for text mining, to
extract and normalize phosphorylation events expressed in terms of kinase classes, e.g.,
“ERK”, “AKT”, “AMPK” [20]. For an equal comparison between text mining and databases,
we therefore repeated the comparison by restricting the regulators to specific human kinase
proteins and found that text mining still yielded a substantial body of new information,
with 3,792 unique human kinase-site pairs reported by machine readers and not
PhosphoSitePlus, and 3,118 that did not appear in any curated database (Fig 3C).

To characterize the contributions made by different reading systems to the final corpus
of annotated sites, we measured the overlap among REACH, Sparser, and RLIMS-P for
unique annotated sites, regulator-site pairs, and human kinase-site pairs (the same
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Figure 3. Overlap of phosphosite information between PhosphoSitePlus, the combined output
of the HPRD, SIGNOR, PID, Reactome, and BEL databases, and the combined output of the
REACH, Sparser and RLIMS-P machine reading systems. (A) Venn diagram of unique sites
(irrespective of regulator) reported by PSP, other pathway databases, and machine reading
systems. (B) Venn diagram of unique regulator-site pairs reported by PSP, other pathway
databases, and machine reading systems. (C) Venn diagram of unique regulator-site pairs filtered
to human-only kinases and removing protein families and complexes, reported by PSP, other
pathway databases, and machine reading systems. (D, E, F) Venn diagrams showing overlap
between machine reading systems REACH, Sparser, and RLIMS-P, with categories following
panels A, B, and C.

categories analyzed in Figure 3; Supplementary Figures S1A-C). Although there was overlap
among readers, which is expected for different reading systems processing the same text
corpora, each reading system contributed a substantial number of sites not found by other
readers (Supplementary Figures S1A-C). Thus, it is most effective to use the combined
output of multiple readers for automated PTM curation.

Many apparently isoform-specific phosphopeptides can be
remapped to the reference protein sequence

In the process of using newly aggregated annotations to analyze mass spectrometry data, we
identified an additional issue that results in fewer regulatory annotations for
phosphopeptides/phosphosites. We found that existing phosphoproteomic datasets often
assign phosphopeptides to Uniprot or RefSeq identifiers that correspond to non-canonical
protein isoforms, even when the site is also present in the reference sequence for the
canonical form. Because phosphosite annotations are most often indexed by the site
positions in the reference sequence, a phosphosite in an experimental dataset that is
associated with a non-canonical isoform will not be correctly associated with a site
annotation. As a result many phosphopeptides grounded to isoform-specific identifiers will
be considered as having no annotations, when in fact there exist valid annotations
associated with the reference sequence position for the site. As we show below, these
irregularities affect approximately 25% of the measured phosphosites in a typical dataset.
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A further complication involves the use of protein identifiers from different databases.
For example, the breast and ovarian cancer phosphoproteomic datasets released by the NCI
Clinical Proteomic Tumor Analysis Consortium (CPTAC) [1,2] identify phosphosites using
NCBI RefSeq Protein IDs [16] and corresponding HGNC gene symbols, with site positions
based on the NCBI RefSeq Protein sequence. However, all sources of phosphosite
annotations (with the exception of the Human Protein Reference Database (HPRD)) use
Uniprot IDs and/or HGNC symbols to identify phosphorylated proteins. Sequences in NCBI
RefSeq Protein and Uniprot do not match exactly, so changing identifiers from one database
to the other can result in a change in sequence and hence in PTM position. To be linked
accurately to database annotations, experimentally determined phosphosites identified with
NCBI RefSeq Protein IDs and HGNC symbols must be mapped to Uniprot IDs, either via a
RefSeq-Uniprot or HGNC-Uniprot mapping table.

To investigate the impact of these two issues we examined two CPTAC datasets, in
which phosphosites are linked to NCBI RefSeq IDs and HGNC symbols but not Uniprot IDs.
We found that the use of isoform-specific protein IDs and problems with converting IDs
between NCBI RefSeq Protein and Uniprot caused many experimental phosphosites to lack
canonical (Uniprot) site positions, a necessary prerequisite for finding associated functional
annotations. For example, when we used the HGNC symbols identified for the
phosphopeptides in the CPTAC breast cancer dataset to obtain reference protein sequences
from Uniprot, 19,977, or 22.5%, of the 88,911 phosphosites in the dataset were invalid; that
is, they were not present in the Uniprot canonical sequence at the position assigned to them
by CPTAC (Table 5, row 3). When we used the NCBI RefSeq IDs in CPTAC to obtain
Uniprot IDs via a RefSeq-Uniprot mapping table maintained by Uniprot, a similar fraction
of sites (24.8%) were incorrectly mapped to isoform-specific sequences (row 10); an
additional 6,895 sites (7.8%) had RefSeq IDs with no matching Uniprot ID (row 6). Results
for the CPTAC ovarian cancer dataset were very similar. Thus, depending on the type of
source identifiers used, 22-33% of sites in a CPTAC dataset are likely to be excluded from
downstream annotations simply due to use of non-canonical site positions, lack of a Uniprot
ID, or isoform-specific identifiers.

Row Source ID Site status BRCA % OVCA %
1 HGNC No Uniprot ID, invalid gene symbol 67 0.1 23 0.1
2 HGNC Valid in Uniprot ref sequence for gene 68,867 77.5 16,981 77.0
3 HGNC Not valid in Uniprot ref sequence for gene 19,977 22.5 5,056 22.9
4 HGNC Invalid but mappable to Uniprot ref sequence 18,630 21.0 4,783 21.7
5 HGNC Total mappable to Uniprot ref sequence 87,093 98.0 21,654 98.2
6 RefSeq No Uniprot ID 6,895 7.8 1,320 6.0
7 RefSeq No Uniprot ID, mappable to Uniprot seq via HGNC 6,471 7.3 1,258 5.7
8 RefSeq Valid in Uniprot sequence from RefSeq ID 78,630 88.4 19,849 90.0
9 RefSeq Not valid in Uniprot sequence from RefSeq ID 3,386 3.8 891 4.0

10 RefSeq Isoform-specific ID 22,044 24.8 5,920 26.8
11 RefSeq Isoform-specific ID, mappable to Uniprot ref seq 21,107 23.7 5,688 25.8
12 Total Sites 88,911 100.0 22,060 100.0

Table 5. Results of mapping phosphosites from the CPTAC Breast (BRCA) and Ovarian Cancer
(OVCA) datasets to Uniprot sequences via gene symbols or RefSeq IDs.

What fraction of phosphopeptides in CPTAC and similar datasets assigned to
non-canonical isoforms actually correspond to a peptide sequence unique to that isoform as
opposed to also being present in the reference sequence? To investigate this we implemented
a method within ProtMapper (ProtMapper.map peptide to human ref) that relocalizes
phosphopeptide sequences to positions within a reference sequence whenever possible.
Remapping phosphosites from peptide sequences is distinct from, and much more
straightforward than, remapping phosphosites identified only by a residue and position, as
the phosphopeptide sequence is itself sufficient to identify a unique location in the target
sequence (Figure 2A). We found that the vast majority of phosphopeptides with invalid
reference sequence positions could be successfully reassigned to a reference sequence: of
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19,977 invalid sites in the CPTAC breast cancer dataset (Table 5, row 3), 18,630, or 93%
(row 4), were mappable to alternative positions in a reference sequence. Similarly, of the
22,044 sites with isoform-specific Uniprot IDs obtained via RefSeq-Uniprot mappings (row
10), 21,107 (96%) could be reassigned to a Uniprot reference sequence (row 11). In addition,
94% of sites (6,471 of 6,895; rows 7 and 6) with no Uniprot ID available in the
RefSeq-Uniprot mapping table could be remapped to a Uniprot reference sequence by using
the HGNC gene name reported by CPTAC. We obtained similar results for the CPTAC
ovarian cancer dataset. Overall, after use of ProtMapper, 98% of sites in both CPTAC
datasets were either valid in, or mappable to canonical Uniprot protein sequences (Table 5,
row 5).

Annotation assembly and site normalization increases
functional annotations of experimentally observed
phosphosites

To determine the value for phosphoproteomic data analysis of correct site annotation and
normalization to canonical sequences, we counted the number of annotated phosphosites in
the CPTAC datasets under different analysis conditions (Table 6). Overall, we found that
site normalization, and the robust incorporation of text mining output that it allows,
substantially increased the proportion of annotated sites. Furthermore, while text mining
primarily contributed new regulatory information about previously curated sites, it also
covered a surprisingly high proportion (76%) of the sites annotated in PhosphoSitePlus
alone.

Regardless of the information source used to obtain functional annotations, site
normalization increased the number of annotated sites and annotations per site. Using all
annotation sources, remapping of peptides in the CPTAC dataset to reference positions
yielded an increase in annotated sites from 2,284 to 2,754, even without mapping site
annotations to canonical positions (Table 6, row 8 vs. row 4). Site mapping for annotations
further increased the number of annotated sites, reaching a maximum of 2,860 annotated
sites, a 92% increase over the 1,540 sites obtained using PhosphoSitePlus with no mapping
(Table 6, row 16 vs row 1). Site mapping had a particularly substantial effect when using
only text-mined sources (1,439 vs. 1,228 annotated sites, row 15 vs. row 7), reflecting the
large proportion of text mined information associated with non-canonical site positions.

As expected, adding annotations from text mining systems and curated databases other
than PhosphoSitePlus increased the number of annotations over PhosphoSitePlus alone,
with or without site normalization (Table 6, ”All” vs. ”PSP-only”). Text mining results
contained nearly double the number of annotations per site compared to the aggregated
databases (4.11 vs. 2.12, row 15 vs. row 14); the combination of text mining with databases
yielded 3.37 annotations per site, a 59% increase over databases alone. Notably, the
inclusion of text mining with databases led to a smaller proportional increase of only 14% in
the overall number of annotated sites (from 2,508 to 2,860, row 16 vs. row 14). The fact
that text mining systems added a proportionally higher number of annotations than sites
shows that they largely contributed new regulatory information about sites that were
already curated in databases. Despite this fact, using the three text mining systems alone
(i.e., using no human-curated sources) yielded annotations for as much as 76% of the sites
annotated using PhosphoSitePlus, and with a larger number of annotations per site (Table
6, row 15 vs. row 13). This suggests that machines are approaching human curators in their
ability to accurately consolidate some types of information on PTMs.

As an illustrative example of how site normalization via ProtMapper adds information to
the interpretation of phosphoproteomic data, we selected S560 on IRS2, which is found in
the CPTAC ovarian cancer dataset. IRS2 S560 had no functional annotations in any
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BRCA OVCA
Annotations Peptides Sources Ann. Mean Ann. Mean

mapped? mapped? Sites Ann./Site Sites Ann./Site
1

No

No

PSP only 1540 1.67 821 1.69
2 DBs only 2052 2.14 1,053 2.22
3 NLP only 1021 4.01 522 4.66
4 All 2284 3.37 1,165 3.74
5

Yes

PSP only 1,877 1.63 1,021 1.68
6 DBs only 2,479 2.10 1,299 2.20
7 NLP only 1,228 3.88 643 4.53
8 All 2,754 3.28 1,437 3.67
9

Yes

No

PSP only 1,546 1.67 826 1.68
10 DBs only 2,074 2.07 1,063 2.16
11 NLP only 1,181 3.75 603 4.10
12 All 2,365 3.10 1,204 3.34
13

Yes

PSP only 1,885 1.62 1,028 1.67
14 DBs only 2,508 2.03 1,313 2.12
15 NLP only 1,439 3.67 760 4.11
16 All 2,860 3.06 1,493 3.37
17 Total Sites 88,911 22,060

Table 6. Regulatory annotations of sites in the CPTAC Breast (BRCA) and Ovarian Cancer
(OVCA) phosphoproteomic datasets with and without site normalization.

database, but all three reading systems found multiple publications in which PLK1 is
identified as a kinase that phosphorylates IRS2 at residue “S556.” [21–23] For example,
Chen et al. [21] described the potential regulatory significance of the phosphorylation event
in human cell lines as follows: “We show in the study that Plk1-dependent phosphorylation
of IRS2-S556 inhibits mitotic exit, partially through reduced AKT activity.”. Although the
human IRS2 reference sequence does not have a serine at S556, ProtMapper correctly
identifies this as a site on murine IRS2 corresponding to S560 on human IRS2 (both human
IRS2 S560 and murine IRS2 S556 are known to be phosphorylated in PhosphoSitePlus and
are in the same site group). Although Chen et al. used the human HEK239T and HeLa cell
lines for functional studies, their materials and methods section reveals that they raised an
antibody against a recombinant fusion between the murine IRS2 protein and GST—and
then used the antibody to assay human cell extracts [21]. Articles citing Chen et al.
subsequently referenced the non-human site position S556, for example, in the context of
human pancreatic cancer cell lines [22,23]. This example illustrates how a subtle
inconsistency in a paper using both murine and human materials can generate an invalid
residue assignment that is then propagated to subsequent publications. The error is not
insignificant, since IRS2 carries signals from insulin and insulin-like growth factor to the
PI3K/AKT signaling pathway, which plays a role in ovarian cancer [24]; both IRS2 [25] and
PLK1 [26] have also been reported as relevant to ovarian cancer treatment or prognosis.
This example additionally highlights that text mining tools provide the added benefit of
linking structured information about phosphorylation to specific passages in the primary
literature, allowing researchers to evaluate the provenance and context-specificity of
individual PTM annotations relevant to a specific hypothesis or type of analysis.

Taken together, the evaluation of ProtMapper in the context of two CPTAC datasets
demonstrates that site normalization for functional annotations and phosphopeptide
sequences, in tandem with the integration of text mining tools and curated databases, can
substantially increase the proportion of experimentally observed sites with available
functional information.

Discussion

In this paper we described a method, implemented as Python software, for increasing the
breadth and depth of functional information about human PTMs, with a focus on
phosphorylation. Normalizing positions of PTMs to canonical reference sequences greatly
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facilitates assembly of site information from multiple databases and from text mining tools.
We show that ProtMapper can be used to assemble a corpus of functional phosphosite
information that is 3-fold larger than the current standard (PhosphoSitePlus) and show
that use of the corpus nearly doubles the fraction of sites with known regulators in datasets
generated by CPTAC. To our knowledge the corpus we have assembled represents the most
comprehensive source of literature-derived information about phosphosite regulation
currently available.

Our analysis of PTM information extracted from databases and mined from the
literature reveals that inconsistencies in site numbering are common in both sources:
database curators and machine reading systems are misled by inconsistent references to sites
of PTMs in the literature. These errors appear to originate from historical bias in early
functional studies involving a protein isoform that is no longer considered canonical, or to
non-human species (particularly mouse or rat) if experimental materials from those species
are used in the study (as illustrated above in the example of the use of an antibody against
murine IRS2-S556 to study human IRS2-S560). Moreover, antibody manufacturers often list
non-reference site positions on their product datasheets and these too are propagated in the
literature. Resolving these inconsistencies is challenging and time-consuming for human
curators. As a result, some databases, NCI-PID for example, contain a high proportion of
erroneous annotations. By automating the process of site normalization ProtMapper has the
potential to streamline the maintenance of phosphoproteomic and pathway databases (e.g.,
PhosphoSitePlus, SIGNOR, and Reactome) and thereby improve their scope and accuracy.

We find that text mining systems available in the public domain are able, in their
current forms, to contribute significantly to available information on phosphosite regulation.
In a comparison of three such systems, we found that each one extracted slightly different
information from the same text corpus. They are therefore better used in combination than
individually. In aggregate, the three systems are capable of processing a large corpus of
available literature in a period of only a few days and can obtain information about
phosphosites not found in any existing databases (Figure 3). These systems yielded 75% as
many annotated sites as PhosphoSitePlus, the product of years of human curation effort
(Table 6). Such systems could be used to comb literature for new phosphosite information as
it appears, reducing the burden on human curators. The contribution of text mining is
certain to increase as methods improve and technical and legal barriers currently preventing
access to full text articles are addressed.

We find that a substantial proportion (33-43% depending on the reader) of phosphosite
annotations extracted by machine readers are invalid with respect to the reference sequence
for the protein they identified in the text (Table 1). A majority of these non-canonical sites
represent simple machine reading errors (Table 2). Without the ProtMapper, this
information would simply be discarded from further analysis, but with the ProtMapper we
found that roughly a third could be “rescued” by mapping them to canonical positions. In
our manual evaluation of 100 text mined sites we found that ProtMapper is able to make
these mappings with 95% precision, a figure that can be increased still further by disabling
the off-by-one rule used to correct for cleavage of the initiator methionine. The low rate of
Type I error shows that ProtMapper reliably identifies valid information from text mining
that would otherwise be indistinguishable from reading errors, while introducing very few
false positives. Automated site normalization therefore plays an essential role in text mined
information about PTMs as it can not only identify canonical site positions but also serve as
an effective filter for invalid extractions (Table 3).

Information extracted by text mining the primary literature for information on proteins
that regulate phosphorylation sties does not necessarily differentiate between direct and
indirect effects. Thus, regulatory annotations obtained from text mining include kinases
responsible for phosphorylating a site and also receptors, ligands, and other proteins
upstream of these kinases. If the goal of a study is to characterize the substrate specificity
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of kinases, this is a potential weakness, although one that can be mitigated by including
only regulatory annotations involving kinases shown to physically interact with the
substrate (by cross-referencing with physical interaction databases such as BioGRID [27], for
example). For studies in which the goal is to map regulatory pathways, the direct linking of
upstream regulators to specific downstream sites is generally a strength. Another
differentiating feature is that text-mined information can include protein families and
complexes as regulators of phosphorylation as this is how descriptions of phosphorylation
often appear in literature. For example, in the sentence “ERK-dependent Serine 383
phosphorylation of Elk-1” [28]), ERK refers to both ERK2/MAPK1 and ERK1/MAPK3.
We previously developed the FamPlex resource to unambiguously normalize information
about protein families and complexes found in the literature [20]. The REACH and Sparser
reading systems both make use of FamPlex and synonyms for named entity recognition and
normalization, allowing these annotations to be aligned against gene-level members. While
family-level regulatory information might seem less specific than data on specific kinases, it
is often a better representation of functional information. For example, MAPK1 and
MAPK3 are activated by the same biological ligands and inhibited by the same small
molecules drugs, making them difficult to distinguish at the level of function.

One limitation of our approach as currently instantiated is that it uses human proteins
as the point of normalization and is therefore not immediately useful for phosphoproteomic
studies of distantly related species (e.g., Drosophila or yeast). This can be rectified in the
future as information on these species becomes available since the ProtMapper approach is
in principle species agnostic. It can also be extended to other types of PTMs such as
ubiquitination, methylation and acetylation. A second limitation of ProtMapper is that its
approach to mapping relies on prioritized set of predefined matching rules (Figure 2B)
rather than a probabilistic approach that might, in principle, resolve conflicts between
multiple possible mappings (e.g., an invalid site that could be due to erroneous use of a
mouse residue number or, alternatively, initiator methionine cleavage, which would result in
different mappings). Despite this, our evaluations show that the current implementation of
ProtMapper already results in high precision mappings (Table 3).

This paper illustrates the need for new tools to effectively aggregate data on PTMs and
their regulators at proteome scale. Fortunately, relatively simple tools such as ProtMapper
can have a substantial positive impact. However, fully resolving inconsistencies and
ambiguities in functional descriptions of proteins will require the involvement not only of
database curators but also authors, editors and antibody manufacturers. Adoption of
standard names for genes and canonical residue numbers will improve reproduciblilty,
reusability and machine readability. ProtMapper could be used, for example, to check all
phosphoprotein sites in submitted papers prior to their publication. Finally, gaps remain in
available software for key tasks in proteomics data analysis; the ProtMapper is aimed at
addressing a handful of these gaps. Like genomics, the field will benefit as the ecosystem of
open-source software continues to expand.

Materials and Methods

Availability

ProtMapper software is implemented in Python and is available under a BSD 2-clause
open-source license from GitHub at https://github.com/indralab/protmapper.
Documentation is hosted on ReadTheDocs at https://protmapper.rtfd.io. Code used
to assemble the annotation corpus and generate the results in this paper is on GitHub at
https://github.com/indralab/protmapper_paper. The assembled corpus of annotations
is available under a CC-BY-NC-SA license (per the Share-alike requirements of constituent
sources PhosphoSitePlus, RLIMS-P and SIGNOR) and is available as Supplementary Data
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with this paper.

Information Sources

• PhosphoSitePlus [5]. Downloaded from the PhosphoSitePlus website
(https://www.phosphosite.org). Kinase-substrate annotations were obtained by
processing the Kinase substrate.owl BioPax file with the INDRA BioPax processor
into INDRA Statements [29]. The file Phosphorylation site dataset.tsv was used
by the ProtMapper for site mappings. License: CC BY-NC-SA 3.0. See also license
information at https://www.phosphosite.org/staticDownloads.

• HPRD [10]. Obtained from
http://www.hprd.org/RELEASE9/HPRD_FLAT_FILES_041310.tar.gz and processed
to INDRA Statements by the INDRA HPRD Processor.

• SIGNOR [6]. Interactions obtained from https://signor.uniroma2.it/ and
processed to INDRA Statements by the INDRA SIGNOR Processor. License: CC
BY-SA 4.0.

• BEL Large Corpus. Downloaded from https://arty.scai.fraunhofer.de/

artifactory/bel/knowledge/large_corpus/large_corpus-20170611.bel.

• Reactome [7]. Obtained from Pathway Commons and processed with the INDRA
BioPax processor. License: CC0.

• NCI-PID [11]. Obtained from Pathway Commons and processed with the INDRA
BioPax processor.

• REACH [9]. Software obtained from https://github.com/clulab/reach and used
to process a text corpus including MEDLINE abstracts and full-text articles from the
PubMed Central Open Access Subset, the PubMed Central Author’s Manuscript
Collection, and others obtained via the Elsevier text and data mining API
(https://dev.elsevier.com/).

• Sparser [12]. Executable software image obtained from the Sparser developers and
used to process the same text corpus as REACH.

• RLIMS-P [13]. Text mining results for PubMed Central full-text articles and
MEDLINE abstracts obtained via download from the iTextMine service [14] at
https://hershey.dbi.udel.edu/textmining/export/, and processed to INDRA
Statements using the INDRA RLIMS-P Processor. License: CC BY-NC-SA 4.0.

• Uniprot [15]. Protein identifiers, annotations, sequences and mappings to RefSeq
identifiers were obtained from the Uniprot website, https://www.uniprot.org.
Specific download procedures are implemented in protmapper.resources.

• RefSeq [16]. Protein sequences obtained from
ftp://ftp.ncbi.nlm.nih.gov/genomes/Homo_sapiens/protein/protein.fa.gz.

Mass Spectrometry Data Sources

CPTAC phosphoproteomic data were downloaded from
https://cptc-xfer.uis.georgetown.edu/publicData/. Breast cancer data was
downloaded from:

https://cptc-xfer.uis.georgetown.edu/publicData/Phase_II_Data/CPTAC_

Breast_Cancer_S039/CPTAC_BCProspective_BI_Phosphoproteome_CDAP_Protein_
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Report.r1/CPTAC2_Breast_Prospective_Collection_BI_Phosphoproteome.

phosphosite.tmt10.tsv

Ovarian cancer data was downloaded from:
https://cptc-xfer.uis.georgetown.edu/publicData/Phase_II_Data/CPTAC_

Ovarian_Cancer_S038/CPTAC_OVprospective_PNNL_Phosphoproteome_CDAP_Protein_

Report.r1/CPTAC2_Ovarian_Prospective_Collection_PNNL_Phosphoproteome.

phosphosite.tmt10.tsv

Manual site curation

Inconsistent site positions in the NCI-PID database were manually examined and matched
to site positions in the protein reference sequence. Internet searches of genes and their
inconsistent site positions frequently identified both the source of the error (e.g., incorrect
site position listed by antibody vendor) and the corresponding sites in the reference
sequence. Incorrect sites were prioritized for curation by their frequency of appearance in
Biopax reactions. The resulting table listing incorrect sites, their reference positions, and a
brief description of the source of the inconsistency is contained in the GitHub repository for
the ProtMapper at: https://github.com/indralab/protmapper/blob/master/
protmapper/curated_site_map.csv.

Curating the accuracy of site normalization

Manual curation of site mappings for machine reading-derived sites were based on two
criteria: 1) whether the site extracted by the reader was supported by the corresponding
sentence in the source publication, and 2) whether the reference site returned by the
ProtMapper was the correct one based on the context of the original sentence and
publication. The criteria for scoring each site are summarized in Table 7.

Reading correct Result of mapping Classification Explanation
No No mapping True negative The reader extracted an incorrect site for

which no mapping was done.
No Mapping done False positive The reader extracted an incorrect site which

was subsequently mapped.
Yes Correct mapping True positive The reader extracted the site correctly, which

was then correctly mapped.
Yes Incorrect mapping False positive The reader extracted the site correctly, which

was then mapped to the wrong site.
Yes No mapping False negative The reader extracted the site correctly but no

mapping was found.

Table 7. Curation categories for invalid sites extracted from the literature by machine reading
and then mapped to human reference.
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