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Abstract 20 

In this paper, we present a functional spiking-neuron model of human working memory 21 

(WM). This model combines neural firing for encoding of information with activity-silent 22 

maintenance. While it used to be widely assumed that information in WM is maintained through 23 

persistent recurrent activity, recent studies have shown that information can be maintained without 24 

persistent firing; instead, information can be stored in activity-silent states. A candidate mechanism 25 

underlying this type of storage is short-term synaptic plasticity (STSP), by which the strength of 26 

connections between neurons rapidly changes to encode new information. To demonstrate that STSP 27 

can lead to functional behavior, we integrated STSP by means of calcium-mediated synaptic 28 

facilitation in a large-scale spiking-neuron model. The model simulated a recent study that measured 29 

behavior and EEG activity of participants in a delayed-response task. In this task, a visual grating had 30 

to be maintained in WM, and compared to a subsequent probe. It was demonstrated that WM contents 31 

could be decoded from the neural activity elicited by a task-irrelevant stimulus that was displayed 32 

during the activity-silent maintenance period. In support of our model, we show that it can perform 33 

this task, and that both its behavior as well as its neural representations correspond to the human data. 34 

We conclude that information in WM can be effectively maintained in activity-silent states by means 35 

of calcium-mediated STSP. 36 

 37 

Author Summary 38 

Mentally maintaining information for short periods of time in working memory is crucial for 39 

human adaptive behavior. It was recently shown that the human brain does not only store information 40 

through neural firing – as was widely believed – but also maintains information in activity-silent 41 

states. Here, we present a detailed neural model of how this could happen in our brain through short-42 

term synaptic plasticity: rapidly adapting the connection strengths between neurons in response to 43 

incoming information. By reactivating the adapted network, the stored information can be read out 44 

later. We show that our model can perform a working memory task as accurate as human participants 45 
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can, while using similar mental representations. We conclude that our model is a plausible and 46 

effective neural implementation of human working memory.  47 
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Introduction 48 

The ability to temporarily hold information in working memory (WM) is a crucial part of 49 

day-to-day life: it is what allows us to remember someone’s name at a cocktail party, what ingredients 50 

to buy at the supermarket for dinner, and which platform we need to go to when changing trains [1,2]. 51 

The maintenance of information in WM is often studied by means of a delayed-response task, in 52 

which a briefly presented memory item is followed by a delay period [3,4]. The delay period ends 53 

with the presentation of a probe that the participants need to compare to the memorized item. The 54 

maintenance of information during the delay period of such tasks was long thought to be mediated by 55 

continuously spiking neurons [5,6]. Although neural spiking is certainly important for WM, it was 56 

recently shown that spiking activity during delay periods can be intermittent or even absent [7–11]. 57 

This suggests that information may be stored instead using activity-silent mechanisms, for instance 58 

through transient connectivity patterns in the brain [2,12,13]. The spiking activity observed previously 59 

might reflect the initial phase necessary to initialize new synaptic weights, active maintenance of the 60 

focus of attention [14–17], or the read-out of information from working memory [13,18]. 61 

One of the candidate mechanisms for storing information in activity-silent states is short-term 62 

synaptic plasticity [STSP; 19], which entails rapid changes in the strength of connections between 63 

neurons to reflect new information being presented to the network [12]. Indeed, it was previously 64 

shown that synapses in areas implicated in WM can be facilitated [20,21], potentially as a 65 

consequence of residual calcium building up in presynaptic terminals [19,22]. In this way residual 66 

calcium effectively leaves a ‘synaptic trace’ of what is currently stored in WM. An elegant 67 

implementation of activity-silent storage by means of STSP was proposed by Mongillo and 68 

colleagues [12], who developed a model that can maintain information through calcium-mediated 69 

synaptic facilitation in recurrent networks of simulated spiking neurons. In response to a particular 70 

input to the network, a subset of the neurons fires, with the result that their outgoing connections are 71 

facilitated. Subsequently, stored information can be read out by applying a network-wide non-specific 72 

input that will be mostly subthreshold for non-facilitated neurons but leads to firing of facilitated 73 

neurons. 74 
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In the current study, we show that the mechanism proposed by Mongillo and colleagues [12] 75 

not only results in efficient and robust storage, but also in effective, functional human behavior. We 76 

integrated their calcium-mediated STSP mechanism in a large-scale spiking-neuron model that can 77 

perform a delayed-response task. To evaluate this model, we used a previously reported 78 

electroencephalography (EEG) dataset of a visual WM task, in which activity-silent memory states 79 

were measured [3]. To this end, Wolff and colleagues developed an innovative method to probe 80 

activity-silent brain states [3,23]. They showed that when the WM network is perturbed by a high-81 

contrast task-neutral stimulus during maintenance, ensuing neural activity reveals what is currently 82 

held in an activity-silent state. 83 

In their experiment [3], each trial started with the display of two randomly oriented gratings 84 

(Fig 1). After an 800 ms fixation period, this was followed by a cue indicating which of the two 85 

stimuli had to be maintained in memory. In order to examine the contents of WM during the 86 

subsequent delay part of the trial, an impulse stimulus was presented 900 ms later. At the end of each 87 

trial, participants had to indicate whether a probe stimulus was rotated clockwise or counter-clockwise 88 

with respect to the cued memory item. To track the contents of WM, a decoding analysis was applied 89 

to the EEG data [3]. It was shown that decoding accuracy quickly dropped to chance level after 90 

presentation of the memory items, but returned when the probe was presented. This indicates that 91 

between the presentation of the memory items and the probe, information is maintained in an activity-92 

silent (or at least quiescent) state. In addition, it was shown that it is possible to decode the orientation 93 

of the cued memory item from the EEG data in response to the impulse stimulus. Thus, when the WM 94 

Fig 1. The retro-cue delayed-response task. After the presentation of the memory items, a cue indicates 

which grating needs to be maintained in WM for judgement of the probe. Decodable EEG activity is 

elicited by the task-neutral impulse, which is presented between the cue and the probe. 

 

Cue Impulse 

200 ms 900 ms 100 ms

Memory items

250 ms 800 ms

Probe

400 ms 250 ms
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network was perturbed by a task-neutral stimulus, the ensuing signal allowed for decoding of the 95 

current contents of the activity-silent state. Interestingly, already after the presentation of the cue, only 96 

the orientation of the cued memory item could be decoded, indicating that the uncued stimulus was 97 

quickly forgotten, or actively cleared from memory. 98 

To test our model, we let it perform the same experiment – including the application of the 99 

impulse perturbation method – and compared both our model’s performance as well as its mental 100 

representations and underlying spiking behavior to the human data. 101 

 102 

Results 103 

Model Architecture 104 

In order to implement a functional spiking-neuron model of WM we used Nengo, a 105 

framework for building large-scale brain models that link single cell activity to demonstrative 106 

cognitive abilities [24–26]. In this framework, information is represented by vectors of real numbers 107 

that can be encoded and decoded from the collective spiking activity of a population of neurons. 108 

Connections between neural populations allow for both communication and transformation of 109 

information. Here, Nengo acts as a ‘neural compiler’: given a desired function, the connection weight 110 

matrix between populations is calculated so that this function is approximated. Besides pre-111 

calculating connection weights, plasticity can be introduced by making use of biologically plausible 112 

learning rules [27].  113 

To account for short-term synaptic plasticity, we integrated the calcium kinetics mechanism 114 

proposed by Mongillo and colleagues [12] in the model. Accordingly, synaptic efficiency between 115 

two neurons is dependent on two parameters: the amount of available resources to the presynaptic 116 

neuron (reflecting neurotransmitters) and the presynaptic calcium level. Each time a neuron fires, the 117 

amount of available resources decreases, reducing synaptic efficiency. As resources are quickly 118 

replenished (in the order of 200 ms), this results in short-term depression of firing rates. However, at 119 

the same time calcium flows into the presynaptic terminals, increasing synaptic efficiency. Because 120 
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calcium is much slower to return to its baseline levels than the resources, the synaptic connection is 121 

facilitated in the long-term, for about 1.5 seconds. 122 

This STSP mechanism was applied to the recurrent connections of two working memory 123 

populations in our model. As described above, the aim is to simulate a dataset of a delayed-response 124 

task in which the orientation of two memory items has to be compared to a probe ([3]; Fig 1). In this 125 

task, significant EEG lateralization was observed at posterior electrodes after presentation of the cue. 126 

We therefore hypothesized that distinct populations of neurons are responsible for processing visual 127 

stimuli presented in the left and right visual field. Correspondingly, the model was divided into two 128 

independent modules, each responsible for perceiving and representing one of the two incoming 129 

stimuli (Fig. 2).  130 

In order to demonstrate that our model is able to deal with real-world input, the stimuli from 131 

[3] were presented to the model. The sensory populations use two-dimensional Gabor filters as 132 

encoders [25,28,29]. As a result, the information present in the gratings – including their direction – is 133 

encoded into 24-dimensional vectors that are passed on to the memory populations. That is, the 134 

information encoded into the neurons is a compressed representation of the input image, using the top 135 

24 singular values as per SVD (see Methods for more details). The memory populations contain 136 

recurrent connections exhibiting STSP, in line with previous models of WM and anatomical areas 137 

Fig 2. Model architecture. The model is divided in two modules (only one is pictured) representing the 

two visual hemispheres. Stimuli enter via a sensory population that transforms the input into a vector. This 

vector is then sent to a recurrently connected memory population exhibiting STSP. The comparison 

population integrates information from both the sensory and memory ensembles, the result of which is 

interpreted by the decision population. 

 

Input Sensory

Memory

Comparison Decision

STSP
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associated with WM [e.g., 21,30,31]. Consequently, the first stimulus during a trial will drive 138 

facilitation of recurrent connections representing this stimulus. Neural activity resulting from 139 

subsequent stimuli will be affected by this change in connectivity. 140 

This enables implementing decision making as a match-filter process [8,13]. To decide on the 141 

orientation change of the probe compared to the relevant memory item, both the sensory and memory 142 

populations communicate the orientation of the gratings to a comparison population. When a probe is 143 

presented, the orientation received from the sensory population is driven entirely by the incoming 144 

stimulus. However, the orientation of the memory population is driven by a dynamic combination of 145 

activity resulting from the incoming stimulus and activity from facilitated connections as a result of 146 

the encoded memory item (i.e. hysteresis). In other words, the orientation represented by the memory 147 

population reflects the orientation of the probe ‘tuned’ by the orientation of the memory item stored in 148 

facilitated synapses, over time reverting to the new probe stimulus. To estimate the orientation 149 

difference between the memory item and the probe, the outgoing connections from the comparison 150 

layer subtract the two represented orientations. The resulting one-dimensional value reflects the 151 

signed difference between the orientation of the memory item and that of the probe stimulus. 152 

 153 

Neural representations 154 

The model simulated the experiment reported in [3] and illustrated in Fig 1. In the original 155 

paper, it was shown that decoding accuracy quickly dropped after presentation of the memory items 156 

but returned again during presentation of the probe – as would be expected for an activity-silent 157 

maintenance mechanism. Correspondingly, we examined the spiking activity and quality of 158 

representations of our model during the task, in order to validate that any maintenance of information 159 

in our model is realized in activity-silent states and not by persistent firing. 160 

Fig 3 shows the spiking activity of the neurons in the memory populations of both modules 161 

during one trial (A: cued module, B: uncued module), together with the mean amount of resources (x) 162 

and calcium (u) in these populations. In both modules, there is spiking activity during and shortly 163 

after presentation of the memory items, the impulse stimulus, and the probe, but not in between. The 164 
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spiking activity causes the amount of available resources and the calcium level to decrease and 165 

increase, respectively. The resulting short-term depression can directly be observed as the amount of 166 

spiking declines after the onset of a stimulus, although it periodically reactivates. 167 

In the original experiment, a retro-cue that indicated which of the two previously presented 168 

items needed to be memorized was presented 800 ms later, which was followed by significant 169 

Fig 3. Spiking behavior and representations. Top: spiking activity of the memory populations of the cued 

(left) and uncued (right) modules, including resource and calcium levels during a trial. Bottom: cosine 

similarity between the vector represented by the memory populations and ideal vectors, averaged over 100 

trials with 0° memory items and 42° probes with constant within-trial phase. 
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lateralization at posterior electrodes. To mimic this, the memory population of the cued module is 170 

briefly reactivated by means of a non-specific population wide input [cf. 12]. This not only re-171 

activates the memory item, but also helps to maintain the stimulus for a longer time period, as 172 

reactivation of facilitated synapses will lead to re-facilitation of those connections.  173 

Next, we analyzed the vectors represented by the memory populations of both the cued and 174 

uncued module. Fig 3 (bottom of each panel) shows the absolute cosine similarity between the vector 175 

represented by the memory populations and the ideal vectors of potential representations. To clearly 176 

illustrate the difference between the two modules, the mean cosine similarity was calculated over 100 177 

trials in which both modules were presented with the same memory item and probe, with a rotation of 178 

0° and 42°, respectively. Note that in the simulation of the real experiment, the cued and uncued 179 

modules are never presented with the same memory item. 180 

During presentation of the initial memory item of 0°, the vectors represented by both modules 181 

are very similar to the ideal 0° vector. In addition, the cosine similarity is inversely correlated with the 182 

angular difference between the represented vector of 0° and potential representations, indicating that 183 

similar stimuli are represented by similar vectors and firing patterns. As was the case in the original 184 

experiment, during the delay periods we could not decode what is being represented by the neural 185 

populations as there is no spiking activity – indicating activity-silent memory. However, in response 186 

to the non-specific reactivation of the cued model at 1050 ms, there was spiking activity that clearly 187 

represents the originally encoded vector. It therefore appears that neural connections representing the 188 

memory item were indeed facilitated, and that mainly those connections and neurons get activated in 189 

response to the non-specific reactivation elicited by the cue.  190 

One of the main results of the original study was that the EEG activity in response to the 191 

impulse stimulus contained the orientation of the cued memory item, and not of the uncued item [3]. 192 

This was taken to show that a stimulus is only maintained in an activity-silent state if it is still needed 193 

for the task. If not, it is quickly forgotten or actively cleared from the network. To see if our model 194 

has both the same storage and forgetting capabilities, we examined the vectors represented by the 195 

memory populations of the cued and uncued module during presentation of the impulse (Fig 4; cf. Fig 196 
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3, 2150-2300 ms). In both modules, the memory populations start representing the impulse stimulus. 197 

When the facilitated recurrent connections of the cued and uncued items become activated, both 198 

modules also represent the original 0° memory item. However, only for the cued module does the 199 

represented vector become (very briefly) more similar to the ideal memory item than to the impulse 200 

vector, offering a potential explanation of why only the cued, and not the uncued memory item, could 201 

be decoded after the impulse [3].  202 

To summarize: in both the cued and the uncued modules, STSP encodes the initial stimulus. 203 

In the cued model, facilitated connections are re-facilitated at the moment of cue, counteracting the 204 

gradual calcium decay that goes on in both modules (Fig 3). As a result, once the impulse arrives, 205 

only the cued model has sufficiently facilitated connections specific to the memory item to generate a 206 

response larger than the impulse representation (Fig 4). Note that the uncued memory population was 207 

not actively cleared, but that the calcium levels of the facilitated synapses simply decayed away as it 208 

was not reactivated at the moment of the cue. 209 
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Fig 4. Cued and uncued memory representations in response to the impulse stimulus. 
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response. The memory item presented before the impulse had a rotation of 0°. 
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Behavior 211 

In order to see if our model not only matches neural activity, but also gives rise to functional 212 

behavior similar to human participants, we evaluated its performance. First, to see if the information 213 

maintained in the facilitated synapses can be used to produce a relevant response, we inspected the 214 

value represented by the decision population in the cued module. This population receives the angular 215 

difference between the memory item and the probe from the comparison population, and thus 216 

represents a measure of difference between the orientations decoded from the sensory and memory 217 

populations. Fig 5 shows the represented value for the possible orientation differences between 218 

memory items and probes, averaged over all simulated trials. First, it takes a moment for the probe 219 

information to reach this population. Second, the facilitated synapses become activated, reactivating 220 

the memory item, thereby leading to different representations in the sensory and memory populations, 221 

and thus to a difference in the decision population. Finally, the probe starts overriding the memory 222 

representation, reducing the difference until both populations represent the probe and the difference 223 

has disappeared. Overall, both the sign and magnitude of the orientation difference are clearly 224 

represented in the decision signal. 225 

To translate this decision signal into a response, we integrated the decision activation after the 226 

presentation of the probe. Integrating the evidence corresponding to two distinct decisions has been 227 
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widely used before in accumulator models of perceptual decision making [e.g., 32]. We did not model 228 

motor processes, but simply interpreted a positive result as a clockwise response and a negative result 229 

as a counter-clockwise response. Fig 6 shows that the model’s proportion of clockwise responses 230 

across orientation differences follows a similar S-shape as the human responses. 231 

 232 

Discussion 233 

We developed a functional spiking-neuron model to explain recent theories of activity-silent 234 

human working memory. Whereas incoming information is encoded through spiking, maintenance of 235 

information was realized by short-term synaptic plasticity based on calcium kinetics [12]. This 236 

mechanism can maintain information effectively for short periods of time without requiring neural 237 

spiking. In support of the model, we simulated a recent EEG study that applied an innovative impulse 238 

perturbation method [3] to reveal the content of activity-silent WM. Both the model’s choice 239 

behavior, as well as its mental representations corresponded well to the human data. This 240 

demonstrates that calcium-mediated STSP not just results in robust maintenance of arbitrary stimuli, 241 

as shown earlier [12], but can also simulate effective human behavior based on real-world stimuli. 242 

With regard to localization, the model was used to simulate data from Wolff and colleagues 243 

[3], who reported posterior EEG effects. However, WM is often attributed to prefrontal areas [e.g., 244 

14,46]. Activity-silent maintenance has likewise been found in both posterior [3,8,47] and frontal 245 
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[18,44] regions. It appears that especially sensory working memory should be attributed to the 246 

relevant sensory systems  [47,48], instead of to a centralized system. While the exact function of the 247 

different regions implicated in WM might differ, the neural substrate and mechanisms might be 248 

similar, and could potentially all be explained by the proposed STSP mechanism. 249 

A number of design choices warrant discussion. First, the employed neurons do not have a 250 

baseline firing rate, as is evident by the lack of any spiking activity during the delay-period of a trial 251 

(Fig 3). In order to clearly demonstrate activity-silent maintenance of information, we defined the 252 

tuning curves of the sensory and memory neurons so that they only fire when presented with input. 253 

However, background firing could simply be added to the model without affecting the functioning of 254 

our model, as has been done in the past ([e.g., 12,33]; see also below). Second, the number of neurons 255 

per population and the number of dimensions used to represent the stimuli were set to reflect human 256 

behavior. In general, adding more neurons will improve the representation of vectors and the 257 

approximation of the functions computed over those. Increasing the number of dimensions expands 258 

what can represented [25,34,35]. Thus, changing the number of neurons and dimensions will change 259 

the quality of the representations and will influence the number of errors made during the task. Here, 260 

we estimated parameters to roughly match human performance; we do not have a principled reason 261 

either for using 1000 or 1500 neurons per population or 24 dimensions. Finally, information was 262 

represented using Nengo’s default vector representation, which provides an intuitive method to link 263 

neural spiking to representation and function [25]. However, representing information differently 264 

should not affect the basic functioning of the model as all connections and the STSP mechanism are 265 

implemented at the neural level. 266 

 267 

Representations in WM 268 

As discussed above, in the current model information is maintained without any intermittent 269 

firing (Fig 3). This directly contradicts the original analysis of the dataset [3], where the represented 270 

stimulus could be decoded for some time after its offset. In addition to full activity-silent 271 

maintenance, Mongillo and colleagues [12] observed a bi-stable regime in their model: with added 272 
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background noise, neurons with facilitated connections reactivated spontaneously. Consequently, due 273 

to the dynamics of u and x, the reactivated neurons will be briefly depressed before being facilitated 274 

again, leading again to reactivation. In this regime, the time between subsequent reactivations is on 275 

the scale of tD – the time constant of the available resources – as it is controlled by the recovery from 276 

the synaptic depression. A brief exploratory analysis shows that such a bi-stable regime can also be 277 

added to our model, as is illustrated in Fig 7. This provides the model with an additional method of 278 

maintaining information, possibly over a longer period of time. It also indicates a potential 279 

explanation for the delay-activity observed in the original analysis [3]: non-specific background or 280 

recurrent input after presentation of a stimulus might temporarily have pushed the network into this 281 

regime. 282 

A functional role for delay activity in WM might be tracking the focus of attention [15–283 

17,36]. Wolff and colleagues [3] performed a second experiment, similar to the one discussed in this 284 

paper. Again, two memory items were presented at the start of the trial. However, in this version both 285 

were eventually probed, and participants were aware of which of the two items would be probed first. 286 

Before the first probe, the prioritized item could be much better and longer decoded than the un-287 

prioritized item, a pattern that reversed after the first probe. This could be simulated with our model 288 

by giving the prioritized item a persistent firing state as in Figure 7, while the un-prioritized item 289 
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Fig 7. Bi-stable maintenance. Background noise puts the model in a bi-stable regime 

where facilitated connections reactivate spontaneously on the time scale of tD. 
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might be completely maintained in an activity-silent state as in Figure 3. This also provides a 290 

functional explanation for psychological theories that state that a single focal WM item can be used 291 

without any time cost [16,37–39], while other items in working memory incur a cost estimated at 200 292 

ms [15,40–43] – the latter potentially being due to the costs of reactivating the information from a 293 

non-active state. 294 

In our model, we have assumed that the coding of the information itself is static, that is, the 295 

same facilitated connections are used repeatedly. However, there has recently been increasing 296 

evidence for a dynamic coding framework, which states that information maintained in a WM 297 

network traverses a highly dynamic path through neural activation [44]. It is not yet clear how this 298 

relates to our model, although a possible clue might come from a model by Singh and Eliasmith [45]. 299 

Neural populations in their model represent two dimensions, where one dimension represents time 300 

and the other a stimulus. Their model elegantly captures a wide variety of observed neural responses 301 

during a WM task; the inclusion of time as a dimension represented by the neurons in the network 302 

naturally leads to a dynamic firing pattern over time. 303 

 304 

Related Models 305 

Recently, Myers and colleagues [8] described a related non-spiking neural population model 306 

with similar functionality as the current model, although they did not match human data directly. 307 

Their model consisted of a three-layer architecture: a stimulus layer, a template layer, and a decision 308 

layer not unlike the sensory, memory, and comparison population in our model. A critical difference 309 

between the two models is that their decision layer only receives input from the template layer, while 310 

in our case it receives input from both the sensory and memory populations. The template layer in 311 

Myers’ model acts like a match-filter: it is able to maintain a stimulus orientation, and when presented 312 

with a subsequent probe orientation convey the signed difference between the two to the decision 313 

layer. The memory population in our model can likewise be viewed as a match filter. After onset of 314 

the probe, the represented orientation shifts to the orientation of the probe from the direction of the 315 

orientation of the memory item. This shift in itself indicates a degree of difference between the two 316 
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orientations, including the sign of this difference. One could potentially measure this with a neural 317 

population that computes a time derivative with respect to the orientation [49]. However, exploratory 318 

analysis indicated this to be less robust than our current method.  319 

Another closely related model was proposed by Barak and colleagues [18]. Their model 320 

consisted of a sensory and memory population. After presentation of a stimulus, connections from the 321 

sensory population to the memory population will be facilitated. Subsequently, during the delay 322 

period, an increasing uniform current is applied to the network which activates the neurons in the 323 

memory population that have facilitated incoming connections. During presentation of a subsequent 324 

probe, mutual inhibition between the sensory and memory population will guide decision making. 325 

This model explains observed ramping up of activity during anticipation of a probe. However, it is not 326 

clear whether the gradually increasing external current is essential to extract the information 327 

maintained in the facilitated connections in the memory representation. It can be expected that in the 328 

brain bottom-up stimulus driven activity might also be able to activate the information stored in 329 

connections, for instance when the timing of the probe is unknown. 330 

 331 

Conclusion 332 

To conclude, our model shows that maintenance of information in WM by means of calcium-333 

mediated STSP can lead to functional behavior. It is broadly consistent with current theories 334 

regarding activity-silent storage in human WM and is able to show a variety of effects observed 335 

during a visual delayed-response task. Furthermore, it provides a solid basis for exploring a model 336 

that incorporates psychological theories on the focus of attention [15–17,37] by combining activity-337 

silent maintenance with storage through persistent firing.  338 

 339 

Methods 340 

Model 341 

Nengo. The model was implemented using Nengo, a Python library for simulating large-scale 342 

neural models with a clear link between spiking activity and representation [24–26]. Nengo makes use 343 
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of a theoretical framework called the Neural Engineering Framework [NEF; 50]. Information is 344 

represented as a vector of real numbers that can be encoded and decoded from the collective spiking 345 

activity of populations of neurons. Encoding is mediated by giving each neuron a non-linear tuning 346 

curve that characterizes their general response to the incoming signal. Decoding is a linear process: 347 

the activity of each neuron in a population is weighted by a constant and summed over time in order 348 

to decode the represented vector. Connections between populations allow for the communication and 349 

transformation of the information. Here the NEF calculates the connection weight matrix between 350 

populations to approximate a desired function. In addition, connection weights can be learned and 351 

adapted through several biologically plausible learning rules, both supervised and unsupervised [27]. 352 

Short-term synaptic plasticity. Short-term synaptic plasticity was implemented in Nengo 353 

following the calcium kinetics mechanism of Mongillo and colleagues ([12]; available at 354 

https://github.com/Matthijspals/STSP). Because spiking leaky integrate-and-fire (LIF) neurons are 355 

computationally efficient while retaining a degree of biological plausibility, we added this mechanism 356 

to the existing Nengo implementation of LIF neurons. Synaptic efficiency is based on two parameters: 357 

the amount of available resources to the presynaptic neuron (x, normalised between 0 and 1) and the 358 

fraction of resources used each time a neuron fires (u), reflecting the residual presynaptic calcium 359 

level. When a neuron fires, its resources x are decreased by ux, mimicking neurotransmitter depletion. 360 

At the same time, its calcium level u is increased, mimicking calcium influx into the presynaptic 361 

terminal. Both u and x relax back to baseline with time constants tD (0.2s) and tF (1.5s), respectively. 362 

This results in a system where after a neuron fires its outgoing connections will be depressed on the 363 

time scale of tD and facilitated on the timescale of tF as illustrated in Fig 8.  364 

For all LIF neurons to which we apply STSP, every time step u and x are calculated according 365 

to equation 1.1 and 1.2, respectively: 366 

   (1.1) 367 

   (1.2) 368 

dx
dt

= 1- x
τ D
-uxδ (t - tsp )

du
dt

= U − u
τ F

+U (1− u)δ (t − tsp )
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where x represents the available resources, u the residual calcium level, tD the depressing time 369 

constant,  𝛿 the Dirac delta function, t the simulation time and tsp the time of a presynaptic spike. In 370 

equation 1.2, tF represents the facilitating time constant and U the calcium baseline level. Outgoing 371 

connection weights of neurons implementing STSP are determined by both their initial connection 372 

weight and their current synaptic efficiency. Initial connections weights are calculated by the NEF, 373 

while synaptic efficiency is set to the product of the current value of u and x of the presynaptic 374 

neuron, normalised by their baseline value: 375 

   (1.3) 376 

where wij represents the connection weight between neuron i and j and wij
0 the initial connection 377 

weight. 378 

Architecture. The overall architecture of the model is shown in Fig 2 (the model is available 379 

for download at https://github.com/Matthijspals/STSP). The sensory and decision populations consist 380 

of 1000 LIF neurons, the memory and comparison populations of 1500 LIF neurons. Biologically 381 

wij =
xu
U
wij
0

Pr
es

yn
ap

tic
sp

ik
es

Sy
na

pt
ic

va
ria

bl
es

Po
st

sy
na

pt
ic

vo
lta

ge
 (m

V)

1.0

0.0

0.5

0.4

0.0

0.2

0.0 0.70.60.50.40.30.20.1
Time (s)

Calcium (u)
Resources (x)

Fig 8. STSP mechanism. Top: spikes in presynaptic neuron. Middle: calcium (u) and resources (x) of 

presynaptic neuron, u increases and x decreases when the presynaptic neuron spikes. Bottom: resulting 

postsynaptic voltage; note the synaptic depression at the end of the first spike train and synaptic facilitation 

at the later spike. Nengo reproduction of Fig 1A in [12]. 
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relevant parameters were left to default, which are consistent with neocortical pyramidal cells [24]. 382 

Parameters U, tD and tF were set the same as in [12]. tF  >> tD and tF on the order of 1s are consistent 383 

with patch-clamp recordings of facilitated excitatory connections in the ferret prefrontal cortex [21]. 384 

To describe the relationship between neural representations and real-world stimuli it can be 385 

assumed that the brain makes use of a statistical model, not unlikely a parametrized model, where a 386 

small number of parameters capture the overall shape of the data [25]. To find such a model we need 387 

a set of basis functions that will be good at describing both the incoming images and the encoders of 388 

the neurons receiving these images. These basis functions can be found by applying singular value 389 

decomposition (SVD) to a matrix containing both the images and the encoders. The images consisted 390 

of the stimuli in the experiment, while the encoders were two-dimensional Gabor filters, defined by a 391 

sinusoidal plane wave multiplied by a Gaussian function. Gabor filters have previously been shown to 392 

accurately describe the response profile of simple cells in the cat [29] and macaque [28] striate cortex 393 

and seem to underlie early stages of visual processing. Thus, the SVD mediates a biologically 394 

plausible method that results in stimuli being represented by 24-dimensional vectors.  395 

Next, we specified for each possible vector – representing a particular grating – what the 396 

corresponding decoded orientation should be. This information was used to define a function that 397 

takes a 24-dimensional vector as input and returns the corresponding orientation. The NEF yields the 398 

connection matrix at the neural level that approximates this function for the connections from the 399 

sensory and memory populations to the comparison populations. Stimulus orientations were not 400 

directly decoded as the angle q, but rather by the sine and cosine of q. Decoding sine and cosine of q 401 

is robust, as the ratio between the two determines the stimulus orientation independent of the 402 

amplitude, which is not the case when decoding q directly. Furthermore, the symmetry of the sine 403 

functions provides a natural solution for the symmetric nature of the stimuli, as in the experiment a 404 

stimulus with an orientation of -90° contains exactly the same pixels as a stimulus with an orientation 405 

of 90° and therefore results in the same neural activity.  406 

 407 
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Experimental Simulation 408 

Stimuli. Input to the model consisted of images of 128 by 128 pixels. Stimuli were generated 409 

using Psychopy, an open-source Python application [51]. Stimuli consisted of a circle on a grey 410 

background (RGB = 128, 128, 128). Memory items and probe stimuli were sine-wave gratings with a 411 

diameter of 128 pixels and spatial frequency of 0.034 cycles per pixel. The phase was randomized 412 

within and across trial. For each trial, the orientation of the memory items was randomly selected 413 

from a uniform distribution of orientations. The angular differences between the memory item and the 414 

corresponding probe stimulus were uniformly distributed across seven angle differences (3°, 7°, 12°, 415 

18°, 25°, 33°, 42°), both clockwise and counter-clockwise. The impulse stimulus consisted of a 416 

‘bull’s-eye’ stimulus of the same size and spatial frequency as the memory items. It was presented at 417 

twice the contrast compared to the grating stimuli, to each module.  418 

Procedure. The model completed the retro-cue delayed-response task from [3]. Each trial 419 

started with the presentation of two memory items to the sensory population of the corresponding 420 

modules for 250 ms. In the original experiment, a retro-cue that indicated which of the two previously 421 

presented items needed to be memorized was presented 800 ms later, which was followed by 422 

significant lateralization at posterior electrodes. To mimic this, the memory population of the cued 423 

module is briefly reactivated by means of a non-specific population wide input [cf. 12]. After another 424 

fixation period, the impulse stimulus was presented to both sensory populations for 100 ms, 1100 ms 425 

after the onset of the cue. After another delay of 400 ms, the probe was presented to the sensory 426 

populations for 250 ms. To simulate different participants in the experiment, every 1344 trials the 427 

random seed was reset and new random Gabor filters were generated to use as encoders for the 428 

sensory populations. In total the model performed 30 sets of 1344 trials, reflecting 30 participants in 429 

the original experiment. 430 

 431 
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