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Abstract 42 

Extracellular RNAs present in biofluids have emerged as potential biomarkers for disease. 43 

Where most studies focus on plasma or serum, other biofluids may contain more informative 44 

RNA molecules, depending on the type of disease. Here, we present an unprecedented atlas 45 

of messenger, circular and small RNA transcriptomes of a comprehensive collection of 20 46 

different human biofluids. By means of synthetic spike-in controls, we compared RNA content 47 

across biofluids, revealing a more than 10 000-fold difference in RNA concentration. The 48 

circular RNA fraction is increased in nearly all biofluids compared to tissues. Each biofluid 49 

transcriptome is enriched for RNA molecules derived from specific tissues and cell types. In 50 

addition, a subset of biofluids, including stool, sweat, saliva and sputum, contains high levels 51 

of bacterial RNAs. Our atlas enables a more informed selection of the most relevant biofluid 52 

to monitor particular diseases. To verify the biomarker potential in these biofluids, four 53 

validation cohorts representing a broad spectrum of diseases were profiled, revealing 54 

numerous differential RNAs between case and control subjects. Taken together, our results 55 

reveal novel insights in the RNA content of human biofluids and may serve as a valuable 56 

resource for future biomarker studies. All spike-normalized data is publicly available in the R2 57 

web portal and serve as a basis to further explore the RNA content in biofluids. 58 

 59 
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Introduction 65 

Extracellular RNAs (exRNAs) in blood and other biofluids are emerging as potential 66 

biomarkers for a wide range of diseases1–6. These so-called liquid biopsies may offer a non-67 

invasive alternative to tissue biopsies for both diagnosis and treatment response monitoring.  68 

Previous studies have extensively profiled the small RNA content of several biofluids and 69 

identified large differences in the small RNA content amongst different biofluids.1–12 These 70 

efforts were gathered by the NIH Extracellular RNA Communication Consortium in the 71 

exRNA Atlas Resource (https://exrna-atlas.org).8 Besides microRNAs (miRNAs), the most 72 

studied small RNA biotype in biofluids, other small RNAs, such as piwi‐interacting RNAs 73 

(piRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs 74 

(rRNAs), transfer RNA fragments (tRNAs) and Y‐RNAs have also been identified5–7,9,12,13. 75 

Weber et al.13 was the first to compare the miRNA content in 12 different human biofluids 76 

(pooled samples of plasma, saliva, tears, urine, amniotic fluid, colostrum, breast milk, 77 

bronchial lavage fluid, cerebrospinal fluid, peritoneal fluid, pleural fluid and seminal plasma) 78 

using reverse transcription quantitative polymerase chain reaction (RT-qPCR) of selected 79 

miRNAs. Large variations in RNA concentration were observed among the different biofluids, 80 

with the highest small RNA concentrations measured in breast milk and seminal fluid. Since 81 

the advent of small RNA sequencing, other small RNA biotypes were characterized in various 82 

biofluids, such as plasma, serum, stool, urine, amniotic fluid, bronchial lavage fluid, bile, 83 

cerebrospinal fluid (CSF), saliva, seminal plasma and ovarian follicle fluid5,7,9,9,12. The 84 

distribution of small RNA biotypes clearly varies across these biofluids, with a high 85 

abundance of piRNAs and tRNAs reported in urine and a high abundance of Y-RNAs in 86 

plasma6,7,12. Also non-human RNA sequences, mapping to bacterial genomes, were reported 87 

in plasma, urine and saliva6. 88 

A systematic RNA-sequencing analysis of biofluids to explore the messenger RNAs (mRNA) and 89 

circular RNA (circRNA) transcriptome is challenging due to low RNA concentration and RNA 90 

fragmentation in biofluids. As such, most studies have explored the abundance of individual 91 

mRNAs in one specific biofluid by RT-qPCR14–20. CircRNAs have been reported in saliva21, 92 

semen22, blood23 and urine24,25. Recently, the mRNA content of plasma and serum has been 93 

investigated using dedicated sequencing approaches like Phospho-RNA-Seq, SILVER-seq and 94 

SMARTer Stranded Total RNA-Seq method26–29. Studies comparing the small RNA, mRNA and 95 
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circRNA content in a wide range of human biofluids are currently lacking and are essential to 96 

explore the biomarker potential of exRNAs. 97 

The goal of the Human Biofluid RNA Atlas is to define the extracellular transcriptome across a 98 

wide range of human biofluids (amniotic fluid, aqueous humor, ascites, bile, bronchial lavage 99 

fluid, breast milk, cerebrospinal fluid, colostrum, gastric fluid, pancreatic cyst fluid, plasma, 100 

saliva, seminal fluid, serum, sputum, stool, synovial fluid, sweat, tear fluid and urine) and to 101 

assess biomarker potential in selected case-control cohorts. We used small RNA-sequencing 102 

to quantify different small RNA species and present a dedicated mRNA-capture sequencing 103 

workflow to simultaneously quantify mRNAs and circRNAs.  104 

In the first phase of our study, small RNA sequencing and mRNA capture sequencing was 105 

performed in a discovery cohort of 20 different biofluids (Fig. 1). The goal of this phase was to 106 

assess the technical feasibility of the methodology and to generate a comprehensive set of 107 

mRNAs, circRNAs and small RNAs in which the contributing tissues and cell types per biofluid 108 

were assessed.  109 

In the second phase of our study, we aimed to investigate the biological relevance of exRNAs 110 

in various biofluids. Therefore, mRNA capture sequencing was applied to four different 111 

case/control cohorts, each consisting of 16-24 samples (Fig. 1). These samples included 112 

sputum samples from 8 patients with chronic obstructive pulmonary disease (COPD) versus 8 113 

controls, urine samples from 12 bladder cancer patients versus 12 controls, CSF samples from 114 

12 glioblastoma patients versus 12 hydrocephalus patients and saliva samples from 12 115 

diabetes mellitus patients versus 12 controls.  116 

The resulting catalog of extracellular transcriptomes of 185 human samples can guide 117 

researchers in the biomarker field to investigate other biofluids besides the well-studied 118 

blood-derived ones and is a first step to more dedicated mRNA and circRNA profiling of 119 

biofluids in larger cohorts. 120 
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 121 

Fig.1 Study flow chart  122 

In the discovery cohort, 20 different biofluids were collected in two donors or in a pool of 4-5 123 

donors. In the case/control cohorts, selected biofluids (sputum, CSF, urine and saliva) were 124 

collected in 8-12 patients and an equal number of healthy controls. Both small RNA sequencing 125 

and mRNA capture sequencing were performed in the discovery cohort. In the case/control 126 

cohorts, mRNA capture sequencing was performed. To compare the RNA content across the 127 

different biofluids, the RC spikes and the Sequin spikes are used for normalization of small RNA 128 

and mRNA data, respectively. 129 

BAL, bronchoalveolar lavage fluid; CSF, cerebrospinal fluid; PRP, platelet-rich plasma; PPP, 130 

platelet-poor plasma; PFP, platelet-free plasma 131 

  132 
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Results 133 

RNA spike-in controls enable process control of the RNA sequencing workflow 134 

Synthetic spike-in RNA sequences are crucial to control the process from RNA isolation to RNA 135 

sequencing, especially when working with challenging and low input material. We applied 4 136 

different mixes of synthetic RNA spike-in controls (in total 189 RNAs) as workflow processing 137 

and normalization controls that enable direct comparison of the RNA profiles across the 138 

different biofluids. Sequin and Small RNA extraction Control (RC) spikes were added prior to 139 

RNA isolation whereas External RNA Control Consortium (ERCC) spikes and small RNA Library 140 

Prep (LP) spikes were added to the RNA eluate prior to genomic DNA (gDNA) removal (Fig. 1). 141 

Of note, every spike mix consists of multiple RNA molecules of different lengths over a wide 142 

concentration range. Detailed information is provided in Supplementary Note 1. Besides 143 

normalization, the spike-in controls enabled quality control of the RNA extraction and library 144 

preparation steps in the workflow and relative quantification of the RNA yield and 145 

concentration across the different biofluids. 146 

First, the correlation between the expected and the observed relative quantities for all four 147 

spike mixes can be used to assess quantitative linearity. In the discovery cohort, the expected 148 

and the observed relative quantities for all four spike mixes were well correlated (Pearson 149 

correlation coefficients range from 0.50 to 1.00 for Sequin spikes, 0.92 to 1.00 for ERCC spikes, 150 

0.44 to 0.98 for RC spikes and 0.40 to 0.96 for LP spikes). In some biofluids (e.g. seminal plasma 151 

and tears), the sequencing coverage of spikes was low due to a high concentration of 152 

endogenous RNA. Detailed information per sample is provided in Supplementary Fig. 1. 153 

The spike-in controls can also be used to assess the RNA isolation efficiency. The Sequin/ERCC 154 

ratio and the RC/LP ratio reflect the relative mRNA and microRNA isolation efficiency, 155 

respectively. A 170-fold and 104-fold difference in RNA isolation efficiency across the samples 156 

was observed when assessing long and small RNAs, respectively (Supplementary Fig. 2). These 157 

differences underline the challenges of working with heterogenous samples and the 158 

importance of spike-in controls for proper data normalization and cross-sample comparison 159 

of results.  160 

Finally, the spikes can be utilized to normalize the endogenous RNA abundance data. In this 161 

study, we applied a biofluid volume-based normalization by dividing the RNA reads consumed 162 

by the endogenous transcripts by the sum of the Sequin spikes for mRNA data and by the sum 163 
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of the RC spikes for small RNA data. The spike-normalized data represent relative abundance 164 

values of RNA molecules proportional to the input volume. Of note, there is an inverse 165 

relationship between the number of spike-in RNA reads and the number of endogenous RNA 166 

reads. As such, the ratio between the sum of the reads consumed by the endogenous 167 

transcripts and the total number of spike-in reads is a relative measure for the RNA 168 

concentration of the various samples.  169 

Highly variable mRNA and small RNA content among biofluids in the discovery cohort 170 

Both small RNAs and mRNAs were quantified in each of the 20 biofluids in the discovery 171 

cohort. Mapping rates varied substantially across the different biofluids (Fig. 2A). In general, 172 

the proportion of mapped reads was higher for the mRNA capture sequencing data (further 173 

referred to as mRNA data) than for the small RNA sequencing data, in line with the fact that 174 

human mRNAs were enriched using biotinylated capture probes during the library 175 

preparation. The fraction of mapped reads in the mRNA data ranged from 16% in stool to 97% 176 

in seminal plasma. Low mapping rates were observed in stool, in one of the bile samples and 177 

in saliva. Mapping rates for samples in the case/control cohorts are in line with these of the 178 

discovery cohort (Supplementary Fig. 3A). In the small RNA sequencing data, the proportion 179 

of mapped reads ranged from ~7% in stool, saliva and CSF to 95% in platelet-rich plasma (PRP).  180 

A 10 000-fold difference in mRNA and small RNA concentration was observed between the 181 

lowest concentrated fluids, i.e. platelet-free plasma, urine and CSF, and the highest 182 

concentrated biofluids, i.e. tears, seminal plasma and bile (Fig. 2B). The generalizability of the 183 

difference in mRNA concentration between highly concentrated biofluids (seminal plasma) 184 

and lowly concentrated biofluids (CSF) was confirmed in additional samples (Supplementary 185 

Fig. 3B). In the discovery cohort a 5547-fold difference in mRNA concentration is observed 186 

between seminal plasma and CSF; in independent validation samples, a similarly large 19 851-187 

fold difference in mRNA concentration is observed between both biofluids. In the discovery 188 

cohort, the mRNA and miRNA concentrations were significantly correlated across biofluids 189 

(Pearson correlation coefficient 0.76, p-value = 8.5e-10, Fig. 2D). Normalized abundance levels 190 

of exRNAs were significantly correlated between biological replicates within each biofluid 191 

(Supplementary Fig. 4). The median Pearson correlation coefficient of the mRNA and the small 192 

RNA data was 0.84 and 0.92, respectively. While the mRNA and miRNA data was well 193 

correlated in most biofluids (e.g. tears, colostrum, saliva), correlation in other biofluids (e.g. 194 

bile, pancreatic cyst fluid) was poor. These biofluids are obtained with a more challenging 195 
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collection method involving echo-endoscopy, impacting the reproducibility of collection and 196 

the correlation of the RNA content between biological replicates. 197 

The likelihood of identifying RNA biomarkers in a given biofluid will not only depend on its 198 

relative RNA concentration, but also on its RNA diversity, here approximated by the fraction 199 

of read counts consumed by the top 10 most abundant mRNAs/miRNAs (Fig. 2C). In aqueous 200 

humor, the top 10 mRNAs represent up to 70% of all reads, indicating that this fluid does not 201 

contain a rich mRNA repertoire. In both PRP and PPP, about 50% of all reads go to the top 10 202 

mRNAs. While amniotic fluid has a median RNA concentration, this fluid seems to contain a 203 

diverse mRNA profile, with only 7% of all reads going to the top 10 mRNAs. When looking into 204 

the miRNA data, the top 10 miRNAs represent more than 90% of all reads in PFP, urine and 205 

serum. BAL contains the most diverse miRNA repertoire, with 57% of all reads going to the 206 

top 10 miRNAs. Similar conclusions with respect to biofluid exRNA diversity can be drawn 207 

based on the number of miRNAs/mRNAs representing 50% of the counts (Supplementary Fig. 208 

5). RNA diversity is also reflected by the number of detected exRNAs. The total number of 209 

mRNAs and miRNAs detected with at least 4 counts in both samples of the same biofluid 210 

ranged from 13 722 mRNAs in pancreatic cyst fluid to 107 mRNAs in aqueous humor and from 211 

231 miRNAs in tears to 18 miRNAs in stool (Table 1). 212 

 213 

Table 1 Number of mRNAs and miRNAs per biofluid.  214 

The number of mRNAs and miRNAs with at least 4 unique read counts in both replicates is 215 

shown per biofluid. 216 

 217 
biofluid number of mRNAs  biofluid number of miRNAs 

amniotic fluid 10 531  amniotic fluid 119 

aqueous humor 107  aqueous humor 20 

ascites 5578  ascites 75 

BAL 3565  BAL 126 

bile 2279  bile 45 

breastmilk 11 607  breastmilk 213 

colostrum 11 914  colostrum 229 

CSF 438  CSF 32 

gastric fluid 9288  gastric fluid 21 

pancreatic cyst fluid 13 722  pancreatic cyst fluid 129 

PFP 2699  PFP 95 

PPP 4548  PPP 113 

PRP 5440  PRP 192 

saliva 6353  saliva 110 

seminal plasma 11 868  seminal plasma 211 

serum 4152  serum 122 

sputum 7738  sputum 91 
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stool 134  stool 19 

stool Calex 135  stool Calex 18 

sweat 410  sweat 45 

synovial fluid 1614  synovial fluid 122 

tears 13 366  tears 231 

urine 2094  urine 41 

 218 
 219 

 220 

Fig. 2 mRNA and small RNA content varies across the 20 biofluids 221 

(A) Percentage of the total read count mapping to the human transcriptome.  222 

(B) Relative RNA concentration per biofluid; every dot represents the relative RNA 223 

concentration in one sample, every vertical mark indicates the mean per biofluid. 224 

(C) The diversity of the RNA content expressed as fraction of read counts consumed by the 225 

top 10 most abundant mRNAs/miRNAs. Only genes with at least 4 unique reads are 226 

taken into account. Every dot represents the fraction in one sample, every vertical mark 227 

indicates the mean percentage per biofluid. 228 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 4, 2020. ; https://doi.org/10.1101/823369doi: bioRxiv preprint 

https://doi.org/10.1101/823369
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

(D) Correlation between the small RNA and the mRNA relative concentration. The Pearson 229 

correlation coefficient is 0.76 (p-value = 8.58 x 10-10). The correlation coefficients is 230 

calculated on log10 transformed data. 231 

BAL, bronchoalveolar lavage fluid; CSF, cerebrospinal fluid; PRP, platelet-rich plasma; PPP, 232 

platelet-poor plasma; PFP, platelet-free plasma 233 

 234 

The distribution of small RNA biotypes varies across the different biofluids 235 

The distribution of small RNA biotypes shows distinct patterns among the 20 different 236 

biofluids (Fig. 3). The exceptionally high percentage of miscellaneous RNAs (mainly Y-RNAs) 237 

observed in blood-derived fluids is in line with a previous study12 and with the Y-RNA function 238 

in platelets. The fraction of reads mapping to miRNAs is lower than 15% in all samples but 239 

platelet-free plasma and one synovial fluid sample. Tears, bile and amniotic fluid have the 240 

highest fraction of tRNA fragments while saliva has the highest fraction of piRNAs. The rRNA 241 

fraction is higher than 15% in all samples but tears, aqueous fluid and the three plasma 242 

fractions. The majority of these reads map to the 45S ribosomal RNA transcript. The not 243 

annotated read fraction contains uniquely mapped reads that could not be classified in one of 244 

the small RNA biotypes. These reads most likely originate from degraded longer RNAs, such 245 

as mRNAs and long non-coding RNAs. 246 

 247 
Fig. 3 Distinct small RNA biotype patterns are present across the different biofluids 248 
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The fraction of reads that align to small RNA biotypes are shown per biofluid. Only mapped 249 

reads of the small RNA sequencing data are taken into account. BAL, bronchoalveolar lavage 250 

fluid; CSF, cerebrospinal fluid; miRNA: microRNA; PFP, platelet-free plasma; PPP, platelet-poor 251 

plasma; PRP, platelet-rich plasma; piRNAs: piwi-interacting RNA; sn(o)RNAs: small nuclear and 252 

nucleolar RNAs; tRNAs: transfer RNA. 253 

 254 

Circular RNAs are enriched in biofluids compared to tissues 255 

CircRNAs are produced from unspliced RNA through a process called back-splicing where a 256 

downstream 5’ donor binds to an upstream 3’ acceptor. CircRNAs are resistant to endogenous 257 

exonucleases that target free 5’ or 3’ terminal ends. As a result, circRNAs are highly stable and 258 

have extended half-lives compared to linear mRNAs.30 CircRNAs have been reported to be 259 

present in numerous human tissues24 and in a few biofluids such as saliva21, blood31, semen22 260 

and urine24,25. A direct comparison of the circRNA read fraction between biofluids and tissues 261 

is currently lacking in literature. We compared the circRNA fraction, for genes that produce 262 

both linear and circular transcripts, identified through mRNA capture sequencing of the 20 263 

biofluids in this study with the circRNA fraction identified in mRNA capture sequencing of 36 264 

cancerous tissue types obtained from the MiOncoCirc Database24. While more unique 265 

backsplice junctions were identified in tissues compared to biofluids, in line with the higher 266 

RNA concentration in tissues (Fig. 4B), the circRNA read fraction is clearly higher in biofluid 267 

exRNA compared to cellular RNA (Fig. 4A). The median circRNA read fraction in biofluids is 268 

84.4%, which is significantly higher than the median circRNA read fraction in tissues of 17.5% 269 

(Mann-Whitney-U test, two-sided, p-value = 5.36 x 10-12). For genes that produce both linear 270 

and circular transcripts, the stable circRNAs are more abundant than the linear mRNAs in 271 

biofluids, while it is the other way around in tissues.  272 

We used two different methods to define the circRNA read fraction (see “Circular RNA 273 

detection” in methods; Supplementary Fig. 6): one based on individual backsplice junctions 274 

(shown in Fig. 4) and another method based on backsplice junctions aggregated at gene-level 275 

(Supplementary Fig. 7). Both methods clearly point towards a substantial enrichment of 276 

circRNAs in biofluids. 277 
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 278 

Fig. 4 CircRNAs are enriched in biofluids compared to tissues 279 

(A) The circRNA fraction, calculated at the backsplice junction level, is plotted per sample 280 

and is higher in cell-free biofluid RNA than in tissue RNA. Only samples with at least 281 

100 backsplice junctions are plotted. 282 

(B) The number of unique backsplice junctions per sample is higher in tissues compared to 283 

biofluids, in line with the higher input concentration of RNA into the library prep. 284 

AML, acute myeloid leukemia; BAL, bronchoalveolar lavage fluid; CSF, cerebrospinal fluid; 285 

HNSCC: head and neck squamous-cell carcinoma; PFP, platelet-free plasma; PPP, platelet-286 

poor plasma; PRP, platelet-rich plasma  287 

 288 

Assessment of exogenous RNA in human biofluids 289 

Two dedicated pipelines were used for the non-trivial assessment of the presence of microbial 290 

or viral RNA in human biofluid extracellular RNA. Overall, the fraction of bacterial reads is 291 
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higher in small RNA sequencing data than in the mRNA data, in line with the unbiased nature 292 

of small RNA sequencing and the targeted hybrid capture enrichment using probes against 293 

human RNA during the mRNA capture library preparation. Stool (both collection methods), 294 

sweat, saliva and sputum are among the biofluids with the highest fraction of bacterial RNA 295 

in both the small RNA sequencing data and the mRNA data. The percentage of bacterial reads 296 

in mRNA data and in small RNA data are significantly correlated across biofluids (Pearson 297 

correlation coefficient 0.78, p-value = 1.94e-10). 298 

Bacterial reads in aqueous humor and CSF, two fluids with very low endogenous RNA content 299 

that were collected in a sterile setting (and thus presumed to be sterile), most likely reflect 300 

background contamination during the workflow32. To illustrate the biological relevance of the 301 

bacterial signal, we looked into reads mapping to Campylobacter concisus, a gram-negative 302 

bacterium that is known to primarily colonize the human oral cavity, with some strains 303 

translocated to the intestinal tract33. We confirm the selective presence of reads mapping to 304 

Campylobacter concisus in saliva in both the small RNA and the mRNA data(Fig. 5B). In all 305 

samples and for both the small RNA and the mRNA data, the percentage of the total reads 306 

that maps to viral transcriptomes is less than 1%. 307 

 308 
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 309 

Fig. 5. Reads mapping to bacterial genomes 310 

(A) Percentage of reads mapping to bacteria in mRNA data (pink) and in small RNA 311 

sequencing data (blue). 312 

(B) Percentage of reads mapping to Campylobacter concisus in mRNA data (pink) and in 313 

small RNA sequencing data (blue). Campylobacter concisus is known to be present in 314 

saliva. 315 
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Assessment of the tissues of origin and deconvolution of pancreatic cyst fluid  316 

Gaining insights in tissue contribution to biofluid RNA profiles may guide the selection of the 317 

most appropriate biofluid to investigate a given disease. To define tissues that specifically 318 

contribute RNA molecules to individual biofluids, we explored the relationship between 319 

extracellular mRNA levels and tissue or cell type specific mRNA signatures. The heatmap in 320 

Fig. 6A highlights the relative contribution of tissues and cell types to a specific biofluid 321 

compared to the other biofluids. More detailed results per biofluid are shown in 322 

Supplementary Fig. 8. The results of this analysis were validated in an independent sample 323 

cohort for CSF, saliva, sputum, seminal plasma and urine (Supplementary Fig. 3C).  As 324 

expected, prostate tissue RNA markers are more abundant in urine and in seminal plasma 325 

than in any other biofluid. Both sputum and saliva contain mRNAs specific for trachea and 326 

esophagus. In amniotic fluid, markers for esophagus, small intestine, colon and lung are more 327 

abundant than the other tissues and cell types, probably reflecting organs that actively shed 328 

RNA (at the gestational age of sampling) into the amniotic cavity. These data strongly suggest 329 

that biofluid mRNA levels, at least to some degree, reflect intracellular mRNA levels from cells 330 

that produce or transport the fluid. To further investigate the origin of biofluid RNA at the 331 

cellular level, we applied computational deconvolution of the pancreatic cyst fluid RNA 332 

profiles using single cell RNA sequencing data from 10 pancreatic cell types34. Fig. 6B reveals 333 

that pancreatic cyst fluid 1 consists of 45% of activated stellate cells and 43% of endothelial 334 

cells, while pancreatic cyst fluid 2 mainly consists of quiescent stellate cells (38%), endothelial 335 

cells (31%) and acinar cells (19%). 336 

 337 

  338 
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 339 

Fig. 6 Identification of the tissues of origin per biofluid and deconvolution of pancreatic cyst 340 

fluid 341 

(A) Assessment of the tissues of origin in the biofluids of the discovery cohort. 342 

Heatmap showing tissues and cell types that contribute more specifically to a certain biofluid 343 

compared to the other biofluids. Rows depict the biofluids of the discovery cohort and the 344 

columns are the tissues or cell types for which markers were selected based on the RNA Atlas35. 345 

For visualization purposes, only tissues and cell types with a z-score transformed log2 fold 346 

change ≥ |1| in at least one biofluid are shown. 347 

(B) Composition of pancreatic cyst fluid samples based on deconvolution using sequencing 348 

data from 10 pancreatic cell types.  349 

 350 

Biomarker potential of mRNA in sputum, urine, CSF and saliva in selected case/control 351 

cohorts 352 

Additional biofluid samples were collected in patients with a specific disease or in healthy 353 

controls to investigate potential biologically relevant differences in mRNA content between 354 

both groups. Sequin RNA spikes were used for biofluid volume-based data normalization. 355 

Strikingly, the relative RNA concentration in sputum of COPD patients was higher than in non-356 

COPD patients, probably reflecting the high turnover of immune cells during the state of 357 

chronic inflammation (Fig. 7A). Differential expression analysis revealed 5513 and 6 mRNAs 358 

that were significantly up- and downregulated, respectively, in sputum from COPD patients 359 
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compared to healthy controls (Fig. 7B). CCL20, the most differential mRNA, showed a 146-fold 360 

upregulation in COPD patients compared to healthy donors. This potent chemokine attracting 361 

dendritic cells has previously been linked to the pathogenesis of COPD36,37. ADA and MMP1, 362 

also among the most differential mRNAs, have also been associated with the pathogenesis of 363 

COPD38–40. To verify the RNA-seq findings, 8/8 of the most differentially abundant mRNAs 364 

were validated by RT-qPCR (Supplementary Fig. 9A-B). 365 

In contrast to COPD, the relative RNA content is comparable in urine from bladder cancer 366 

patients and healthy volunteers, in CSF from glioblastoma patients and hydrocephalus patient, 367 

and in saliva from diabetes patients and healthy volunteers (Fig. 7C/E, Supplementary Fig. 10). 368 

A higher RNA yield in CSF from glioblastoma patients compared to CSF from healthy controls 369 

has been reported by Saugstad et al.41, however the collection method of CSF differed 370 

between both groups and it is therefore not possible to assess whether the reported 371 

difference in RNA yield between both groups is due to the different CSF collection site (lumbar 372 

puncture versus craniotomy) or due to the neurological disease. In urine from patients with a 373 

muscle invaded bladder cancer, 529 mRNAs and 9 mRNAs were significantly upregulated and 374 

downregulated, respectively, compared to urine from healthy volunteers (Fig. 7D). Some of 375 

the upregulated mRNAs, such as MDK, SLC2A1, GPRC5A, KRT17 and KRT5, have been reported 376 

in urine and were suggested as biomarker for the accurate detection and classification of 377 

bladder cancer42–45. In CSF from glioblastoma patients, only 2 mRNAs are significantly 378 

upregulated compared to CSF from hydrocephalus patients. CD163, one of the upregulated 379 

genes in glioblastoma, has been linked with glioblastoma pathogenesis46. In saliva from 380 

diabetes patients and saliva from healthy volunteers, no differentially expressed genes could 381 

be identified. A list with differentially expressed genes in all case/control cohorts can be found 382 

in Supplementary Data 5. 383 

Differential abundance analysis was performed for circular RNAs as well, but in none of the 384 

case/control cohorts differentially abundant circRNAs could be detected (data not shown). As 385 

circular RNAs can only be identified based on their backsplice junction, the read coverage is 386 

generally (too) low for biomarker discovery based on mRNA capture sequencing data. When 387 

applying a similar strategy for mRNAs by looking at the reads of only one “linear only” junction 388 

per gene (outside every detected back-splice junction) a significantly lower number of 389 

differentially abundant mRNAs were detected (sputum: 13 out of 5519 mRNAs; urine: 0 out 390 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 4, 2020. ; https://doi.org/10.1101/823369doi: bioRxiv preprint 

https://doi.org/10.1101/823369
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

of 538 mRNAs; CSF: 0 out of 35 mRNAs). These results strongly suggest that a dedicated 391 

circRNA enrichment strategies may be needed to assess circRNA biomarker potential. 392 

To validate the identification of the 10 most abundant circRNAs detected by mRNA capture 393 

sequencing in sputum, an orthogonal validation by RT-qPCR of the backsplice  sequence region 394 

was performed. For 9 of the 10 circRNAs, the RNA-sequencing results could be validated. 395 

(Supplementary Fig. 9C) 396 

 397 
Fig. 7 Relative RNA concentration and volcano plot in case/control cohorts 398 

Top: Boxplots of relative mRNA content, bottom: Volcano plots of differentially expressed 399 

mRNAs (q<0.05; pink up; blue down in patient vs. control) with labeling of up to 5 most 400 

differential genes. (A) Sputum from COPD patients (n = 8) compared to sputum from healthy 401 

donors (n = 8; Wilcoxon rank test, two-sided, p = 0.007); (B) 5513 and 6 mRNAs up and down, 402 

respectively in COPD samples. (C) Urine from bladder cancer patients (n = 12) compared to 403 

urine from healthy donors (n = 12; Wilcoxon signed-rank test, two-sided, p = 0.068). (D) 529 404 

and 9 mRNAs up and down, respectively in bladder cancer samples. (E) CSF from glioblastoma 405 

cancer patients (n = 12) compared to CSF from hydrocephalus patients (n = 12); Wilcoxon 406 
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signed-rank test, two-sided, p = 0.71); (D) 2 and 33 mRNAs up and down, respectively in 407 

glioblastoma samples 408 

Discussion 409 

By applying two complementary RNA-sequencing technologies on 20 different biofluids, we 410 

assembled the most comprehensive human biofluid transcriptome, covering small RNAs, 411 

mRNAs and circRNAs. Until now, most efforts to investigate and compare the RNA content 412 

within biofluids focused on small RNA sequencing, most likely because of technical limitations 413 

and unawareness of the abundance of extracellular mRNA (fragments)5–7,9,12,13.  414 

The availability of both small RNA sequencing data and mRNA data allows a more in-depth 415 

characterization of the human transcriptome in biofluids. To our knowledge, this is the first 416 

study reporting on the mRNA content, generated through a dedicated mRNA enrichment 417 

sequencing method, in tear fluid, amniotic fluid, aqueous humor, bile, bronchial lavage fluid, 418 

gastric fluid, saliva, seminal plasma, synovial fluid, sweat and urine. Selected mRNAs were 419 

previously studied by means of RT-qPCR in amniotic fluid14, pancreatic cyst fluid15,18, seminal 420 

plasma16, sputum17, stool19 and in extracellular vesicles isolated from cell-free urine20. In 421 

saliva, selected mRNAs were detected using microarrays47. We have demonstrated that it is 422 

technically feasible to generate mRNA data from low input biofluid samples. This is expected 423 

to accelerate biomarker research in these fluids. Further efforts to profile and share the mRNA 424 

and circRNA content in larger sample cohorts of biofluids, comparable to the exRNA Atlas 425 

Resource for small RNAs, are necessary to move this scientific field forward.8 426 

Our small RNA results confirm previous studies observing high miRNA concentration in tears13, 427 

low mapping rates in CSF5,48 and low miRNA concentration in cell-free urine12. A direct 428 

comparison of the absolute number of detected miRNAs, mRNAs and circRNAs detected per 429 

sample in our study with the numbers in published literature is hampered by the fact that the 430 

absolute read count is dependent on the input volume of the biofluids, the RNA isolation kit 431 

and library preparation method used, the sequencing depth and data-analysis settings (e.g. 432 

mapping without mismatches, filtering of the data). In addition, different pre-analytical 433 

variables when preparing the biofluid samples may also affect the sequencing results. 434 

However, on a higher level, we can look into the most abundant miRNAs detected in specific 435 

biofluids. The majority of the 10 most abundant miRNAs detected in 9 specific biofluids 436 
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reported by Godoy et al. are also detected amongst the most abundant miRNAs in the samples 437 

from the discovery cohort (Supplementary Data 10)5.  438 

We compared the mRNA results of the discovery cohort with these of the case/control 439 

cohorts. Mapping rates for samples in the discovery cohort are in the same range for saliva, 440 

sputum and seminal plasma. The mapping rates for CSF and urine are about 15% higher in the 441 

case/control cohorts compared to the discovery cohort. These differences may be due to 442 

different pre-analytical variables between both cohorts (collection tube, centrifugation speed 443 

and the portion of urine collected (Supplementary Fig. 3A; Supplemental material and 444 

methods). 445 

In the discovery cohort on average 53% of all small RNA reads in saliva can be traced to 446 

bacteria, perfectly in line with the average of 45.5% reads mapping to bacteria reported by 447 

Yeri et al.6 Aqueous humor and CSF, although collected in a sterile setting and presumed to 448 

be sterile, contain up to 11% of reads mapping to bacteria, in line with previous studies5,48. 449 

However, bacterial cultures of our two CSF samples were negative. As both CSF and aqueous 450 

humor display a very low relative RNA content, the exogenous sequences may represent 451 

bacterial contaminants introduced during the sample processing workflow. Contaminants can 452 

derive from contaminated spin columns used during RNA purification32, enzymes produced in 453 

microorganisms 49, or various environmental sources50. Such contaminant signals are likely 454 

underrepresented in samples with high concentration of endogenous exRNAs.  455 

Although we collected a broad range of biofluids, only two samples per biofluid were studied, 456 

limiting our ability to assess donor variability. The input volume for the RNA isolations in all 457 

biofluids was set to 200 µL and a volume-based comparison of the RNA content was made 458 

among the biofluids. We did not explore if higher input volumes would result in higher RNA 459 

yields in biofluids where this could have been possible (e.g. urine). We also note that the 460 

results in Table 1 are impacted by biofluid input volume in the RNA purification, RNA input in 461 

the sequencing library prep, and the sequencing depth.  462 

Biofluid data normalization with synthetic spike-in controls is a unique and powerful approach 463 

and reflects more accurately the biological situation compared to classic normalization 464 

approaches where global differences on overall abundance are neutralized. For instance, the 465 

relative mRNA concentration in sputum from COPD patients is higher than in sputum from 466 

healthy donors. Typically, RNA sequencing data is subsampled or normalized based on the 467 

library size before performing a differential expression analysis, resulting in an artificially more 468 
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balanced volcano plot, an overcorrection of the biological situation and a loss of information, 469 

which is not the case when the data is normalized based on spike-in controls.  470 

Our results highlighting tissues and cell types that contribute more specifically to a certain 471 

biofluid compared to the other biofluids (Fig. 6A) can be used as a roadmap to formulate 472 

hypotheses when initiating biomarker research. Not surprisingly, the RNA signal from prostate 473 

is reflected in urine and seminal plasma. Both fluids can be collected in a non-invasive way 474 

and may be of value to investigate further in prostate cancer patients. Of interest, the mRNA 475 

concentration in seminal plasma is 1000-fold higher than in urine and seminal plasma contains 476 

more unique mRNAs compared to urine, suggesting that the biomarker potential of seminal 477 

plasma is higher. However, one should also be cautious in interpreting the tissue enrichment 478 

results: while the RNA signal of breast seems relatively enriched in sweat, this biofluid has the 479 

lowest RNA concentration. The limited number of detected mRNAs in sweat show overlap 480 

with mRNAs related to secretion (MCL1 gene, SCGB2A2 gene, SCGB1D2 gene) that also appear 481 

as markers in breast tissue.  482 

The pancreatic tissue RNA signal appears to be enriched in pancreatic cyst fluid and a different 483 

cell type composition is observed when both samples are deconvoluted using single cell RNA 484 

sequencing data of pancreatic cell types (Fig. 6B). Pancreatic cyst fluid was collected in these 485 

donors to investigate a cystic lesion in the pancreas. The routine cytological analysis of these 486 

fluid samples was inconclusive at the moment of sample collection. By following up both 487 

patients, we discovered that the first patient developed a walled off necrosis collection after 488 

necrotizing pancreatitis. The incipient high fraction of activated stellate cells in the first cyst 489 

fluid sample may have been an indication pointing towards the inflammation and necrosis 490 

that finally occurred. The second patient was diagnosed with a side-branch intra papillary 491 

mucinous neoplasia, probably reflected by the relative high fraction of acinar cells. Pancreatic 492 

cysts are often detected on abdominal imaging, resulting in a diagnostic and treatment 493 

dilemma. Furthermore, pancreatic cysts represent a broad group of lesions, ranging from 494 

benign to malignant entities. The main challenge in their management is to accurately predict 495 

the malignant potential and to determine the risk to benefit of a surgical resection51. Our 496 

results show that the cellular contribution to the RNA content of pancreatic cyst fluids can be 497 

estimated through deconvolution and that these results may be associated with clinical 498 

phenotypes. Larger cohorts are necessary to investigate the clinical potential of this approach 499 
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and pancreatic tumor cells may also need to be added to the reference set with single cell 500 

RNA sequencing data to improve the accuracy of the prediction. 501 

In addition to linear mRNA transcripts, we also explored the circular RNA content in biofluids. 502 

CircRNAs are a growing class of non-coding RNAs and a promising RNA biotype to investigate 503 

in the liquid biopsy setting, as they are presumed to be less prone to degradation compared 504 

to linear forms52. The circRNA fraction in tissues has previously been reported and is in line 505 

with our findings53. In our study, we demonstrated that for genes that produce both circRNAs 506 

and linear mRNAs, the circRNAs are more abundant than the linear forms in biofluids. Further 507 

assessment of the biomarker potential of circRNAs in biofluids require dedicated library 508 

preparation methods with circRNA enrichment. 509 

In conclusion, The Human Biofluid RNA Atlas provides a systematic and comprehensive 510 

comparison of the extracellular RNA content in 20 different human biofluids. The results 511 

presented here may serve as a valuable resource for future biomarker studies.  512 

 513 

 514 

515 
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Material and methods 516 

Donor material, collection and biofluid preparation procedure  517 

Sample collection for the discovery cohort and sputum collection for the case/control cohort 518 

was approved by the ethics committee of Ghent University Hospital, Ghent, Belgium (no. 519 

B670201734450) and written informed consent was obtained from all donors according to the 520 

Helsinki declaration. Breast milk, colostrum, plasma, serum, sputum, seminal plasma, sweat, 521 

stool, tears and urine were obtained in healthy volunteers. All other biofluids were collected 522 

from non-oncological patients.  523 

The collection of two case series of each 12 cases and 12 control samples was approved by 524 

the Masaryk Memorial Cancer Institute, Brno, Czech Republic (no. 14-08-27-01 and no. 525 

MOU190814). Urine was collected in healthy donors and muscle-invasive bladder cancer 526 

patients; CSF was collected in hydrocephalus patients and glioblastoma patients. 527 

Collection of saliva samples in 12 healthy donors and in patients with diabetes mellitus for the 528 

case/control cohort was approved by the ethics committee of the Medical University of 529 

Vienna, Vienna, Austria (no. 2197/2015). Written informed consent was obtained from all 530 

donors. The demographic and clinical patient information is provided in Supplementary Table 531 

1. Detailed information on the sample collection per biofluid is provided in Supplementary 532 

Note 2. All samples, except tear fluid, plasma and serum, were centrifuged at 2000 g (rcf) for 533 

10 minutes without brake at room temperature. All samples were processed within 2 hours 534 

after collection. The cell-free supernatant was carefully pipetted into 2 mL LoBind tubes 535 

(Eppendorf LoBind microcentrifuge tubes, Z666556-250EA) and stored at -80 °C. 536 

RNA isolation and gDNA removal 537 

RNA isolation from all biofluids, except tears 538 

In the discovery cohort, two RNA isolations per biofluid and per sample were simultaneously 539 

performed by two researchers (E.V.E. and E.H.). In the end, RNA obtained from both RNA 540 

isolations was pooled per biofluid and per sample and this pooled RNA was used as starting 541 

material for both library preparations. Hence, small RNA and mRNA capture sequencing on 542 

the discovery cohort were performed on the same batch of RNA. In the case/control cohorts, 543 

one RNA isolation was performed per sample and the RNA was used as starting material for 544 

mRNA capture sequencing. 545 
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RNA was isolated with the miRNeasy Serum/Plasma Kit (Qiagen, Hilden, Germany, 217184) 546 

according to the manufacturer’s instructions. An input volume of 200 µL was used for all 547 

samples, except for tear fluid, and total RNA was eluted in 12 µL of RNAse-free water. Tear 548 

fluid was collected with Schirmer strips and RNA was isolated directly from the strips (see 549 

further). Per 200 µL biofluid input volume, 2 µL Sequin spike-in controls (Garvan Institute of 550 

Medical Research) and 2 µl RNA extraction Control (RC) spike-ins (Integrated DNA 551 

Technologies)54 were added to the lysate for TruSeq RNA Exome Library Prep sequencing and 552 

TruSeq Small RNA Library Prep sequencing, respectively. Details on the spike-in controls are 553 

available in the Supplementary Note 1.  554 

Briefly, 2 µl External RNA Control Consortium (ERCC) spike-in controls (ThermoFisher 555 

Scientific, Waltham, MA, USA, 4456740), 2 µl Library Prep Control (LP) spike-ins (Integrated 556 

DNA Technologies)55, 1 µl HL-dsDNase and 1.6 µl reaction buffer were added to 12 µl RNA 557 

eluate, and incubated for 10 min at 37 °C, followed by 5 min at 55 °C. Per biofluid and per 558 

donor the RNA after gDNA removal was pooled. RNA was stored at -80 °C and only thawed on 559 

ice immediately before the start of the library prep. Multiple freeze/thaw cycles did not occur. 560 

RNA isolation from tear fluid 561 

Tear fluid was collected in 8 healthy donors with Schirmer strips (2 strips per eye per donor), 562 

as previously described56,57. RNA was isolated within two hours after tear collection with the 563 

miRNeasy Serum/Plasma Kit (Qiagen, Hilden, Germany, 217184), starting from one 2 mL tube 564 

containing each 4 Schirmer strips. The same reagent volumes as suggested by the 565 

manufacturer for a 200 µL input volume were used. Throughout the RNA isolation protocol, 566 

the two final RNA samples each result from 4 tear fluid samples (each containing the 4 strips 567 

of a single donor) that were pooled in a two-step method. First, the upper aqueous phase of 568 

two tear fluid samples was put together (in step 8 of the RNA isolation protocol). Second, the 569 

RNA eluate of these two samples was pooled into the final RNA that was used as input for the 570 

library prep (in step 15 of the RNA isolation protocol). 571 

TruSeq RNA Exome library prep sequencing 572 

Messenger RNA capture based libraries were prepared starting from 8.5 µL DNase treated and 573 

spike-in supplemented RNA eluate using the TruSeq RNA Exome Library Prep Kit (Illumina, San 574 

Diego, CA, USA). Each sample underwent individual enrichment according to the 575 

manufacturer’s protocol. The quality and yield of the prepared libraries were assessed using 576 

a high sensitivity Small DNA Fragment Analysis Kit (Agilent Technologies, Santa Clara, CA, USA) 577 
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according to manufacturer’s instructions. The libraries were quantified using qPCR with the 578 

KAPA Library Quantification Kit (Roche Diagnostics, Diegem, Belgium, KK4854) according to 579 

manufacturer’s instructions. Based on the qPCR results, equimolar library pools were 580 

prepared. 581 

Paired-end sequencing was performed on a NextSeq 500 instrument using a high output v2 582 

kit (Illumina, San Diego, CA, USA) with a read length of 75 nucleotides to an average 583 

sequencing depth of 11 million read pairs in the discovery cohort, 16.8 million read pairs in 584 

the sputum case/control cohorts, 15.4 million read pairs in the urine case/control cohort, 15 585 

million read pairs in the CSF case/control cohort and 18.8 million read pairs in the saliva 586 

case/control cohort. Samples from the discovery cohort were randomly assigned over two 587 

pools and sequenced with a loading concentration of 1.2 pM (5% PhiX) and 1.6 pM (5% PhiX), 588 

respectively. Urine, CSF and saliva samples from the case/control cohorts were loaded in 3 589 

separate runs at 2 pM (2% PhiX) and sputum samples from the case/control cohorts were 590 

loaded at 1.6 pM (5% PhiX). 591 

TruSeq Small RNA library prep sequencing 592 

Small RNA libraries were prepared starting from 5 µL DNase treated and spike-in 593 

supplemented RNA eluate using a TruSeq Small RNA Library Prep Kit (Illumina, San Diego, CA, 594 

USA) according to the manufacturer’s protocol with two minor modifications(1). The RNA 3’ 595 

adapter (RA3) and the RNA 5’ adapter (RA5) were 4-fold diluted with RNase-free water(2) and 596 

the number of PCR cycles was increased to 16.  597 

First, a volume-based pool of all 46 samples of the discovery cohort was sequenced. After PCR 598 

amplification, quality of libraries was assessed using a high sensitivity Small DNA Fragment 599 

Analysis Kit (Agilent Technologies, Santa Clara, CA, USA) according to manufacturer’s 600 

instructions. Size selection of the pooled samples was performed using 3% agarose dye-free 601 

marker H cassettes on a Pippin Prep (Sage Science, Beverly, MA, USA) following 602 

manufacturer’s instructions with a specified collection size range of 125–163 bp. Libraries 603 

were further purified and concentrated by ethanol precipitation, resuspended in 10 μl of 604 

10 mM tris-HCl (pH = 8.5) and quantified using qPCR with the KAPA Library Quantification Kit 605 

(Roche Diagnostics, Diegem, Belgium, KK4854) according to manufacturer’s instructions. The 606 

pooled library was quality controlled via sequencing at a concentration of 1.7 pM with 35% 607 

PhiX on a NextSeq 500 using a mid-output v2 kit (single-end 75 nucleotides, Illumina, San 608 

Diego, CA, USA), resulting in an average sequencing depth of 1 million reads, ranging from 609 
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3341 reads to 14 million reads. Twenty-three samples with less than 200 000 reads were 610 

assigned to a low concentrated pool, 23 samples with more than 17 million reads were 611 

assigned to a highly concentrated pool. Based on the read numbers from the mid output run, 612 

two new equimolar pools were prepared, purified and quantified as described higher. Both 613 

re-pooled libraries were then sequenced at a final concentration of 1.7 pM with 25% PhiX on 614 

a NextSeq 500 using a high output v2 kit (single-end, 75 nucleotides, Illumina, San Diego, CA, 615 

USA), resulting in an average sequencing depth of 9 million reads (range 817 469 – 41.7 million 616 

reads). 617 

RT-qPCR 618 

To validate findings observed in the RNA sequencing data, we performed a targeted mRNA 619 

and circRNA expression profiling with RT-qPCR for 8 differentially expressed mRNAs in sputum 620 

(COPD versus healthy control) and for the 10 most abundant circRNAs in sputum. As reference 621 

RNAs for normalization purposes, we selected Sequin spikes stably detected in all samples 622 

based on the available RNA sequencing data. The assays to measure mRNA, circRNA and 623 

Sequin spike expression were custom designed using primerXL58 (Supplementary Data 9) and 624 

purchased from Integrated DNA Technologies, Inc. (Coralville, USA).   625 

For cDNA synthesis, 5 μl of total RNA was reverse transcribed using the iScript Advanced cDNA 626 

Synthesis Kit (BioRad, USA) in a 10 µL volume. 5 µL of cDNA was pre-amplified in a 12-cycle 627 

PCR reaction using the Sso Advanced PreAmp Supermix (Bio-Rad, USA) in a 50 µL reaction. 628 

Pre-amplified cDNA was diluted (1:8) and 2 µL was used as input for a 45-cycle qPCR reaction, 629 

quantifying 8 mRNAs and 10 circRNAs of interest with the SsoAdvancedTM Universal SYBR 630 

Green Supermix (BioRad, USA). All reactions were performed in 384-well plates on the 631 

LightCycler480 instrument (Roche) in a 5 µL reaction volume using 250 nM primer 632 

concentrations. Cq-values were determined with the LightCycler®480 Software (release 1.5.0, 633 

Roche) with the “Abs Quant/2nd Derivative Max” method. 634 

The geNorm analysis to select the optimal number of reference targets was performed using 635 

Biogazelle’s qbase+ software (www.qbaseplus.com) using log2-transformed RNA count data. 636 

We observed medium reference target stability (average geNorm M ≤ 1.0) with an optimal 637 

number of reference targets in this experimental situation of two (geNorm V < 0.15 when 638 

comparing a normalization factor based on the two or three most stable targets). As such, the 639 

optimal normalization factor can be calculated as the geometric mean of reference targets 640 

R2_150 and R2_65. These Sequin spike RNAs were considered as reference RNAs. 641 
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Data analysis 642 

Processing TruSeq RNA Exome sequencing data 643 

Read quality was assessed by running FastQC (v0.11.5) on the FASTQ files and reads shorter 644 

than 35 nucleotides and with a quality (phred) score < 30 were removed. The reads were 645 

mapped with STAR (v2.6.0). Mapped reads were annotated by matching genomic coordinates 646 

of each read with genomic locations of mRNAs (obtained from UCSC GRCh38/hg38 and 647 

Ensembl, v91) or by matching the spike-in sequences. Picard (v2.18.5) was used for duplicate 648 

removal. HTSeq (v0.9.1) was used for quantification of PCR deduplicated reads. A cut-off for 649 

filtering noisy genes was set based on historic data to remove noisy genes. Using a threshold 650 

of 4 counts, at least 95% of the single positive replicate values are filtered out. A table with 651 

the read count of mRNAs per sample is provided in Supplementary Data 6. 652 

Processing TruSeq Small RNA sequencing data 653 

Adaptor trimming was performed using Cutadapt (v1.8.1) with a maximum error rate of 0.15. 654 

Reads shorter than 15 nts and those in which no adaptor was found were discarded. For 655 

quality control the FASTX-Toolkit (v0.0.14) was used, a minimum quality score of 20 in at least 656 

80% of nucleotides was applied as a cutoff. The reads were mapped with Bowtie (v1.1.2) 657 

without allowing mismatches. Mapped reads were annotated by matching genomic 658 

coordinates of each read with genomic locations of miRNAs (obtained from miRBase, v22) and 659 

other small RNAs (obtained from UCSC GRCh38/hg38 and Ensembl, v91) or by matching the 660 

spike-in sequences. Reads assigned as “not annotated” represent uniquely mapped reads that 661 

could not be classified in one of the small RNA biotype groups. As for the mRNA data, genes 662 

with fewer than 4 counts were filtered out. A table with the read count of miRNAs per sample 663 

is provided in Supplementary Data 7. 664 

Exogenous RNA characterization 665 

The exogenous RNA content in the mRNA data was assessed using the MetaMap pipeline59. 666 

Briefly, all reads were mapped to the human reference genome (hg38) using STAR (v2.5.2)60. 667 

Unmapped reads were subsequently subjected to metagenomic classification using CLARK-S 668 

(v1.2.3)61. Reads were summed across all bacterial species. 669 

 The exogenous RNA content in the small RNA data was assessed using the exceRpt small RNA-670 

seq pipeline (v4.6.2) in the Genboree workbench with default settings62. Briefly, after adapter 671 

trimming, read quality was assessed by FASTQC (v0.11.2). A minimum quality score of 20 in at 672 

least 80% of nucleotides was applied as cutoff. The minimum read length after adapter 673 
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trimming was set to 18 nucleotides. Reads were first mapped to the custom spike-in 674 

sequences using Bowtie2 (v2.2.6), followed by mapping the unmapped reads with STAR 675 

(v2.4.2a) to UniVec contaminants and human ribosomal (rRNA) sequences to exclude them 676 

before mapping (also with STAR) to the following databases: miRbase (v21), gtRNAdb, 677 

piRNABank, GeneCode version 24 (hg38) and circBase (version last updated in July 2017). A 678 

single mismatch was allowed during mapping to the human genome. Unmapped reads were 679 

then mapped with STAR to exogenous miRNAs and rRNAs. In the end, the remaining 680 

unmapped reads were mapped to the genomes of all sequenced species in Ensembl and NCBI. 681 

No mismatches were allowed during exogenous alignment. Raw read counts obtained from 682 

the Genboree workbench were further analyzed in R (v3.5.1) making use of tidyverse (v1.2.1). 683 

Circular RNA detection and circular/linear ratio determination 684 

Only TruSeq RNA Exome reads passing quality control (base calling accuracy of ≥ 99% in at 685 

least 80% of the nucleotides in both mates of a pair) were included in this analysis. Clumpify 686 

dedupe (v38.26) was used to remove duplicates in paired-end mode (2 allowed substitutions, 687 

kmer size of 31 and 20 passes). We used a two-step mapping strategy to identify forward 688 

splice (further referred to as linear) junction reads and backsplice junction reads. First, reads 689 

were aligned with TopHat2 (v2.1.0) to the GRCh38/hg38 reference genome (Ensembl, v91). 690 

Micro-exons were included, a minimum anchor length of 6 nucleotides was required, and up 691 

to two mismatches in the anchor region were allowed. The resulting output contains linear 692 

junction information. Secondly, unmapped reads from the first mapping strategy were 693 

realigned with TopHat2 (v2.1.0) to the same reference, but this time with the fusion search 694 

option that can align reads to potential fusion transcripts. Processing the fusion search output 695 

with CIRCexplorer2 parse (v2.3.3) results in backsplice junction information. Junction read 696 

counts obtained with the mapping strategies described above were used as a measure for the 697 

relative level of linear and circular RNA in each sample. Only genes with at least one detected 698 

backsplice junction were considered. Junctions that could be part of both linear and circular 699 

transcripts (ambiguous junctions) were filtered out. As there is currently no consensus on how 700 

to calculate the circular to linear ratio (CIRC/LIN), we decided to calculate the ratio in two 701 

different ways (Supplementary Fig. 8). The circRNA fraction is defined as 100*CIRC/(CIRC+LIN). 702 

The first method (referred to as “backsplice junction-level method”) zooms in on each 703 

particular backsplice junction. CIRC was defined as the backsplice junction read count of one 704 

particular backsplice junction. LIN was defined as the average read count of all junctions 705 
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flanking the backsplice junction of interest. The second method (referred to as “gene-level 706 

method”) considers all backsplice junctions within a given gene. CIRC was defined as the 707 

average number of backsplice junction reads for a given gene. LIN was defined as the average 708 

number of linear junction reads for a given gene. For both methods, CIRC > 3 was used as a 709 

cut-off for filtering noisy backsplice junctions. To enable a comparison of the circular/linear 710 

genic ratios in biofluids with those of tissues, the mRNA capture sequencing FASTQ files of 16 711 

cancerous tissue types (34 samples in total) were downloaded from the MiOncoCirc database 712 

(dbGaP Study Accession phs000673.v3.p1)24. A list with the downloaded samples is attached 713 

in Supplementary Table 2. A table with the read count of backsplice junctions per sample is 714 

provided in Supplementary Data 8. 715 

Assessment of tissue and cell contribution to biofluid exRNA 716 

Using total RNA-sequencing data from 27 normal human tissue types and 5 immune cell types 717 

from peripheral blood from the RNA Atlas35, we created gene sets containing marker genes 718 

for each individual entity (Supplementary Data 4). We removed redundant tissues and cell 719 

types from the original RNA Atlas (e.g. granulocytes and monocytes were present twice; brain 720 

was kept and specific brain sub-regions such as cerebellum, frontal cortex, occipital cortex and 721 

parietal cortex were removed) and we used genes where at least one tissue or cell type had 722 

expression values greater or equal to 1 TPM normalized counts. A gene was considered to be 723 

a marker if its abundance was at least 5 times higher in the most abundant sample compared 724 

to the others. For the final analysis, only tissues and cell types with at least 3 markers were 725 

included, resulting in 26 tissues and 5 immune cell types. 726 

Gene abundance read counts from the biofluids were normalized using Sequin spikes as size 727 

factors in DESeq2 (v1.22.2). For all marker genes within each gene set, we computed the log2 728 

fold changes between the median read count of a biofluid sample pair versus the median read 729 

count of all other biofluids. The median log2 fold change of all markers in a gene set was 730 

selected, followed by z-score transformation over all biofluids (Fig. 7). For visualization 731 

purposes, only tissues and cell types with a z-score ≥ |1| in at least one biofluid were used. 732 

Cellular deconvolution of pancreatic cyst fluid samples 733 

To build the reference matrix for the computational deconvolution of pancreatic cyst fluid 734 

samples, single cell RNA sequencing data of 10 pancreatic cell types34 was processed with the 735 

statistical programming language R (v3.6.0). For each gene, the mean count across all 736 

individual cells from each cell type was computed. Next, this reference matrix was normalized 737 
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using the trimmed means of M values (TMM) with the edgeR package (v3.26.4)6364. Limma-738 

voom (v3.40.2)65 was used for subsequent differential gene expression analysis and those 739 

genes with an absolute fold change greater or equal to 2 and an adjusted p-value < 0.05 740 

(Benjamini-Hochberg) were retained as markers66. Finally, using these markers and both the 741 

pancreatic cyst fluid samples and the reference matrix described above, the cell type 742 

proportions were obtained through computational deconvolution using non-negative least 743 

squares (nnls package; v1.4)6768. 744 

Differential expression analysis in case/control cohorts 745 

Further processing of the count tables was done with R (v3.5.1) making use of tidyverse 746 

(v1.2.1). Gene expression read counts from the biofluids were normalized using Sequin spikes 747 

as size factors in DESeq2 (v1.20.0)69. To assess the biological signal in the case/control cohorts, 748 

we performed differential expression analysis between the patients and control groups using 749 

DESeq2 (v1.20.0). Genes were considered differentially expressed when the absolute log2 fold 750 

change > 1 and at q < 0.05.  751 

 752 

Data availability 753 

The raw RNA-sequencing data have been deposited at the European Genome-phenome 754 

Archive (EGA) under accession number EGAS00001003917. All spike-normalized sequencing 755 

data can be readily explored in the interactive web-based application R2: Genomics analysis 756 

and visualization platform (http://r2.amc.nl), and via a dedicated accessible portal 757 

(http://r2platform.com/HumanBiofluidRNAAtlas). This portal allows the analysis and 758 

visualization of mRNA, circRNA and miRNA abundance, as illustrated in Supplementary Fig. 11. 759 

All samples can be used for correlation, principle component, and gene set enrichment 760 

analyses, and many more. All other data are available within the article and supplementary 761 

information.  762 

 763 

Code availability 764 

The R scripts to reproduce the analyses and plots reported in this paper are available from the 765 

corresponding authors upon request. 766 

 767 
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