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SUMMARY 

DNA methylation is a key epigenetic modification in human development and disease, yet there is 
limited understanding of its highly coordinated regulation. Here, we identified 818 genes that 
influence DNA methylation patterns in blood using large-scale population genomics data. By 
employing genetic instruments as causal anchors, we identified directed associations between gene 
expression and distant DNA methylation levels, whilst ensuring specificity of the associations by 
correcting for linkage disequilibrium and pleiotropy among neighboring genes. We found that DNA 
methylation patterns are commonly shaped by transcription factors that consistently increase or 
decrease DNA methylation levels. However, we also observed genes encoding proteins without DNA 
binding activity with widespread effects on DNA methylation (e.g. NFKBIE, CDCA7(L) and NLRC5) and 
we suggest plausible mechanisms underlying these findings. Many of the reported genes were 
unknown to influence DNA methylation, resulting in a comprehensive resource providing insights in 
the principles underlying epigenetic regulation.  
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INTRODUCTION 

The epigenome is fundamental to development and cell differentiation. Dysregulation of the 
epigenome is a hallmark of many diseases, ranging from rare developmental disorders to common 
complex diseases and aging (Bjornsson, 2015; Dor and Cedar, 2018; Sen et al., 2016). The epigenome 
is highly dynamic and is extensively modified and remodeled in response to external and internal 
stimuli (Zentner and Henikoff, 2013). However, the networks underlying these highly coordinated 
epigenetic modifications remain to be fully elucidated. Hence, the systematic identification of genes 
that are involved in epigenetic regulation and the determination of their respective target sites will 
be a key element towards an in-depth understanding of epigenomic (dys)regulation.  
    DNA methylation is a key component of the epigenome that controls, stabilizes and/or marks the 
transcriptional potential of a genomic region (Schübeler, 2015). It involves the addition of a methyl 
group onto cytosines, mainly at CpG dinucleotides. Although considerable research has been 
devoted to studying the enzymes that write, maintain and erase DNA methylation (i.e., DNMTs and 
TETs) (Medvedeva et al., 2015), less is known about factors that are otherwise involved in the 
regulation of DNA methylation. These may include proteins and non-coding RNAs that regulate, 
interact with or recruit the DNA methylation machinery (Shen and Laird, 2013). Transcription 
factors, for example, do not only act indirectly by regulating the transcription of epigenetic genes, 
but have also been shown to control the DNA methylation state of their target sites by recruiting or 
repelling DNMT or TET proteins (Blattler and Farnham, 2013; Marchal and Miotto, 2015). 
Experimental evidence for genes involved in the regulation of DNA methylation has been mainly 
obtained from in vitro experiments focusing on single genes or is based on animal models (Daxinger 
et al., 2013; Marchal and Miotto, 2015; Stadler et al., 2011; Wang et al., 2015). A comprehensive 
genome-wide resource of genes affecting DNA methylation in humans is currently lacking.   
    We recently developed a method to identify directed and specific gene-gene interactions in 
population omics data (Luijk et al., 2018). Instead of using measured gene expression, this method 
builds upon previous work in which genetic variants were utilized as causal anchors for gene 
expression (Gamazon et al., 2015; Gusev et al., 2016). This allows for the identification of directed 
and unconfounded associations within observational data. Here, we adapt this method to establish a 
resource of 818 genes that influence DNA methylation using genomic, methylomic and 
transcriptomic data in up to 4,056 individuals (Bonder et al., 2016; Zhernakova et al., 2016). We 
show that this resource reveals insight into the mechanisms underlying epigenetic regulation.  

 
RESULTS 

Establishing a resource of genes that influence DNA methylation 
     In order to identify genes that influence DNA methylation, we employed an approach that 
consists of two parts. First, we identified predictive genetic variants for the expression of each gene 
in our data, which we aggregated into single predictive scores termed genetic instruments (GIs) 
(Luijk et al., 2018). Second, we used these GIs as causal anchors to establish directed effects of gene 
expression on genome-wide DNA methylation levels while ensuring that these associations were 
specific by accounting for linkage disequilibrium (LD) and pleiotropy among neighboring GIs (see 
figure 1 for an overview of the successive steps in the analysis).  
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   To construct the genetic instruments, we used data on 3,357 unrelated individuals with available 
genotype and RNAseq data derived from whole-blood. We focused the analysis on 11,830 expressed 
genes (median counts per million > 1). In the training set (1/3 of the data, 1,119 individuals) we 
applied penalized regression (LASSO) to the expression of each gene to obtain a GI that consists of 1 
or more SNPs aggregated into a single score that is predictive of expression (Tibshirani, 1996). Here, 
we corrected the expression data for age, sex, biobank, blood cell composition and five principal 
components. We then assessed the predictive ability of the constructed GIs in a separate test set of 
2,238 individuals by predicting their gene expression values using these GIs. Of the 11,830 tested 
GIs, 8,644 were sufficiently predictive of expression levels in the test set to serve as valid genetic 
instruments (F-statistic > 10, median R2 = 0.04, Table S1) (Staiger and Stock, 1997). 
     Next, we tested for an association between all 8,644 predictive GIs and genome-wide DNA 
methylation levels at 428,126 autosomal CpG-sites in trans (>10Mb distance from the tested gene), 
using genotype and DNA methylation data (Illumina 450k array) derived from whole blood of 4,056 
unrelated individuals (3,251 samples overlap with RNAseq data). These associations were computed 
using linear regression, while correcting for age, sex, blood cell composition, biobank, five principal 
components, and corrected for bias and inflation in the test-statistics (van Iterson et al., 2017). 
These analyses resulted in directed associations between 2,223 genes and 5,284 CpGs (Bonferroni 
correction, P < 1.4 x 10-11; Table S2). Although directed, the associations resulting from this analysis 
may not be specific for a single gene as linkage disequilibrium (LD) and/or pleiotropy may result in 
GIs that are predictive of multiple neighboring genes (Luijk et al., 2018). We therefore adjusted all 
significant GI-CpG pairs for all neighboring GIs (<1Mb) to account for correlation induced by 
LD/pleiotropy among neighboring genes in order to identify the specific gene in a region driving the 
association. Next, we removed genes with potential residual pleiotropic effects on the expression of 
neighboring significant genes (F > 5) (together these two steps led to the removal of 1,387 genes and 
2,844 CpGs; Table S3). Finally, we excluded effects of long-range pleiotropy and LD (by rerunning the 
analysis for CpGs influenced by multiple genes from the same chromosome, including all these genes 
in the model; removing 6 genes, 13 CpGs), and residual effects of white blood cell composition (by 
correcting for genetic variants known to be associated with WBC; removing 12 genes, 43 CpGs, 
figure S1) (Orrù et al., 2013; Roederer et al., 2015). The validity of these results was corroborated by 
a comparison with previous trans-methylation QTL studies in blood. Although not designed to infer 
genes that are specifically responsible for associations, such studies are expected to produce partly 
overlapping outcomes. We found that 692 target CpGs identified in our study were reported in two 
previous independent trans-meQTL studies (P < 1 x 10-40) (Gaunt et al., 2016; Lemire et al., 2015). 
For the great majority of overlapping CpGs, the corresponding GI and trans-meQTLs SNP were in 
close proximity (Table S4-6). 
    The final result of our step-wise  analysis was a collection of 818 genes with directed and specific 
associations with DNA methylation levels of 2,384 unique target CpGs in trans (Bonferroni 
correction, P < 1.4 x 10-11; (Table S7).  
 
Function of genes that influence DNA methylation in trans 
As shown in figure 2, a considerable fraction (N = 308) of the identified genes influenced multiple 
CpGs in trans (Table S8). We observed that for these genes, the direction of effect was often skewed 
towards either increased or decreased methylation levels at the target CpGs (Figure 2a). For 30 out 
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of 37 genes that were associated with at least 10 CpGs, the direction of effect was significantly 
skewed towards increased (19 genes) or decreased (11 genes) methylation levels respectively 
(binomial test, FDR < 0.05, Table S9). We first considered two previously hypothesized molecular 
roles of the identified genes: transcription factors (Lambert et al., 2018) and core epigenetic 
factors (Medvedeva et al., 2015), which we will now consider in more detail.  

Transcription factors 
    We found that the resource (818 genes) was enriched for transcription factors (N = 127, odds ratio 
= 2.74, P = 3.1 x 10-18) using a manually curated list of transcription factors (TFs) (Lambert et al., 
2018). As shown in figure 2c this enrichment was driven by TFs that were associated with multiple 
target CpGs and there was a stronger TF enrichment with an increasing number of target CpGs. In 
total, 80 (63%) of the significant TFs in our data influenced more than 1 CpG-site. The direction of 
effect of the TFs on their target CpGs was either skewed towards increased or decreased 
methylation levels respectively (of the 23 TFs associated with at least 10 CpGs, 6 were significantly 
associated with lower methylation levels and 14 with higher methylation levels). Transcription 
factors influencing the most CpGs included NFKB1, a key immune regulator (142 target CpGs), 
ZBTB38, a methyl-binding TF (49 target CpGs) and ZNF202, a zinc finger protein involved in lipid 
metabolism (37 target CpGs) (Filion et al., 2006; Hayden et al., 2006; Wagner et al., 2000). We found 
that 100 out of the 127 (79%) transcription factors belonged to the C2H2 Zinc Finger family (odds 
ratio = 3.07, P = 5.2 x 10-7), of which the majority (N = 70) contains a KRAB-domain. In line with the 
enrichment for TFs and Zinc Fingers, we found that the gene set was overrepresented in the GO 
terms Nucleic Acid binding (N = 99, P = 1.1 x 10-14), DNA Binding (N = 114, P = 4.7 x 10-9), Metal Ion 
binding (N = 146, P = 1.4 x 10-8) and transcription factor activity (N = 73, P = 4.4 x 10-8) (Table S10).  

Core epigenetic factors 
    Next, we compared our findings with a manually curated database of core epigenetic factors 
(EpiFactors) (Medvedeva et al., 2015). This database is mainly focused on the core enzymes that 
directly write/maintain/establish epigenetic marks, but it does also include a few ‘borderline cases’ 
such as TFs that interact with epigenetic proteins. We found that 36 of the identified genes 
overlapped with genes in this database, which did not constitute an enrichment (odds ratio = 1.02, P 
> 0.05). Interestingly, however, the majority of the 36 genes encode proteins that target histone 
proteins (26 out of 36). In addition, 7 genes were annotated as transcription factors in the manually 
curated TF catalog (Lambert et al., 2018). The core epigenetic factor associated with most target 
CpGs include transcription factor IKZF1 (positively associated with methylation at 17 target CpGs), 
histone demethylase KDM5B (positively associated with methylation at 7 target CpGs), and BRD3, 
which recognizes acetylated lysine residues on histones (positively associated with methylation at 5 
target CpGs). The significant core epigenetic factors also included the DNA methyltransferase 
DNMT3A, which was associated with increased methylation at five target CpGs. Further exploration 
of potential DNMT3A targets indicated that the test-statistics of DNMT3A were skewed towards 
increased DNA methylation levels, compatible with widespread but small effects (figure S2A). Of 
note, of the other main DNA methylation modifiers (DNMT1, DNMT3B, TET1,2,3) we had a 
sufficiently predictive GI for DNMT1 only (F = 90, R2 = 0.04). However, we did not find significant 
associations for this gene (figure S2B). 
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Other mechanisms underlying regulation of DNA methylation 
    Finally, the majority of the identified genes (N = 662), did not belong to the two a priori categories 
TFs and core epigenetic factors despite including genes that were associated with multiple CpG-sites 
(figure 2). A small fraction of these genes encodes proteins with DNA-binding properties (N = 24). 
BEND3 for example, is a DNA-binding protein that was associated with increased methylation at 15 
CpG-sites. Previous research has shown that BEND3 represses transcription by attracting the 
MBD3/NuRD complex that initiates histone deacetylation (Saksouk et al., 2014). 
    A plausible explanation for the identification of non-DNA binding proteins is that they affect DNA 
methylation indirectly through interaction with epigenetic proteins. This is illustrated by several 
examples of genes that encode non-DNA-binding proteins.  
 
NFKBIE 
The NFKBIE gene encodes IκBε which is an inhibitor of NFκB, a transcription factor that plays a 
fundamental role in the regulation of the immune response (Bonizzi and Karin, 2004; Liu et al., 
2017). IκBε binds to components of NFκB and retains it in the cytoplasm, thereby preventing it from 
activating genes in the nucleus. Consistent with the previous interpretation of a trans-methylation 
QTL effect (Bonder et al., 2016), we found that increased expression of NFKB1 was associated with 
genome-wide loss of DNA methylation. In contrast, we found that increased expression of NFKBIE 
resulted in higher methylation levels at 76 CpG-sites across the genome. In line with its role as NFκB 
inhibitor, a substantial number of its target CpGs (28) overlap with NFκB’s target CpGs and show 
opposite effects (figure 3a). 
 
NLRC5 
Increased expression of NLRC5 was associated with decreased methylation levels at 43 CpG-sites 
that were all located in either the classical or the extended MHC-region (Mungall et al., 2003). 
NLRC5 is a known activator of MHC class I genes, and in line with this we found that the methylation 
levels of most target CpGs (N = 36) were negatively associated with the expression levels of one or 
more neighboring MHC-genes (Figure 3b/Table S11-12). Furthermore, the GI corresponding to 
NLRC5 was positively associated with 16 of these genes. NLRC5 itself does not contain a DNA-binding 
domain, instead it has been shown to affect transcription by cooperating with a multi-protein 
complex that is assembled on the MHC class I promoter (Kobayashi and van den Elsen, 2012). 
Interestingly, NLRC5 acts as a platform for enzymes that open chromatin by histone acetylation 
and/or demethylation of histone H3, indicating that decreased DNA methylation may be a 
consequence of altered chromatin state. 
 
SENP7 
The gene with the largest number of detected target CpGs was SENP7. It was associated  
with decreased methylation levels at 189 target CpGs, and with increased methylation levels at 19 
target CpGs. The majority (86%) of the target CpGs were located on the q-arm of chromosome 19. 
We found that for most of these CpGs (92%) their DNA methylation levels were associated with the 
expression levels of one or more nearby zinc fingers (table S13-14), consistent with previous gene 
network analyses (Luijk et al., 2018). Although SENP7 has no DNA-binding properties, previous 
research has shown that it exerts its effect through deSUMOylation of the chromatin repressor KAP1 
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(Garvin et al., 2013). KAP1 can act as a scaffold for various heterochromatin-inducing factors and 
there is emerging evidence that KAP1 is directly involved in regulating DNA methylation (Quenneville 
et al., 2011; Zuo et al., 2012). SENP7 is therefore likely to affect DNA methylation through its 
interaction with KAP1.  
 
CDCA7 
Mutations in CDCA7 have been shown to cause ICF, a rare primary immunodeficiency characterized 
by epigenetic abnormalities (Thijssen et al., 2015). Previous research showed that CDCA7-mutated 
ICF patients show decreased DNA methylation levels at pericentromeric repeats and 
heterochromatin regions and, similarly, CDCA7 depletion in mouse embryonic fibroblasts leads to 
decreased DNA methylation at centromeric repeats (Thijssen et al., 2015; Velasco et al., 2018). In 
line with this we found that increased expression of CDCA7 is associated with increased methylation 
levels at 79 CpG-sites that were distributed across chromosomes (figure 4a) and were enriched in 
low-activity regions (e.g. quiescent states; figure 4b) and repeat sequences (odds ratio 2.13, P = 
0.006). In addition, a volcano plot showed that the test-statistics of CDCA7 were highly skewed 
towards positive effects, suggesting that CDCA7 has widespread effects on DNA methylation (figure 
S3a).  
 
CDCA7L 

CDCA7L is a paralog of CDCA7 and, similarly, its increased expression was associated with a genome-
wide increase of DNA methylation levels (47 CpG-sites; figure 4a/figure S3b). CDCA7L’s target CpGs 
did not overlap with those of CDCA7, however, they did show a similar genomic distribution and 
were enriched in inactive regions (Figure 4c), although enrichment at repeat regions was reduced 
(OR = 1.59, P > 0.05). Interestingly, previous research has shown that the risk allele of the genetic 
variant most highly associated with multiple myeloma (rs4487645) was associated with increased 
CDCA7L expression (Li et al., 2016). Our GI for CDCA7L consisted of 5 SNPs, of which one 
(rs17361667) was in strong LD (r2 = 0.7) with the risk variant rs4487645. If the risk variant indeed 
exerts its pathogenic effect through an effect on CDCA7L expression, CDCA7L’s effects on DNA 
methylation might be involved in the pathogenesis of multiple myeloma. Moreover, we found that 
our multi-SNP GI was a stronger predictor of CDCA7L expression (F = 171) as compared with 
rs4487645 (F = 60), and may therefore be useful in gaining more insight into the role of CDCA7L in 
multiple myeloma. 
 
DISCUSSION 

Our genome-wide analysis, utilizing genetic instruments for gene expression, identified 818 genes 
that influence distant DNA methylation levels in blood and as such provides a novel resource that 
reveals insights into the principles of epigenetic regulation. 
We found that DNA methylation levels are commonly influenced by transcription factors. The 
direction of effect is often consistent for each TF, and can either be skewed towards increased or 
decreased methylation levels at the target CpGs. In line with these findings, previous studies suggest 
that TFs can regulate the acquisition and/or loss of DNA methylation at their binding sites (Blattler 
and Farnham, 2013; Marchal and Miotto, 2015; Zhu et al., 2016). For example, several TFs have been 
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shown to recruit DNMTs to their binding sites, thereby causing de novo DNA methylation (Brenner et 
al., 2005; Di Croce et al., 2002; de la Rica et al., 2013; Velasco et al., 2010). Conversely, TFs have 
been indicated to protect against the acquisition of DNA methylation by blocking de novo 
methylation or by interacting with TET proteins (Bonder et al., 2016; de la Rica et al., 2013; Stadler et 
al., 2011; Wang et al., 2015). We identified TFs with a previously unrecognized role in the regulation 
of DNA methylation (e.g. ZNF202, ZNF131 and ZFP90), and provided support for the presumed role 
of TFs as previously implicated by post-hoc interpretation of results from methylation QTL mapping 
(NFKB1 and ZBTB38) (Bonder et al., 2016). Interestingly, the identified TFs are overrepresented in 
the C2H2-zinc finger family, which is in line with previous trans-meQTL findings (Lemire et al., 2015) 
The majority of the identified TFs contain a Krüppel-associated box (KRAB) domain which has been 
implicated in epigenetic silencing through the recruitment of KAP1 to their binding sites. KAP1 
subsequently recruits proteins that establish heterochromatin such as the NuRD-complex and 
possibly DNMTs, thereby causing de novo methylation (Groner et al., 2010; Iyengar et al., 2011; 
Meylan et al., 2011). Although we found 8 KRAB-ZFs with at least 10 target CpGs that were 
significantly skewed towards increased methylation, 4 were associated with decreased methylation. 
A possible explanation is that not all KRAB-ZFs act via KAP1. For example, the KRAB-ZF ZNF202, 
which was negatively associated with 37 target CpGs, contains a SCAN domain that prevents the 
binding of KAP1 (Lupo et al., 2013). Overall, our systematic genome-wide analysis identifies novel 
epigenetic regulatory functions for TFs, significantly expands upon TFs that were previously 
implicated in DNA methylation regulation, and identifies the direction of the effect on DNA 
methylation.  
    Exploration of the genes that do not encode transcription factors revealed several potential 
mechanisms through which these genes may influence DNA methylation. First, several of these 
genes encode proteins with DNA-binding properties, which might recruit or block the DNA 
methylation machinery in a similar way to TFs. BEND3 for example, encodes a DNA-binding protein 
that attracts the chromatin remodeling NuRD complex to its binding sites (Saksouk et al., 2014). 
Second, closer inspection of proteins that do not have DNA-binding properties suggests that they 
may regulate DNA methylation through protein-protein interactions. Possible mechanisms include 
post-translational regulation (NFKBIE encodes for IκBε which retains NF-kB in the cytoplasm (Bonizzi 
and Karin, 2004)), post-translational modification (SENP7: deSUMOylates the repressor KAP1 (Luijk 
et al., 2018)) and recruitment of epigenetic proteins to specific target sites through association with 
a DNA-binding protein (NLRC5 associates with a protein complex in MHC-I region (Kobayashi and van 
den Elsen, 2012)). Third, a fraction of the identified genes overlap with genes in a database that 
focuses on the core epigenetic regulators (i.e. the main enzymes that write/erase epigenetic marks 
such as DNMTs and histone acetyltransferases) (Medvedeva et al., 2015).  Interestingly, we had a 
predictive GI for the expression levels of DNMT1 and DNMT3a, but found only 5 significant 
associations for DNMT3A and no significant associations for DNMT1. Although this could be the 
consequence of limited statistical power, the result may also stem from DNMTs not having large, 
locus-specific effects on DNA methylation under physiological conditions. Indeed, previous work 
suggests that due to lack of sequence specificity, targeting of DNMTs to particular sites has to be 
achieved by other means such as chromatin context and transcription factors (Baubec et al., 2015; 
Rose and Klose, 2014; Schübeler, 2015). It is plausible that DNA methylation levels are instead 
predominantly regulated by factors that attract or repel the DNA methylation machinery at specific 
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locations, instead of expression levels of the machinery itself. Finally, we note that the majority of 
genes that were previously identified as core epigenetic factors (EpiFactor database) are histone 
modifiers (Medvedeva et al., 2015). This suggests that changes in DNA methylation might be 
secondary to altered chromatin conformation. This idea is further supported by discussed examples 
such as IKZF1, BEND3 and NLRC5, which are thought to attract histone modifying complexes to their 
binding sites. These findings are in line with the notion that DNA methylation and histone 
modifications are linked and can be dependent on another (Cedar and Bergman, 2009).   
    Conceptually, our method has similarities with previous efforts that used genetic variation to infer 
gene expression (Gamazon et al., 2015; Gusev et al., 2016). To the best of our knowledge, these 
methods have not been used to investigate directed associations between gene expression and DNA 
methylation. In addition, our implementation has the benefit that it accounts for LD/pleiotropy 
among neighboring genes, which would otherwise lead to non-specific results. This is evidenced by 
the large number of genes that became insignificant after accounting for LD/pleiotropy among 
neighboring genes. 
    We should note limitations of this study. First, although we systematically considered 
LD/pleiotropy among neighboring genes, we cannot fully rule out the possibility of pleiotropy. The 
genetic instruments may have pleiotropic effects on unmeasured genes, but may also affect trans 
DNA methylation through other mechanisms such as interchromosomal contacts (Bonder et al., 
2016). Further studies could investigate pleiotropic effects using statistical methods such as Egger 
regression and heterogeneity tests (Burgess et al., 2017). These methods, however, rely on multiple 
independent variants which are scarce for gene expression, since most predictive variants are 
located near the gene and are therefore often not independent because of LD. Second, although we 
intend to provide a genome-wide resource of genes that influence DNA methylation, we had to limit 
our scope to genes that had a sufficiently predictive genetic instrument. Third, the genetic 
instruments generally explain a relatively small proportion of the variation in expression of their 
corresponding gene, which results in limited power to detect effects (median R2 = 0.04). In addition, 
although correcting for nearby GIs enabled us to obtain specific associations, it further limits the 
power to detect effects. Finally, we note that the detection of target CpGs in this study was limited 
by the coverage of the Illumina 450k array, which measures about 2% of the CpGs sites in the human 
genome. Whole-genome bisulfite sequencing (WGBS) would provide a higher resolution, but does so 
at a much higher cost.  
    To conclude, we present a novel resource of genes for which we provide strong evidence that they 
influence DNA methylation levels in blood. Our results add to the increasing evidence that 
transcription factors are involved in shaping the methylome and we show that our resource can 
provide insight into the various mechanisms through which DNA methylation is regulated (e.g. post-
translation modification and secondary effects of chromatin conformation). We believe our resource 
will guide follow-up studies into epigenetic regulation and the role of these regulatory genes in 
disease. 
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Methods 

Cohorts 
The Biobank-based Integrative Omics Study (BIOS) Consortium comprises six Dutch biobanks: Cohort 
on Diabetes and Atherosclerosis Maastricht (CODAM) (van Greevenbroek et al., 2011), LifeLines-
DEEP (LLD) (Tigchelaar et al., 2015), Leiden Longevity Study (LLS) (Schoenmaker et al., 2006), 
Netherlands Twin Registry (NTR) (Boomsma et al., 2002; Willemsen et al., 2013), Rotterdam Study 
(RS) (Hofman et al., 2013), and Prospective ALS Study Netherlands (PAN) (Huisman et al., 2011). Data 
used in this study consists of 4,162 unrelated individuals for which genotype data was available. For 
4,056 of these individuals DNA methylation data was available and for 3,357 individuals RNA-
sequencing data was available. Genotype data, DNA methylation data, and gene expression data 
were measured in whole blood. In addition, sex, age, and cell counts were obtained. The Human 
Genotyping facility (HugeF, Erasmus MC, Rotterdam, The Netherlands, http://www.blimdna.org) 
generated the methylation and RNA-sequencing data.  
 
Genotype data 
Genotype data was generated for each cohort individually. Details on the methods used can be 
found in the individual papers; CODAM: (van Dam et al., 2001). LLD: (Tigchelaar et al., 2015), LLS: 
(Deelen et al., 2014a), NTR: (Lin et al., 2016), RS: (Hofman et al., 2013), PAN: (Huisman et al., 2011). 
The genotype data were harmonized towards the Genome of the Netherlands (GoNL) using 
Genotype Harmonizer (Deelen et al., 2014b) and subsequently imputed per cohort using MaCH (Li et 
al., 2010) with the Haplotype Reference Consortium panel (McCarthy et al., 2016). Per cohort, SNPs 
with R2 < 0.3 and call rate < 0.95 were removed and VCFtools (Danecek et al., 2011) was used to 
remove SNPs with Hardy Weinberg Equilibrium p-value < 10-4. After merging the cohorts, SNPs with 
minor allele frequency < 0.01 were removed. These imputation and filtering steps resulted in 
7,568,624 SNPs that passed quality control in each of the datasets.  
 
Gene expression data 

A detailed description regarding generation and processing of the gene expression data can be found 
elsewhere (Zhernakova et al., 2016). Briefly, total RNA from whole blood was deprived of globin 
using Ambion’s GLOBIN clear kit and subsequently processed for sequencing using Illumina’s Truseq 
version 2 library preparation kit. Paired-end sequencing of 2x50bp was performed using Illumina’s 
Hiseq2000, pooling 10 samples per lane. Finally, read sets per sample were generated using CASAVA, 
retaining only reads passing Illumina’s Chastity Filter for further processing. Data were generated by 
the Human Genotyping facility (HugeF) of ErasmusMC (The Netherlands). Initial QC was performed 
using FastQC (v0.10.1), removal of adaptors was performed using cutadapt (v1.1) (Martin, 2011), and 
Sickle (v1.2) (Joshi and Fass, 2011) was used to trim low quality ends of the reads (minimum length 
25, minimum quality 20). The sequencing reads were mapped to human genome (HG19) using STAR 
(v2.3.0e) (Dobin et al., 2013). 

To avoid reference mapping bias, all GoNL SNPs (http://www.nlgenome.nl/?page_id=9) with MAF > 
0.01 in the reference genome were masked with N. Read pairs with at most 8 mismatches, mapping 
to as most 5 positions, were used. 
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Gene expression quantification was determined using base counts (Zhernakova et al., 2016). The 
gene definitions used for quantification were based on Ensembl version 71, with the extension that 
regions with overlapping exons were treated as separate genes and reads mapping within these 
overlapping parts did not count towards expression of the normal genes. 

For data analysis we used the log counts per million (CPM). We restricted the analysis to protein-
coding genes and lincRNAs (long intergenic non-coding RNA) that were at least moderately 
expressed (median CPM => 1). This resulted in 11,475 protein-coding genes and 355 lincRNAs that 
were used for further analysis. To reduce the influence of possible outliers, we transformed the data 
using rank-based inverse normal transformation within each cohort.  
 
DNA methylation data 
The Zymo EZ DNA methylation kit (Zymo Research, Irvine, CA, USA) was used to bisulfite-convert 500 
ng of genomic DNA, and 4 μl of bisulfite-converted DNA was measured on the Illumina 
HumanMethylation450 array using the manufacturer’s protocol (Illumina, San Diego, CA, USA). 
Preprocessing and normalization of the data were done as described in the DNAmArray workflow 
(https://molepi.github.io/DNAmArray_workflow/). In brief, IDAT files were read using the minfi 
(Aryee et al., 2014), while sample level quality control (QC) was performed using MethylAid (van 
Iterson et al., 2014). Filtering of individual measurements was based on detection P-value (P < 0.01), 
number of beads available (≤ 2) or zero values for signal intensity. Normalization was done using 
Functional Normalization (Fortin et al., 2014) as implemented in minfi (Aryee et al., 2014), using five 
principal components extracted using the control probes for normalization. All samples or probes 
with more than 5% of their values missing were removed. 
    Probe filtering. Since it has been shown that the Dutch population contains population-specific 
variation we identified genetic variants that overlap with probes using release 5 variant data from 
the GoNL project  
 (https://molgenis26.target.rug.nl/downloads/gonl_public/variants/release5/) (Francioli et al., 
2014). This data contains 20.4 million SNVs and 1.1 million short INDELs (1bp-20bp) obtained from 
WGS data from 498 unrelated Dutch individuals. BCFtools was used to extract the INFO files from 
the GoNL VCF files (Li et al., 2009). The genomic coordinates were stored in GRanges format in R 
(Lawrence et al., 2013), for deletions we used the length of the deletion to define the start and end 
coordinates of the deletion. The findOverlaps function in the GenomicRanges package was used to 
identify variants that were located in the SBE-site for type I probes (the SBE-site coincides with the 
C-nucleotide in type II probes), CpG-site or within 5 bases of the 3’-end of the probe. Since not all 
SNPs at SBE-sites of type I probes cause a color-channel switch, only SNPs that cause a color-channel 
switch (A/G, G/T, C/G SNPs for reverse strand probes and C/T, C/A and C/G SNPs for forward strand 
probes) and INDELs overlapping the SBE were flagged for removal. A list of all SNPs and short INDELs 
that overlap with 450K probes is available from: https://github.com/molepi/DNAmArray. 
     We identified 15,724 probes that contained one or more variants with MAF > 0.01 in the SBE-site 
(causing a color-channel switch), CpG-site or within 5 bases of the 3’ end and excluded these probes 
for further analyses. In addition, we removed probes with a non-unique mapping and non-unique 3’ 
nested subsequences of at least 30 bases as recommended by Zhou et al. (Zhou et al., 2016). In 
total, this led to the removal of 41,674 probes. Finally, we removed all probes on the sex 
chromosomes.  
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    The final dataset consisted of 4,056 samples and 428,126 probes. To reduce the influence of 
possible outliers, we transformed the data using rank-based inverse normal transformation within 
each cohort, similar to the RNAseq data.  
Proper data linkage of SNP, RNA-seq and DNA methylation array data within individuals was verified 
using the omicsPrint package (van Iterson et al., 2018). 
 
Imputation of missing covariates 
A fraction of the samples had missing data for the phenotype measures used in subsequent analyses 
(white blood cell proportions, age and sex).  
    Overview missing data. White blood cell counts (Neutrophils, Eosinophils, Lymphocytes, 
Monocytes and Basophils) were measured as part of the complete blood cell count. Complete cell 
count measurements were missing for 35% of the RNAseq samples and 44% of the DNA methylation 
samples. Reported age and sex were missing for 1.5% of the RNAseq samples and 18% of the DNA 
methylation samples.  
    Imputation. Since DNA methylation and RNAseq data are informative for age, sex and white blood 
cell composition (Abbas et al., 2009; Horvath, 2013; Houseman et al., 2012; Peters et al., 2015), we 
used the data to impute these variables. Missing observations were imputed separately for the 
RNAseq and DNA methylation data because there is incomplete overlap between the datasets. 
Missing observations in the measured white blood cell counts (WBCC) were imputed using the R 
package pls, as described earlier (van Iterson et al., 2017). For missing age and sex measurements, 
we compared the performance of the elastic-net, LASSO, ridge and pls methods. To evaluate the 
performance of these models, the data was randomly split into a train set (2/3) and a test set (1/3). 
This procedure was repeated 25 times, each time calculating the accuracy in the test set (mean 
squared error for age and F1-score for sex). The above algorithm was performed using varying 
numbers of input variables (50 to 10,000), where the input variables were selected based on their 
correlation with the outcome. The model and number of input variables that resulted in the best 
average accuracy in the test sets was selected to impute missing data. The average correlation 
between predicted and reported age in the tests sets was 0.98 for the DNA methylation data and 
0.92 for the RNAseq data. Sex was almost perfectly predicted (accuracy ≈ 0.995) in both DNA 
methylation and RNAseq data. 
 
Constructing a local genetic instrument for gene expression 
We constructed a genetic instrument (GI) for the expression of each gene using nearby genetic 
variants. We split the genotype and RNAseq data in a training set (one-third of all samples, N = 
1,119) and a test set (two-thirds of all samples, N = 2,238), making sure all cohorts and both sexes 
were equally represented within each set. In the train set we built a GI for the expression of each 
gene by employing a two-step approach in which LASSO regression is used for variable selection and 
coefficient estimation (Tibshirani, 1996). We previously reported that LASSO performs better (BLUP, 
BSLMM) or similar (elastic net) compared to other methods to create GIs (Luijk et al., 2018). 
The number of variables chosen by LASSO is generally large and potentially includes noise variables 
(Meinshausen, 2007). A two-step approach can overcome this problem, where LASSO is first used for 
variable selection and is then used again on the selected variables for coefficient estimation. In 
detail, for each gene we performed the following procedure: 
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1) LASSO is performed in the train set to select nearby genetic variants (within the gene or within 

100kb of the gene’s transcription start site (TSS) or transcription end site (TES)) that are 
predictive of the expression of the respective gene. 5-fold cross-validation was used to find the 
penalization parameter 𝜆 that minimizes the mean squared error (MSE). 

2) LASSO is performed in the train set on the remaining genetic variants. In order to select the most 
parsimonious model without losing accuracy, we used the ‘one-standard error rule’ to select the 
largest penalization parameter 𝜆 that is within 1 standard error of the minimum with the 
constraint that at least one SNP has a nonzero coefficient (James et al., 2013). We then 
calculated the genetic instrument as the sum of dosages of each SNP multiplied by their effect 
sizes.  

 
In both LASSO steps we included known covariates (age, sex, cohort and white blood cell 
composition) and the first five principal components derived from the RNAseq data in the LASSO 
model, because the inclusion of covariates that explain variation will generally lead to increased 
precision of the SNP coefficients (Burgess et al., 2011). These covariates were left unpenalized, 
ensuring that their coefficient is always nonzero.  
We evaluated the predictive performance of the genetic instruments in the test set. We employed 
Analysis of Variance (ANOVA) to evaluate the added predictive power of the GI over the covariates, 
as reflected by the F-statistic. Genetic instruments with an F-statistic > 10 were considered valid 
instruments (Staiger and Stock, 1997). 
 
Testing for trans effects  
Using linear regression, we tested for an association between each GI and the DNA methylation 
levels of CpGs in trans (> 10Mb). Age, sex, cohort, white blood cell composition and five principal 
components were included as covariates. We used the BioConductor package bacon to correct for 
inflation and/or bias in the test statistics (van Iterson et al., 2017) and corrected for multiple testing 
using the Bonferroni correction (8,644 x 428,126 tests, P < 1.4 x 10-11). A two-step approach was 
used to account for LD/pleiotropy within the obtained results (Figure S4). First, we corrected all GI-
CpG pairs for nearby GIs (within 1Mb of the gene’s TSS/TES). Genes for which the corresponding GI 
was highly correlated with one or more neighboring GIs (r > 0.95) were excluded from further 
analyses. To prevent collinearity, we pruned the neighboring GIs that were included in the model 
using the findCorrelation function in the caret R package using a correlation cutoff of 0.95 (Kuhn, 
2008). Second, among the GIs that remained significant, we tested for residual pleiotropic effects 
that were not captured by the correction for nearby GIs. For each GI we evaluated the added 
predictive power over the covariates and neighboring GIs on the expression corresponding to nearby 
significant GIs. We excluded GIs that shared target CpGs with a neighboring significant GI (at a gene-
level Bonferroni level, P < 1.2 x 10-7) and were at least weakly predictive of the expression of that 
gene (F > 5).  
 
Enrichment analyses 
Gene set enrichment were performed for GO molecular functions using DAVID (Huang et al., 2008), 
where all genes with a predictive GI (F > 10) where used as background. Fisher’s exact test was used 
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to test for enrichment of transcription factors (Lambert et al., 2018) and epigenetic factors 
(Medvedeva et al., 2015). Chromatin state segments were downloaded from the Epigenomics 
Roadmap for all blood subtypes (Kundaje et al., 2015). CpGs were annotated to different segments 
based on the most frequent occurring feature in the various blood cell subtypes. Repeat sequences 
were downloaded from the UCSC table browser (Karolchik, 2004). Enrichment tests for chromatin 
state segments and repeat sequences were performed using Fisher’s exact test.  
 
Association with trans expression levels 
For several examples we tested whether the target CpGs were associated with nearby gene 
expression and/or if the GI corresponding to the index gene was associated with the expression 
levels of genes near its target CpGs. We tested for an association between the target CpGs and the 
expression of nearby genes (<250Kb) using linear regression. Age, sex, cohort, white blood cell 
composition and 10 principal components (first five PCs derived from gene expression data, and first 
five PCs derived from DNA methylation data) were included as covariates. Similarly, to test whether 
the index GI was associated with the expression of genes near the target CpGs, we tested for an 
association between the GI and the expression of nearby genes (<250kb) using linear regression. 
Age, sex, cohort and white blood cell compositions were included as covariates. In both analyses we 
used bacon to correct for bias and inflation in the test-statistics and adjusted for multiple correction 
using the Bonferroni correction (van Iterson et al., 2017). 
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URLs 
Results are available at http://bbmri.researchlumc.nl/atlas/#data. Data were generated by the 
Human Genotyping facility (HugeF) of ErasmusMC, the Netherlands (http://www.glimDNA.org).  
Webpages of participating cohorts: LifeLines, http://lifelines.nl/lifelines-research/general; 
 Leiden Longevity Study, http://www.leidenlangleven.nl/; Netherlands Twin 
Registry, http://www.tweelingenregister.org/; Rotterdam Studies,  
http://www.epib.nl/research/ergo.htm; Genetic Research in Isolated Populations 
program, http://www.epib.nl/research/geneticepi/research.html#gip; CODAM 
study, http://www.carimmaastricht.nl/; PAN study, http://www.alsonderzoek.nl/. 
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Figure 1 
Flowchart showing the successive steps leading to the resource of 818 genes that influence DNA 
methylation in trans.  
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Figure 2 
A considerable fraction of the identified genes (N = 308) influenced multiple target CpGs in trans.  
(a) Each dot represents a gene with trans DNA methylation effects. The x-axis shows the number of 
affected target CpGs with decreased methylation levels upon increased gene expression, the y-axis 
shows the number of affected target CpGs with increased methylation levels upon increased gene 
expression. The figure in the right upper corner is a zoomed-in version in which only genes that 
affect less than 25 CpG-sites in either direction are displayed. (b) Bars represent the number of 
genes with either 1, 2, 3-5 or more than 5 target CpGs. The percentage of genes that are annotated 
as transcription factors increases with the number of target CpGs. (c) Enrichment (odds ratio) for 
transcription factors for genes with either 1,2, 3-5 or more than 5 target CpGs. Error bars represent 
95% confidence intervals.  
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Figure 3 
(a) Network for transcription factor NFKB1 and its inhibitor NFKBIE. Grey circles indicate target CpGs 
and arrows represent directed associations (i.e. association between GI and DNA methylation 
levels). Blue lines indicate a positive association between gene expression and DNA methylation 
levels, red lines indicate a negative association between gene expression levels and DNA 
methylation levels. (b) NLRC5 (chromosome 16) was associated with decreased DNA methylation 
levels at multiple (N = 43) CpG-sites in the classical and extended MHC-region (chromosome 6). Red 
lines indicate a negative association between NLRC5 expression levels and DNA methylation levels. 
The numbers displayed in the lines indicate how many target CpGs the line represents. Gene labels 
are displayed if one or more target CpGs were associated with the expression of these genes. Blue 
gene symbols refer to genes negatively correlated with target CpG methylation (implying 
upregulation by NLRC5), and vice versa for red labels. Asterisks indicate that the GI corresponding to 
NLRC5 was also (positively) associated with this gene.  
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Figure 4 
(a) CDCA7 (located on chromosome 2) and CDCA7L (located on chromosome 7) both influence 
genome-wide DNA methylation levels. Blue lines indicate a positive association between CDCA7 
expression and trans DNA methylation levels. Green lines indicate a positive association between 
CDCA7L expression levels and trans DNA methylation levels. (b,c) Over- or underrepresentation of 
target CpGs in predicted chromatin states for (b) CDCA7 and (c) CDCA7L. Blue bars represent 
enrichment of CpGs that are significant at a genome-wide significance level (P < 1.4 x 10-11) and grey 
bars represent enrichment of CpGs that are significant at a gene-level significance level (P < 1.2 x 10-

7). BivFlnk: flanking bivalent TSS/enhancer, Enh: enhancer, EnhBiv: bivalent enhancer, EnhG: genic 
enhancer, Het: heterochromatin, Quies: quiescent, ReprPC: repressed polycomb, ReprPCWk: weak 
repressed polycomb, TssA: active TSS, TssAFlnk: flanking active TSS, TssBiv: bivalent/poised TSS, Tx: 
strong transcription, TxFlnk: weak transcription, ZNF/Rpts: ZNF genes & repeats.  
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