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SUMMARY 

 

Gene-environment interactions have long been theorized to influence molecular evolution. 

However, the environmental dependence of most mutations remains unknown. Using deep 

mutational scanning, we engineered budding yeast with all 44,604 single codon changes 

encoding 14,160 amino acid variants in Hsp90 and quantified growth effects under standard 

laboratory conditions and under five stress conditions (elevated temperature, nitrogen 

starvation, elevated salinity, high ethanol concentration, and oxidative stress caused by 

diamide). To our knowledge these are the largest comprehensive fitness maps of point mutant 

growth effects that have been determined. The growth effects of many variants differed 

between each of the conditions, indicating that environmental conditions can have a large 

impact on the evolution of Hsp90. Multiple variants provided growth advantages relative to 

wildtype Hsp90 under individual conditions, however these variants tended to exhibit growth 

defects in other environments. The diversity of Hsp90 sequences observed in extant eukaryotes 

preferentially contain amino acid variants that supported robust growth under all tested 

conditions.  Thus, rather than favoring substitutions in individual conditions, the long-term 

selective pressure on Hsp90 may have been that of fluctuating environments, leading to 

robustness under a variety of conditions.   
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INTRODUCTION 

The role of environment has been contemplated in theories of evolution for over a hundred 

years [1-3], yet molecular level analyses of how environment impacts the evolution of gene 

sequences remain experimentally under-explored. Depending on environmental conditions, 

mutations can be categorized into three classes: deleterious mutations that are purged from 

populations by purifying selection, nearly-neutral mutations that are governed by stochastic 

processes, and beneficial mutations that provide a selective advantage [4]. It has long been 

clear that environmental conditions can alter the fitness effects of mutations [5]. However, 

examining how environmental conditions impact any of the three classes of mutations is 

challenging. Measurable properties of nearly-neutral and deleterious mutations in natural 

populations are impacted by both demographics and selection [4], which are difficult to 

disentangle. In addition, many traits are complex, making it challenging to identify all of the 

contributing genetic variations [6]. For these reasons, we do not have a detailed understanding 

of how environmental conditions impact the evolution of most gene sequences. 

Analyses of adaptive mutations in both lab experiments and natural populations indicate that 

they are frequently rare compared to nearly-neutral and deleterious mutations [4,7,8]. 

Approaches have been developed to identify adaptive mutations in natural populations [9] and 

lab experiments [10,11]. Most laboratory studies of adaptation rely on stochastic sampling of 

mutations that identify a subset of all possible adaptive mutations. With stochastic approaches, 

many potential adaptive mutations can go undetected. Nevertheless, studies sparked by 

correlating a genotype and a specific environmental condition have revealed a handful of 

striking evolutionary mechanisms. In one of the earliest studies of molecular adaptation, the 

correlation of the prevalence of the sickle cell gene in regions where malaria was endemic led 

to the realization that this gene provided protection from malaria infection [12]. Similar 

approaches have been utilized to understand other mechanisms of adaptation including how 

distinct land environments select for coat color of mice mediated by the Agouti gene [13]. 

Making the link between genotype, phenotype, and adaptation usually involves a tremendous 

amount of field work, making it difficult to pursue. 

On the other end of the spectrum, the environmental dependence of deleterious mutations has 

been challenging to analyze because of the large number of mutations in this class. The 

environmental dependence of gene knockouts was investigated in budding yeast [14]. This 

study revealed that while 19% of genes were essential in rich media, the majority of genes 

exhibited growth effects under altered conditions. While this result emphasizes that 

environmental conditions can dramatically influence selection pressure on genes, it does not 

provide insights into the impact of environmental conditions on gene sequences.  

Modern mutational scanning approaches [15] provide novel opportunities to examine fitness 

effects of the same mutations under different laboratory conditions [16,17]. The EMPIRIC 

(Exceedingly Meticulous and Parallel Investigation of Randomized Individual Codons) approach 
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that we developed is particularly well suited to address questions regarding the environmental 

impact of mutational effects for three reasons: it quantifies growth rates that are a direct 

measure of experimental fitness, all point mutations are engineered providing comprehensive 

maps of growth effects, and all the variants can be tracked in the same flask while experiencing 

identical growth conditions [18]. We have previously used the EMPIRIC approach to investigate 

how protein fitness maps of ubiquitin vary in different environmental conditions [19]. The 

analysis of ubiquitin fitness maps revealed that stress environments can exacerbate the fitness 

defects of mutations. However, the small size of ubiquitin and the near absence of natural 

variation in ubiquitin sequences (only three amino acid differences between yeast and human) 

hindered investigation of the properties underlying historically observed substitutions.  

Mutational scanning approaches have emerged as a robust method to analyze relationships 

between gene sequence and function, including aspects of environment-dependent selection 

pressure. Multiple studies have investigated resistance mutations that enhance growth in drug 

or antibody environments [20-24]. Most of these studies have focused on interpreting 

adaptation in the light of protein structure. Of note, Dandage, Chakraborty and colleagues 

explored how environmental perturbations to protein folding influenced tolerance of mutations 

in the 178 amino acid gentamicin-resistant gene in bacteria [25]. However, the question of how 

environmental variation shapes the selection pressure on gene sequences has not been well 

studied.  

Here, we report comprehensive experimental fitness maps of Heat Shock Protein 90 (Hsp90) 

under multiple stress conditions and compare our experimental results with the historical 

record of hundreds of Hsp90 substitutions accrued during its billion years of evolution in 

eukaryotes. Hsp90 encodes a 709 amino acid protein and to our knowledge it is the largest 

gene for which a comprehensive protein fitness map has been determined.  Hsp90 is an 

essential and highly abundant molecular chaperone which is induced by a wide variety of 

environmental stresses [26,27].  Hsp90 assists cells in responding to these stressful conditions 

by facilitating the folding and activation of client proteins through a series of ATP-dependent 

conformational changes mediated by co-chaperones [28].  These clients are primarily signal 

transduction proteins, highly enriched in kinases and transcription factors [29] and thus, Hsp90 

activity is linked to virtually every process in the cell and influences all facets of cellular 

physiology.  Because Hsp90 helps cells to cope with stress, we hypothesized that the functional 

pressures acting on Hsp90 may vary in different stress conditions. 

The conditions in natural environments often fluctuate, and all organisms contain stress 

response systems that aid in the acclimation to new conditions. The conditions experienced by 

different populations and species can vary tremendously depending on the niches that they 

inhabit, providing the potential for distinct selective pressures on Hsp90. Previous studies of a 

nine amino acid loop in Hsp90 identified multiple amino acid changes that increased the growth 

rate of yeast in elevated salinity [30], demonstrating the potential for beneficial mutations in 
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Hsp90. However, the sequence of Hsp90 is strongly conserved in eukaryotes (57% amino acid 

identity from yeast to human), indicating consistent strong purifying selection. 

To investigate the potential influence of the environment on Hsp90 evolution, we quantified 

fitness maps in six different conditions.  The different conditions impose distinct molecular 

constraints on Hsp90 sequence. While proximity to ATP is the dominant functional constraint in 

standard conditions, the influence of client and co-chaperone interactions on growth rate 

dramatically increases under stress conditions. Increased selection pressure from heat and 

diamide stresses led to a greater number of beneficial variants compared to standard 

conditions. The observed beneficial variants were enriched at functional hotspots in Hsp90.  

However, the natural variants of Hsp90 tend to be robust to all environments tested, indicating 

selection for robustness to diverse stress conditions in the natural evolution of Hsp90. 

 

RESULTS 

We developed a powerful experimental system to analyze the growth rate supported by all 

possible Hsp90 point mutations under varied growth conditions. Bulk competitions of yeast 

with a deep sequencing readout enabled the simultaneous quantification of 98% of possible 

amino acid changes (Figure 1A).  The single point mutant library was engineered by 

incorporating a single degenerate codon (NNN) into an otherwise wildtype Hsp90 sequence as 

previously described [31].  To provide a sensitive readout of changes in Hsp90 function, we 

used a plasmid system that reduced Hsp90 protein levels to near-critical levels [32]. We 

employed a barcoding approach to efficiently track all variants in a single competition flask so 

that all variants experience identical conditions. As described in the Methods, the barcode 

strategy enabled us to track mutations across a large gene using a short sequencing readout. 

The barcode strategy also reduced the impact of misreads as they result in unused barcodes 

that were discarded from analyses.  

We transformed the plasmid library of comprehensive Hsp90 point mutations into a conditional 

yeast strain where we could turn selection of the library on or off. We used a yeast Hsp90-

shutoff strain in which expression of the only genomic copy of Hsp90 is strictly regulated with a 

galactose-inducible promoter [32].  Yeast containing the mutant libraries were amplified under 

conditions that select for the plasmid, but not for the function of Hsp90 variants. We switched 

the yeast to dextrose media to shut off the expression of wildtype Hsp90 and then split the 

culture into six different environmental conditions.  We extracted samples from each condition 

at multiple time points and used Illumina sequencing to estimate the frequency of each Hsp90 

variant over time. We assessed the selection coefficient of each Hsp90 variant from the change 

in frequency relative to wildtype Hsp90 using a previously developed Bayesian MCMC method 

[33,34].   
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To analyze reproducibility of the growth competition, we performed a technical replicate under 

standard conditions.  We used a batch of the same transformed cells that we had frozen and 

stored such that the repeat bulk competition experiments and sequencing were performed 

independently.  Selection coefficients between replicates were strongly correlated (R2=0.90), 

and indicated that we could clearly distinguish wildtype-like mutants from highly deleterious 

stop-like mutants (Figure 1B).  The selection coefficients in this study also correlated strongly 

(R2=0.87) with estimates of the Hsp90 N-domain in a previous study [35] (Figure S1A), indicating 

that biological replicates also show high reproducibility.  Of note, variants with strongly 

deleterious effects exhibited the greatest variation between replicates, consistent with the 

noise inherent in estimating the frequency of rapidly depleting variants. 

The large number of signaling pathways that depend on Hsp90 [29] and its strong sequence 

conservation suggest that Hsp90 may be sensitive to mutation. However, most variants of 

Hsp90 were experimentally tolerated in standard conditions (Figure 1C).  All possible mutations 

were compatible with function at 425 positions.  Only 18 positions had low mutational 

tolerance to the extent that 15 or more substitutions caused null-like growth defects (R32, E33, 

N37, D40, D79, G81, G94, I96, A97, S99, G118, G121, G123, Y125, F156, W300, and R380).  All of 

these positions except for W300 are in contact with ATP or mediate ATP-dependent 

conformational changes in the N-domain of Hsp90.  In fact, the average selection coefficient at 

different positions (a measure of mutational sensitivity)  in standard growth conditions 

correlates (R2=0.49) with distance from ATP (Figure S1B).  While W300 does not contact ATP, it 

transmits information from client binding to long range conformational changes of Hsp90 that 

are driven by ATP hydrolysis [36].  Our results indicate that ATP binding and the conformational 

changes driven by ATP hydrolysis impose dominant physical constraints throughout the entirety 

of Hsp90 under standard laboratory conditions. 

At first sight, the observation that most mutations were compatible with robust growth in 

standard conditions is at odds with the fact that the Hsp90 sequence is strongly conserved 

across large evolutionary distances (Figure 1C). One potential reason for this discrepancy could 

be that the strength of purifying selection in large natural populations over long evolutionary 

time-scales is more stringent than can be measured in the laboratory.  In other words, 

experimentally unmeasurable fitness defects could be subject to purifying selection in nature.  

In addition, the range of environmental conditions that yeast experience in natural settings may 

not be reflected by standard laboratory growth conditions.  To investigate the impact of 

environmental conditions on mutational effects in Hsp90, we measured the growth rate of 

Hsp90 variants under five additional stress conditions.  

 

Impact of stress conditions on mutational sensitivity of Hsp90 

We measured the fitness of Hsp90 variants in conditions of nitrogen depletion (ND) (0.0125% 

ammonium sulfate), hyper-osmotic shock (0.8 M NaCl), ethanol stress (7.5% ethanol), the 
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sulfhydryl-oxidizing agent diamide (0.85 mM), and temperature shock (37°C).  All of these 

stresses are known to elicit a common shared environmental stress response characterized by 

altered expression of ~900 genes as well as having specific responses unique to each stress [27].  

Genes encoding heat shock proteins, including Hsp90, are transiently upregulated in all these 

stresses except elevated salinity [27,37]. 

One way to characterize stress conditions is to measure the extent to which they slow down 

growth. For our experiments, each of the environmental stresses were selected to partially 

decrease the growth rate.  Consistently, all stresses reduced the growth rate of the parental 

strain within a two-fold range, with depletion of nitrogen levels causing the smallest reduction 

in growth rate and diamide causing the greatest reduction (Figure 2A). To investigate how 

critical Hsp90 is for growth in each condition, we measured growth rates of yeast with either 

normal or more than 10-fold reduced [32] levels of Hsp90 protein (Figure 2A). Under standard 

conditions, the normal level of Hsp90 protein can be dramatically reduced without major 

impacts on growth rate, consistent with previous findings [32,38].  

We anticipated that Hsp90 would be required at increased levels for robust experimental 

growth in diamide, nitrogen starvation, ethanol, and high temperature [27] based on the 

concept that cells increase expression level of genes in conditions where those gene products 

are needed at higher concentration. Consistent with this concept, reduced Hsp90 levels cause a 

marked decrease in growth rate at 37°C. However, Hsp90 protein levels had smaller impacts on 

growth rates under the other stress conditions, indicating that reliance on overall Hsp90 

function does not increase dramatically in these conditions. 

We quantified the growth rates of all Hsp90 single-mutant variants in each of the stress 

conditions as selection coefficients where 0 represents wildtype and -1 represents null alleles 

(Figure S2A-F). We could clearly differentiate between the selection coefficients of wildtype 

synonyms and stop codons in all conditions (Figure 2B), and we normalized to these classes of 

mutations to facilitate comparisons between each condition. Of note, the observed selection 

coefficients of wildtype synonyms varied more in conditions of high temperature and diamide 

stress compared to standard (Figure S2G). We also note greater variation in the selection 

coefficients of barcodes for the same codon in the diamide and high temperature conditions 

(Figure S2H). We conclude that diamide and elevated temperature provided greater noise in 

our selection coefficient measurements. To take into account differences in signal to noise for 

each condition, we either averaged over large numbers of mutations or categorized selection 

coefficients as wildtype like, strongly deleterious, intermediate, or beneficial based on the 

distribution of wildtype synonyms and stop codons in each condition (see Materials and 

Methods and Figure S2I).   

We compared selection coefficients of each Hsp90 variant in each stress condition to standard 

condition (Figure 2B&C).  The stresses of 37°C and diamide tend to exaggerate the growth 

defects of many mutants compared to standard conditions, whereas high salt and ethanol tend 

to rescue growth defects (Figure 2B&C and S2J). According to the theory of metabolic flux 
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[39,40], gene products that are rate limiting for growth will be subject to the strongest 

selection. Accordingly, the relationship between Hsp90 function and growth rate should largely 

determine the strength of selection acting on Hsp90 sequence. Conditions where Hsp90 

function is more directly linked to growth rate would be more sensitive to Hsp90 mutations 

than conditions where Hsp90 function can be reduced without changing growth rates [32,41]. 

The average selection coefficients are more deleterious in diamide and temperature stress 

compared to standard conditions. These findings are consistent with heat and diamide stresses 

causing a growth limiting increase in unfolded Hsp90 clients that is rate limiting for growth. In 

contrast, the average selection coefficients are less deleterious in ethanol and salt stress than in 

standard conditions, consistent with a decrease in the demand for Hsp90 function in these 

conditions. Of note, the biophysical impacts of these sets of conditions are distinct: increased 

temperature and diamide both generally act to increase protein unfolding, while salt and 

ethanol have more complex impacts that include inducing aggregation.  

 

Structural analyses of environmental responsive positions 

Altering environmental conditions had a pervasive influence on mutational effects along the 

sequence of Hsp90 (Figure 3A & S3A).  We structurally mapped the average selection 

coefficient of each position in each condition relative to standard conditions as a measure of 

the sensitivity to mutation of each position under each environmental stress (Figure 3A).  Many 

positions had mutational profiles that were responsive to a range of environments.  

Environmentally responsive positions with large changes in average selection coefficient in at 

least three conditions are highlighted on the Hsp90 structure in green in Figure 3B.  Unlike the 

critical positions that cluster around the ATP binding site (Figure 1C), the environmentally 

responsive positions are located throughout all domains of Hsp90.  Similar to critical residues, 

environmentally responsive positions are more conserved in nature compared to other 

positions in Hsp90 (Figure 3C), suggesting that the suite of experimental stress conditions 

tested captured aspects of natural selection pressures on Hsp90 sequence.   

Hsp90 positions with environmentally responsive selection coefficients were enriched in 

binding contacts with clients, co-chaperones and intramolecular Hsp90 contacts involved in 

transient conformational changes (Figure 3D and S3B).  About 65% of the environmentally 

responsive residues have been identified either structurally or genetically as interacting with 

binding partners [42-55], compared to about 15% of positions that were not responsive to 

stress conditions. While ATP binding and hydrolysis are the main structural determinants that 

constrain fitness in standard growth conditions, client and co-chaperone interactions have a 

larger impact on experimental fitness under stress conditions.  Although the mean selection 

coefficients of mutations at the known client and co-chaperone binding sites are responsive to 

changes in environment, the direction of the shift of growth rate compared to standard 

conditions depends on the specific binding partner and environment (Figure 3E).  This suggests 

that different environments place unique functional demands on Hsp90 that may be mediated 
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by the relative affinities of different binding partners. Consistent with these observations, we 

hypothesize that Hsp90 client priority is determined by relative binding affinity and that Hsp90 

mutations can reprioritize clients that in turn impacts many signaling pathways. 

 

Constraint of mutational sensitivity at high temperature 

We find that different environmental conditions impose unique constraints on Hsp90, with 

elevated temperature placing the greatest purifying selection pressure on Hsp90.  Of the 2504 

variants of Hsp90 that are deleterious when grown at 37°C, 884 of them (~35%) are deleterious 

only in this condition (Figure 3F).  We defined mutants that confer temperature sensitive (ts) 

growth phenotypes on cells as variants with selection coefficients within the distribution of 

wildtype synonyms in standard conditions and that of stop codons at 37°C.  Based on this 

definition, 675 Hsp90 amino acid changes (roughly 5% of possible changes) were found to be 

temperature sensitive (Figure 4A). We sought to understand the physical underpinnings of this 

large set of Hsp90 ts mutations.  

We examined Hsp90 ts mutations for structural and physical patterns. We found that ts 

mutations tended to concentrate at hotspots (Figure 4B). These hotspots were spread across all 

three domains of Hsp90 (Figure 4C). The largest cluster of hotspots occurred in the C domain of 

Hsp90. The C domain forms a constitutive homodimer that is critical for function [56]. Of note, 

homo-oligomerization domains may have a larger ts potential because all subunits contribute 

to folding and dimerization essentially multiplying the impacts of mutations [57]. To explore the 

physical underpinnings of ts mutations we examined if they were buried in the structure or 

surface exposed. Mutations at buried residues tend to have a larger impact on protein folding 

energy compared to surface residues [58]. Consistent with the idea that many ts mutations may 

disrupt protein folding at elevated temperature, substitutions that confer a ts phenotype are 

enriched in buried residues (Figure 4D). Also consistent with this idea, ts mutations tend to 

have negative Blosum scores (Figure 4E), a hallmark of disruptive amino acid changes. 

Because growth at elevated temperatures requires higher levels of Hsp90 protein [59], some ts 

mutations may be due to a reduced function that is enough for growth at standard 

temperature, but is insufficient at 37 °C [54]. We reasoned that we could distinguish these 

mutants by examining how growth rate depended on the expression levels of Hsp90. We 

expect that destabilizing mutants that cause Hsp90 to unfold at elevated temperature would 

not support efficient growth at 37°C independent of expression levels.  In contrast, we expect 

mutants that reduce Hsp90 function to exhibit an expression-dependent growth defect at 37 °C.  

We tested a panel of ts mutations identified in the bulk competitions at high and low 

expression levels (Figure 4F). The dependence of growth rate at 37 °C on expression level varied 

for different Hsp90 ts variants. The I64D, I66E and L499R Hsp90 mutants have no activity at 

37°C irrespective of expression levels.  These disruptive substitutions at buried positions likely 

destabilize the structure of Hsp90.  In contrast, increasing the Hsp90 expression levels at least 
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partially rescued the growth defect for five ts variants (L50D, K102A, D180L, K398L, K594I), 

indicating that these variants do not providing enough Hsp90 function for robust growth at 

elevated temperature. All five of these expression dependent ts variants were located at 

surface positions, indicating that the location of ts mutations can delineate different 

mechanistic classes. 

 

Hsp90 potential for adaptation to environmental stress 

Numerous Hsp90 variants provided a growth benefit compared to the wildtype sequence in 

stress conditions. The largest number of beneficial variants in Hsp90 occurred in high 

temperature and diamide conditions (Figure 5A). Multiple lines of evidence indicate that these 

mutants are truly beneficial variants and not simply measurement noise.  First,  the beneficial 

amino acids generally exhibited consistent selection coefficients among synonymous variants 

(Figure S5A). Second, adaptive mutants in diamide and high temperature cluster at certain 

positions in a significant manner (see below).  Finally, we confirmed the increased growth rate 

at elevated temperature of a panel of variants analyzed in isolation (Figure S5B). Beneficial 

mutations in elevated temperature and diamide often clustered at specific positions in Hsp90 

(Figure 5B), indicating that the wildtype amino acids at these positions are far from optimum 

for growth in these conditions. In contrast, the apparent beneficial mutations in other 

conditions did not tend to cluster at specific positions (Figure S5C).  

To obtain a more general picture of the potential for adaptation derived from the full fitness 

distributions, we used Fisher’s Geometric model (FGM) [60].  According to FGM, populations 

evolve in an n-dimensional phenotypic space, through random single step mutations, and any 

such mutation that brings the population closer to the optimum is considered beneficial.  An 

intuitive hypothesis derived from FGM is that the potential for adaptation in a given 

environment (that is the availability of beneficial mutations) depends on the distance to the 

optimum.  In order to estimate the distance to the optimum d, we adopted the approach by 

Martin and Lenormand and fitted a displaced gamma distribution to the neutral and beneficial 

mutations for each environment [61].  We observed that the yeast populations were furthest 

from the optimum in elevated temperature and diamide (d=0.072 and 0.05, respectively), 

followed by nitrogen deprivation (d=0.023), high salinity and ethanol (d=0.021) and standard 

(d=0.014).  This suggests that elevated temperature and diamide have the largest potential for 

adaptation and is consistent with the observation of the largest proportions of beneficial 

mutations in these environments.  Interestingly, previous results from a 9-amino-acid region in 

Hsp90 indicated that there was very little potential for adaptation at high temperature (36°C) as 

compared with high salinity [62]. This apparent contradiction between results from the full 

Hsp90 sequence and the 582-590 region indicates that a specific region of the protein may be 

already close to its functional optimum in a specific environment, whereas there is ample 

opportunity for adaptation when the whole protein sequence is considered. 
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In diamide and elevated temperature, the clustered beneficial positions were almost entirely 

located in the ATP-binding domain and the middle domain (Figure 5C), both of which make 

extensive contacts with clients and co-chaperones [42-46,55]. Beneficial mutations in elevated 

temperature and diamide conditions were preferentially located on the surface of Hsp90 

(Figure 5D) at positions accessible to binding partners. Analyses of available Hsp90 complexes 

indicate that beneficial positions were disproportionately located at known interfaces with co-

chaperones and clients (Figure 5E). Clustered beneficial mutations are consistent with 

disruptive mechanisms because different amino acid changes can lead to disruptions, whereas 

a gain of function is usually mediated by specific amino acid changes. Amino acids that are 

beneficial in diamide and elevated temperature tend to exhibit deleterious effects in standard 

conditions (Figure 5F), consistent with a cost of adaptation. We conjecture that the clustered 

beneficial mutations are at positions that mediate the binding affinity of subsets of clients and 

co-chaperones and that disruptive mutations at these positions can lead to re-prioritization of 

multiple clients. The priority or efficiency of Hsp90 for sets of clients can in turn impact most 

aspects of physiology because Hsp90 clients include hundreds of kinases that influence virtually 

every aspect of cell biology. 

In the first ten amino acids of Hsp90, we noted a large variation in the selection coefficients of 

synonymous mutations at elevated temperature (Figure S5D). These synonymous mutations 

were only strongly beneficial at high temperature where Hsp90 protein levels are limiting for 

growth. Analysis of an individual clones confirms that synonymous mutations at the beginning 

of Hsp90 that were beneficial at high temperature were expressed at higher level in our 

plasmid system (Figure S5E, S5F). These results are consistent with a large body of research 

showing that mRNA structure near the beginning of coding regions often impacts translation 

efficiency [63-65], and that adaptations can be mediated by changes in expression levels [66]. 

Outside of the first ten amino acids, we did not observe large variation in selection coefficients 

of synonymous mutations. 

 

Natural selection favors Hsp90 variants that are robust to environment 

We next examined how experimental protein fitness maps compared with the diversity of 

Hsp90 sequences in current eukaryotes. We analyzed Hsp90 diversity in a set of 267 sequences 

from organisms that broadly span across eukaryotes. We identified 1750 amino acid differences 

in total that were located at 499 positions in Hsp90. We examined the experimental growth 

effects of the subset of amino acids that were observed in nature. While the overall distribution 

of selection coefficients in all conditions was bimodal with peaks around neutral (s=0) and null 

(s=-1), the natural amino acids were unimodal with a peak centered near neutral (Figure 6A). 

The vast majority of natural amino acids had wildtype-like fitness in all conditions studied here 

(Figure 6B&C). Whereas naturally occurring amino acids in Hsp90 were rarely deleterious in any 

experimental condition, they were similarly likely to provide a growth benefit compared to all 

possible amino acids (5%). This observation indicates that condition-dependent fitness benefits 
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are not a major determinant of natural variation in Hsp90 sequences. Instead, our results 

indicate that natural selection has favored Hsp90 substitutions that are robust to multiple 

stressful conditions (Figure 6D). 

Epistasis may provide a compelling explanation for the naturally occurring amino acids that we 

observed with deleterious selection coefficients. Analyses of Hsp90 mutations in the context of 

likely ancestral states has demonstrated a few instances of historical substitutions with fitness 

effects that depend strongly on the Hsp90 sequence background [67]. Indeed, many of the 

natural amino acids previously identified with strong epistasis (E7A, V23F, T13N) are in the 

small set of natural amino acids with deleterious effects in at least one condition. Further 

analyses of natural variants under diverse environmental conditions will likely provide insights 

into historical epistasis and will be the focus of future research. 

 

DISCUSSION 

In this study, we analyzed the protein-wide distribution of fitness effects of Hsp90 across 

standard conditions and five stress conditions. Fitness effects under standard conditions 

indicated that critical functional residues were largely explained by proximity to ATP. In 

contrast, positions spread throughout the structure of Hsp90 exhibited selection coefficients 

that were responsive to different conditions. While the main functional constraints were 

apparent in standard conditions, stress conditions revealed many additional functional 

constraints as well as beneficial mutations. 

We observed distinct structural trends for mutations that provide environment-dependent 

costs and benefits. Many mutations in Hsp90 caused growth defects at elevated temperature 

where Hsp90 function is limiting for growth. These temperature sensitive mutations tended to 

be buried and in the homodimerization domain, consistent with an increased requirement for 

folding stability at elevated temperatures. In contrast, beneficial mutations tended to be on the 

surface of Hsp90 and at contact sites with binding partners, suggesting that change-of-function 

mutations may be predominantly governed by alterations to binding interactions. 

Importantly, our results demonstrate that while mutations to Hsp90 can provide a growth 

advantage in specific environmental conditions, naturally occurring amino acids in Hsp90 tend 

to support robust growth over multiple stress conditions. The finding of beneficial mutations in 

Hsp90 in specific conditions suggests that similar long-term stresses in nature can lead to 

positive selection on Hsp90. Consistent with previous work [26], we found that experimentally 

beneficial mutations tended to have a fitness cost in alternate conditions (Figure 5F). This 

indicates that natural environments which fluctuate among different stresses would reduce or 

eliminate positive selection on Hsp90. Therefore, our results suggest that natural selection on 

Hsp90 sequence has predominantly been governed by strong purifying selection integrated 

over multiple stressful conditions. Taken together, these results support the hypothesis that 

natural populations might experience a so-called "micro-evolutionary fitness seascape" [68], in 
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which rapidly fluctuating environments result in a distribution of quasi-neutral substitutions 

over evolutionary time scales.   
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FIGURE LEGENDS 

 

Figure 1. Approach to determine protein fitness maps of Hsp90. A. Barcoded competition 

strategy to analyze the growth effects of all single codon variants of Hsp90 in a single bulk 

culture. B. Measurements of selection coefficients of all amino acid variants are reproducible in 

replicate growth competitions. Wildtype amino acids are shown in green and stop codons are 

shown in red. C. Selection coefficients in standard conditions mapped onto a homodimeric 

structure of Hsp90 [42] and compared to patterns of evolutionary conservation. ATP is shown in 

yellow.  

Figure 2. Relating impacts of environmental stresses on yeast growth rates and selection on 

Hsp90 sequence. A. Growth rate of yeast with normal and reduced expression of Hsp90 protein 

in standard and stress conditions. B. Selection coefficients of Hsp90 amino acid variants in 

stress conditions compared to standard conditions. Wildtype amino acids are shown in green 

and stop codons are shown in red. Selection coefficients were scaled to null (s=-1) for the 

average stop codon and neutral (s=0) for the average wildtype. C. Average selection coefficients 

of mutations, a metric of the strength of selection acting on Hsp90 sequence, in each stress 

condition relative to standard conditions.  

Figure 3. Environmental stresses elicit distinct patterns of selection on Hsp90. A. The average 

selection coefficient at each position relative to standard conditions was mapped onto Hsp90 

structure [42]. B. Structural images indicating the location of positions that are critical for Hsp90 

function in all conditions (magenta) and positions that are environmentally responsive (green). 

Critical residues have mean selection coefficients that are null-like (within the distribution of 

stop codons) in all environments. Environmentally responsive positions had mean selection 

coefficients that differed from standard in three or more environmental conditions by an 

amount greater than one standard deviation of wildtype synonyms. Tolerant residues were not 

shifted more than this cutoff in any environment.  C. For different classes of positions, 

evolutionary variation was calculated as amino acid entropy at each position in Hsp90 

sequences from diverse eukaryotes. D. Fraction of different classes of mutations located at 

contact sites with binding partners. E. The average selection coefficient in each environment 

relative to standard at all the Hsp90 positions at each stated interface. F. Venn diagram of 

deleterious mutations in different environmental conditions [69].  Total number of deleterious 

mutants in each condition are stated in parentheses.   

Figure 4. Abundance and mechanism of temperature sensitive mutations in Hsp90. A. 

Temperature sensitive amino acid variants were identified that supported wildtype-like growth 

at standard (30°C) temperature, but were null-like at 37 °C in bulk competitions. B. The 

identified ts variants tend to cluster at specific positions in Hsp90. C. Mapping positions with 

multiple ts variants onto Hsp90 structure. D. Solvent accessible surface area (SASA) of positions 

with ts mutations compared to positions lacking ts mutations. E. Amino acid similarity to the 
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wildtype was estimated as the Blosum score for ts and non-ts variants. F. Growth rate of a 

panel of individual Hsp90 ts variants analyzed in isolation. 

Figure 5. Beneficial variants in diamide and elevated temperature conditions. A. Number of 

beneficial mutations identified in each condition based on selection coefficients more than two 

standard deviations greater than wildtype synonyms. B. Distribution of the number of beneficial 

mutations at the same position in both 37 °C (left) and diamide (right) conditions. C. Location of 

positions with four or more beneficial mutations. Positions that are unique to diamide or 37 °C 

are shown in cyan and two shared positions are shown in magenta. D. The solvent accessible 

surface area of beneficial positions at 37 °C and in diamide compared to all positions. E. The 

fraction of Hsp90 positions at interfaces that were beneficial in 37 °C and diamide conditions. F. 

Selection coefficients in standard conditions for beneficial mutations at 37 °C and in diamide 

compared to wildtype synonyms. 

Figure 6. Experimental growth effects of natural amino acid variants of Hsp90. A. The 

distribution of selection coefficients of natural variants compared to all variants in each 

environmental condition. B. Across all environments, the fraction of natural variants compared 

to all variants that were beneficial, wildtype like, or deleterious. C. The fraction of natural 

variants compared to all variants that were environmentally responsive or tolerant in all 

environments. Categories were defined as in Figure 3B. D. Landscape model indicating that 

natural variants of Hsp90 tend to support robust growth under a variety of stress conditions. 
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MATERIALS AND METHODS 

Generating mutant libraries 

A library of Hsp90 genes was saturated with single point mutations using oligos containing NNN 

codons as previously described [31].  The resulting library was pooled into 12 separate 60 

amino acid long sub-libraries along the Hsp90 sequence (amino acids 1-60, 61-120 etc.) and 

combined via Gibson Assembly (NEB) with a linearized p414ADHΔter Hsp90 destination vector.  

To simplify sequencing steps during bulk competition, each variant of the library was tagged 

with a unique barcode.  For each 60 amino acid sub-library, a pool of DNA constructs containing 

a randomized 18-bp barcode sequence (N18) was cloned 200 nt downstream from the Hsp90 

stop codon via restriction digestion, ligation, and transformation into chemically competent E. 

coli with the goal of each mutant being represented by 10-20 unique barcodes.   

 

Barcode association of library variants 

We added barcodes and associated them with Hsp90 variants essentially as previously 

described [67]. To associate barcodes with Hsp90 variants, we performed paired-end 

sequencing of each 60 amino acid sub-library using a primer that reads the N18 barcode in one 

read and a primer unique to each sub-library that anneals upstream of the region containing 

mutations.  To facilitate efficient Illumina sequencing, we generated PCR products that were 

less than 1kb in length for sequencing. We created shorter PCR products by generating plasmids 

with regions removed between the randomized regions and the barcode.  To remove regions 

from the plasmids, we performed restriction digest with two unique enzymes, followed by 

blunt ending with T4 DNA polymerase (NEB) and plasmid ligation at a low concentration (3 

ng/μL) to favor circularization over bimolecular ligations.  The resulting DNA was relinearized by 

restriction digest, and amplified with 11 cycles of PCR to generate products for Illumina 

sequencing.  The resulting PCR products were sequenced using an Illumina MiSeq instrument 

with asymmetric reads of 50 bases for Read1 (barcode) and 250 bases for Read2 (Hsp90 

sequence).  After filtering low-quality reads (Phred scores <10), the data was organized by 

barcode sequence.  For each barcode that was read more than three times, we generated a 

consensus of the Hsp90 sequence that we compared to wildtype to call mutations. 

 

Bulk Growth Competitions 

Equal molar quantities of each sub-library were mixed to form a pool of DNA containing the 

entire Hsp90 library with each codon variant present at similar concentration.  The plasmid 

library was transformed using the lithium acetate procedure into the DBY288 Hsp90 shutoff 

strain essentially as previously described [32].  Sufficient transformation reactions were 

performed to attain ~5 million independent yeast transformants representing a 5-fold sampling 
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for the average barcode and 100-fold sampling for the average codon variant.  Following 12 

hours of recovery in SRGal (synthetic 1% raffinose and 1% galactose) media, transformed cells 

were washed five times in SRGal-W (SRGal lacking tryptophan) media to remove extracellular 

DNA, and grown in SRGal-W media at 30°C for 48 h with repeated dilution to maintain the cells 

in log phase of growth.  This yeast library were was supplemented with 20% glycerol, aliquoted 

and slowly frozen by placing a microfuge tubes with cells in a room temperature plastic tube 

holder in a -80°C freezer. 

For each competition experiment, an aliquot of the frozen yeast library cells was thawed at 

37°C.  Viability of the cells was accessed before and after freezing and was determined to be 

greater than 90% with this slow freeze, quick thaw procedure.  Thawed cells were amplified in 

SRGal-W for 24 hours, and then shifted to shutoff conditions by centrifugation, washing, and 

resuspension in 300 mL of synthetic dextrose lacking tryptophan (SD-W) for 12 hours at 30°C.  

At this point, cells were split and transferred to different conditions including SD-W (standard - 

2% dextrose, 0.5% ammonium sulphate, 30°C), ND (nitrogen depletion - 2% dextrose, 0.0125% 

ammonium sulphate, 30°C), NaCl (2% dextrose, 0.5% ammonium sulphate, 0.8 M NaCl, 30°C), 

EtOH (2% dextrose, 0.5% ammonium sulphate, 7.5% Ethanol), diamide (2% dextrose, 0.5% 

ammonium sulphate, 0.85 mM, 30°C), or 37°C (2% dextrose, 0.5% ammonium sulphate, 37°C).  

We collected samples of ~108 cells at eight time points over a period of 36 hours and stored 

them at -80°C.  Cultures were maintained in log phase by regular dilution with fresh media, 

maintaining a population size of 109 or greater throughout the bulk competition.  Bulk 

competition from the standard condition were conducted in technical duplicates from the 

frozen yeast library. 

DNA Preparation and Sequencing 

We isolated plasmid DNA from each bulk competition time point as described [32].  Purified 

plasmid was linearized with AscI.  Barcodes were amplified by 19 cycles of PCR using Phusion 

polymerase (NEB) and primers that add Illumina adapter sequences and an 8 bp identifier 

sequence used to distinguish libraries and time points.  The identifier sequence was located at 

positions 91-98 relative to the illumine primer and the barcode was located at positions 1-18. 

PCR products were purified two times over silica columns (Zymo Research) and quantified using 

the KAPA SYBR FAST qPCR Master Mix (Kapa Biosystems) on a Bio-Rad CFX machine.  Samples 

were pooled and sequenced on an Illumina NextSeq instrument in single-end 100 bp mode. 

Analysis of Bulk Competition Sequencing Data 

Illumina sequence reads were filtered for Phred scores >20 and strict matching of the sequence 

to the expected template and identifier sequence.  Reads that passed these filters were parsed 

based on the identifier sequence.  For each condition/time-point identifier, each unique N18 

read was counted.  The unique N18 count file was then used to identify the frequency of each 

mutant using the variant-barcode association table.  To generate a cumulative count for each 
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codon and amino acid variant in the library, the counts of each associated barcode were 

summed.   

Determination of Selection Coefficient 

The frequency of each variant in the library relative to wildtype synonyms was determined at 

each time point and the slope of the log of this ratio versus generation time was used to 

calculate the raw selection coefficient.  This procedure sets the selection coefficient for the 

average wildtype synonym to neutral (s=0). Selection coefficients (s) were scaled so that the 

average stop codon in each environmental condition represented a null allele (s=-1). For the 

second replicate in standard conditions, we noted a small fitness defect (s≈-0.05) for wildtype 

synonyms at positions 679-709 relative to other positions. We do not understand the source of 

this behavior, and chose to normalize to wildtype synonyms from 1-678 for this condition and 

to exclude positions 679-709 from analyses that include the second replicate of standard 

conditions. We did not observe this behavior in any other condition. 

Yeast growth analysis 

Individual Hsp90 variants were generated and analyzed essentially as previously described [32]. 

Variants were generated by site directed mutagenesis and transformed into DBY288 cells. 

Selected transformed colonies were grown in liquid SRGal-W media to mid-log phase at 30°C, 

washed three times and grown in shutoff media (SD-W) at either 30C or 37C.  After sufficient 

time to stall the growth of control cells lacking a rescue copy of Hsp90 (~16 hours), cell density 

was monitored based on absorbance at 600 nm over time and fit to an exponential growth 

curve to quantify growth rate. 

Natural variation in Hsp90 sequence 

We analyzed sequence variation in a previously described alignment of Hsp90 protein 

sequences from 261 eukaryotic species that broadly span a billion years of evolutionary 

distance [67]. 
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