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Abstract  
A widespread assumption for single-cell analyses specifies that one cell’s nucleic acids 
are predominantly captured by one oligonucleotide barcode. However, we show that 
~13-21% of cell barcodes from the 10x Chromium scATAC-seq assay may have been 
derived from a droplet with more than one oligonucleotide sequence, which we call 
“barcode multiplets”. We demonstrate that barcode multiplets can be derived from at 
least two different sources. First, we confirm that ~4% of droplets from the 10x platform 
may contain multiple beads. Additionally, we find that ~5-7% of beads may contain 
multiple oligonucleotide barcodes. We show that this artifact can confound single-cell 
analyses, including the interpretation of clonal diversity and proliferation of intra-tumor 
lymphocytes. Overall, our work provides a conceptual and computational framework to 
identify and assess the impacts of barcode multiplets in single-cell data.  
 
Introduction  
Droplet-based partitioning systems have become an essential tool for single-cell 
genomics research. In contrast to plate-based single-cell assays, droplet-based 
methods, including scRNA-seq1,2 and scATAC-seq3,4 enable profiling of thousands of 
cells in a single experiment. The marked increase in throughput is achieved by parallel 
barcoding of cellular nucleic acids with beads containing high-diversity DNA barcodes. 
Critically, downstream computational analyses assume that one barcode sequence 
equates to one cell. 
 
In this work, we provide multiple lines of evidence that indicate that cells often associate 
with multiple barcodes by i) multiple beads occurring within the same droplet or ii) 
heterogeneity of oligonucleotide sequences within a single bead (Fig. 1a). Here, we 
refer to these instances whereby multiple DNA barcodes occur within the same droplet 
as “barcode multiplets”. We find that barcode multiplets can considerably impact single-
cell analyses and demonstrate that rare cell events (e.g. the analysis of cell clones) can 
be particularly affected by this artifact. Further, we provide a computational solution to 
identify these barcode multiplets in existing single-cell datasets, particularly from the 
scATAC-seq platform. Finally, we provide recommendations to mitigate these biases in 
existing assays.  
 
 
Results 
 
Bead multiplets quantified through imaging 
While cell doublet rates are routinely quantified by species-mixing analyses, analogous 
multiplet rates for bead loading are scarcely discussed. Importantly, commonly used 
droplet-based assays (e.g. the 10x Chromium platform) leverage a close-packing 
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ordering of beads5 to load predominantly one bead per droplet and achieve “sub-
Poisson” loading. First, we sought to test this assumption and empirically quantify bead
loading within droplets. To achieve this, we loaded hydrogel training beads into droplets
following recommended guidelines and imaged the resulting solution. Beads were
readily visible and quantifiable per droplet (Fig. 1b; Fig. S1a-d), enabling empirical
estimates of the number of beads per droplet. A total of 3,865 droplets spanning 30 total
fields of view (FOV) over three experimental replicates were quantified (Table S1; see
Methods). Importantly, while the training beads do not differ from those used in the
regular protocol, the training buffer is required to visualize beads after loading. 
 

 
Figure 1 - Quantification of barcode multiplets from multiple beads in 10x Chromium platform. (a)
Schematic of bead loading variation and phenotypic consequences. Droplets with 0 beads fail to profile
nucleic acid from the loaded cell (“dropout”) whereas barcode multiplets fractionate the single-cell data.
Barcode multiplets can be generated by either heterogeneous barcodes on an individual bead or two or
more beads loaded into the same droplet. The * indicates the bead multiplet that can be quantified via
imaging. (b) Representative example of beads loaded into droplets from the 10x Chromium platform. The
white box is magnified 3x for the panel on the right, revealing multiple beads loaded into droplets. Stars
indicate beads (except 0) and are colored by the number of beads contained in the droplet. (c) Empirical
quantification of number of bead barcodes based on image analysis over 3 replicates with previously
published data (Zheng et al. 20172). (d) Percent of barcodes associated with multiplets under the
distribution observed in (c). Error bars represent standard error of mean over the experimental replicates. 
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On average, we found that 16.1% of droplets contained no beads, 80.0% contained 
exactly one bead, and 3.9% had two or more beads (Fig. 1c). These results were 
consistent with the previously reported results of this platform (“Zheng”)2 and confirm 
the sub-Poisson loading of beads into droplets (compare to Fig. S1e for optimal 
Poisson loading). While the mean of the bead loading was consistent with previous 
reports, we note considerable run-to-run variability from our imaging replicates, ranging 
from 0.8% to 8.4% (Fig. S1f). These results indicate that the occurrence of bead 
multiplets likely varies between machines and individual runs. Furthermore, we noted 
occurrences of large droplets with multiple beads (Fig. S1g) that likely originated from 
the errant merging of several individual droplets, yielding another source of potential 
barcode multiplets.  
 
While our estimate of the occurrence of multiple beads in droplets confirms previous 
reports2, we emphasize that this problem is exacerbated when considering potential 
barcodes in single-cell data. On average, we estimate that 11.4% of barcodes would 
represent barcode multiplets, reflecting droplets with heterogeneous oligonucleotide 
sequences (Fig. 1d; see Methods). Moreover, we note that imaging provides a lower-
bound estimate for the true occurrence of barcode multiplets for two reasons. First, 
droplets with four or more beads were assigned a count of four since the exact number 
of beads could not be reliably determined in these instances (e.g. Fig. S1d). Second, 
imaging cannot evaluate the possibility of heterogeneous beads, a second class of 
artifact that leads to barcode multiplets (Fig. 1a). Despite the alarmingly high 
prevalence of barcode multiplets, the effect of this confounding phenomenon has not 
been systematically considered in single-cell analyses. Intuitively, these observed 
barcode multiplets fractionate data from the cell to multiple barcodes, resulting in a 
reduction of data per cell and the substantial overestimation of the total number of cells 
sequenced by artificial synthesis of barcodes reflecting the same single cell. With this 
artifact could be confirmed by imaging, we sought to further understand its properties 
and effects in single-cell data.  
 
 
Identifying barcode multiplets in 10x scATAC-seq data with bap 
Recently, we developed a computational framework called bead-based ATAC 
processing (bap), which identifies instances of barcode multiplets in droplet single-cell 
ATAC-seq (dscATAC-seq)3. Critically, we discriminate between multiple true cells and 
barcode multiplets by considering the Tn5 insertion sites, noting that barcode multiplets 
would amplify the same exact fragments (Fig. 2a; Fig. S2). Thus, our computational 
approach leverages the molecular diversity of Tn5 insertion sites across the genome to 
identify pairs of barcodes that share more insertion sites than expected and merge 
these corresponding barcode pairs (Fig. 2a). Previously, we utilized bap to facilitate 
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super-loading beads into droplets to achieve a ~95% cell capture rate with a mean 2.5 
beads/droplet3. Here, we reasoned that bap may identify barcode multiplets in 10x 
scATAC-seq data. 
 
 

 
Figure 2 - Verification of bap to identify barcode multiplets using 10x scATAC-seq data. (a) 
Schematics of methodology to detect barcode multiplets whereby cellular nucleic acids are tagged by two 
different oligonucleotide sequences and later inferred from sequencing a scATAC-seq library from the 
same Tn5 insertions per fragment. (b) Schematic of mixing experiment. Two channels were combined 
and the resulting merged files were analyzed with bap. (c-e) Knee plots comparing the top 500,000 
barcode pairs from (c) only channel 1, (d) only channel 2, and (e) between channels. The number of pairs 
calls is indicated by the number of points above the blue horizontal line (see Methods).    

 
 
After updating bap to facilitate processing of the 10x scATAC data (Fig. S2; see 
Methods), we conducted an initial in silico experiment in order to verify the applicability 
of our approach to 10x scATAC-seq data. Here, we combined two channels from a 
similar biological source (~5,000 cells of peripheral blood mononuclear cells; PBMCs) 
and executed bap on the resulting combination (Fig. 2b; see Methods). As any barcode 
pairs merged between channels would be false positives, our approach facilitated an 
estimation of the false positive rate of our approach in 10x data. After executing bap 
with the default parameters, 1,874 barcode pairs were identified  as sharing an unusual 
number of shared transposition events. Specifically, 931 pairs from channel 1 (Fig. 2c) 
and 943 pairs from channel 2 (Fig. 2d) were identified. However, zero pairs were 
identified between channels (Fig. 2e), indiciating a very low false positive rate for bap 
when applied to this assay. Moreover, the shape of the ranked-ordered barcode pair 
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curves for the channels separately were distinct from the between-channel curve (Fig. 
2c-e). Overall, these results support the utility of bap in inferring barcode multiplets from 
the 10x platform.  
 
After establishing the applicability of bap for 10x scATAC-seq data, we sought to better 
understand the properties of barcode multiplets determined by bap, focusing on two 
datasets (“This Study” and “Public”; see Methods) of ~5,000 human PBMCs (Fig. 3a). 
Overall, we estimated the percentage of barcodes in multiplets were 13.2% (This Study; 
Fig. S3a) and 17.6% (Public; Fig. 3b). These cell barcodes were identified from the 
high-quality, error-corrected barcode sequences from CellRanger with abundant reads 
in peaks. Additionally, since individual barcodes in the space of all possible barcodes 
are separated by a minimum Hamming distance of three in the 10x platform, the high 
prevalence of barcode multiplets is unlikely to be caused by sequencing errors. 
Importantly, these implicated barcodes are normally considered in downstream 
analyses, including cell clustering and clonotype abundance estimates. Furthermore, we 
suggest that additional multiplets are present in the library but likely did not pass 
thresholds for reads detected due to the fractionation of data associated with these 
barcodes (Fig. S3b; see Methods). 
 

 
Figure 3 - Inference and effect of barcode multiplets in single-cell ATAC-seq data. (a) Default t-SNE 
depiction of public scATAC-seq PBMC 5k dataset. Colors represent cluster annotations from the 
automated CellRanger output. (b) Quantification of barcodes affected by barcode multiplets for the same 
dataset (identified by bap). (c) Depiction of two multiplets each composed of 9 oligonucleotide barcodes. 
Barcodes in each multiplet share a long common subsequence, denoted in black. (d) Visualization of two 
barcode multiplets from (c) in t-SNE coordinates. (e) Visualization of all implicated barcode multiplets 
from this dataset. The zoomed panel shows a small group of cells affected by five multiplets, indicated by 
color. (f) Empirical distribution of the mean restricted longest common subsequence (rLCS) per multiplet. 
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A cutoff of 6 was used to determine either of the two classes of barcode multiplets. (g) Percent difference 
of the mean log2 fragments between pairs of barcodes within a multiplet. The reported p-value is from a 
two-sided Kolmogorov–Smirnov test. Boxplots: center line, median; box limits, first and third quartiles; 
whiskers, 1.5x interquartile range. (h) Overall rates of barcode multiplets from additional scATAC-seq 
data comparing v1.0 and v1.1 (NextGEM) chip designs.  

 
 
Surprisingly, from these experiments, we observed instances in both datasets where 
barcode multiplets contained at least 7 distinct barcodes (Table S2; Table S3). In 
particular, we observed two instances of multiplets containing 9 unique barcodes in the 
Public dataset. Here, each implicated barcode contained a restricted longest common 
subsequence (rLCS) of 9 (Fig. 3c; see Methods). As such, we suggest that these 
barcode multiplets likely reflect error during barcode synthesis resulting in a single bead 
with multiple barcodes, resulting in a “complex bead” (Fig. 1a). Visualization of these 
barcode multiplets from dimensionality reduction using t-distributed stochastic neighbor 
embedding (t-SNE) confirmed these barcodes reflect markedly similar chromatin 
accessibility profiles (Fig. 3d; Fig. S3c). Overall, barcode multiplets generally co-
localized with barcode singlets and do not dramatically alter the interpretation of cell 
types in an embedding (Fig. 3e). However, we find that certain regions of the t-SNE 
embedding contained a disproportionate concentration of barcode multiplets, which may 
lead to errant identification of presumed rare cell types (e.g. 5 unique multiplets shown 
in Fig. 3e). 
 
To further elucidate these identified barcode multiplets, we annotated these barcodes 
with graph-based Louvain clusters (produced using the default CellRanger execution). 
As expected, we observed a significant enrichment of barcode multiplet pairs occurring 
in the same cluster (91.1% for This Study; 74.1% for Public) compared to a permuted 
background (11.6% and 8.6% respectively; Fig. S3d; see Methods). We note that 
barcode multiplets not within the same cluster largely reflect barcodes split between 
multiple clusters of the same cell type (e.g. myeloid cells; see Multiplet 5 in Fig. S3c 
and Table S3). Additionally, we observed a statistically-significant association between 
the Louvain cluster assignment and inferred barcode multiplet status for both This Study 
(p=0.0065) and Public datasets (p=2.46e-05; chi-squared test; see Methods). These 
results indicate that the barcode multiplets can occur in clusters unevenly, potentially 
confounding inferences regarding cell-type abundance. Additionally, through iteratively 
downsampling and re-executing bap, we confirmed the stability of our metric with 
sequencing depths as low as a median 10,000 fragments detected per barcode (Fig. 
S3e; see Methods), confirming the broad utility of this approach. Overall, as these 
barcode multiplets represent quasi-independent observations of the accessible 
chromatin landscape of the same single cell, we suggest that these identified barcode 
multiplets may be utilized in a variety of different useful applications. Examples include 
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determining sequencing saturation, inferring sequencing biases, and benchmarking 
bioinformatic clustering approaches. Furthermore, these barcode multiplets can be 
merged to improve data quality3. 
 
 
Contributions of types of barcode multiplets 
Having verified the overall detection of the effects of barcode multiplets in these 
datasets, we sought to determine the relative contributions of each source of barcode 
multiplets to the overall abundance (Fig. 1a). To achieve this, we established a null 
distribution by computing the rLCS for random pairs of barcodes from the 10x whitelist 
(see Methods). Over 1,000,000 sampled pairs, we determined that pairs with an rLCS 
≥6 were extremely uncommon assuming an independent co-occurrence (<0.5% 
probability of co-occurring; Fig. S3f). Thus, for inferred multiplets with a mean rLCS ≥6, 
we interpret these to be most likely caused by heterogeneous barcodes within a single 
bead. After computing the mean rLCS between pairs of barcodes per multiplet, we 
determined that 87.5% of multiplets were likely caused by these complex or 
heterogeneous beads in the Public dataset (Fig. 3f). Using this classification, we could 
further estimate the prevalence of these complex beads to be 6.9% in this dataset (see 
Methods). Parallel analyses for This Study dataset yielded similar results (83.5% of 
barcode multiplets were due to complex beads; 4.9% of beads were heterogenous 
beads). Interestingly, the percent difference between the log2 number of valid fragments 
for these two classes of multiplets showed greater variability in the number of fragments 
per barcode for the complex beads than for barcode multiplets presumably caused by 
two beads (Fig. 3g; see Methods). This result supports the idea that there may be a 
predominant individual barcode sequence on these complex beads though there is 
detectable heterogeneity. Finally, as 10x recently released their v1.1 “NextGem” design, 
we processed two additional datasets that were run with the two different chip designs 
in parallel. Our results confirm that the abundance of barcode multiplets persists across 
both of these two different chip designs (Fig. 3f).  
 
 
Confounding of clonal lymphocytes estimation from barcode multiplets 
We suggest that many applications of the 10x Chromium platform are unlikely to be 
impacted by bead multiplets. However, droplet single-cell approaches are now 
employed for purposes requiring increasingly precise quantitation, such as highly 
multiplexed perturbations6, clonal lymphocyte analyses7, or diagnostics8. Thus, for 
analyses of rare events, such as those routinely quantified in CRISPR perturbations or 
in clonal analyses of cells, the surprisingly high prevalence of barcode multiplets may 
become particularly problematic. As one example, we hypothesized that barcode 
multiplets may significantly alter quantitation of cell clones distinguished by unique B-
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cell receptor (BCR) and T-cell receptor (TCR) sequences in a tumor microenvironment
(Fig. 4a). Though there is no current approach to define bead multiplets in scRNA-seq
data, we reasoned that certain abundant BCR and TCR clonotypes may be explained
by complex beads representing one true cell (similar to Fig. 3c). To test this, we
reanalyzed a publicly available dataset generated using the 10x V(D)J platform that
analyzed lymphocytes from a non-small-cell lung carcinoma (NSCLC) tumor (Fig. 4a).
Indeed, we observed two instances of a BCR clone with four or more cells that could be
more parsimoniously interpreted as barcode multiplets derived from a single B-cell (Fig.
4b). In particular, all presumed cells from these clones shared an rLCS of ≥9, an
extremely unlikely event assuming true clonal cells would be randomly assigned
barcode sequences (Fig. S3f; Fig. S4a). Indeed, the distribution of the rLCS across all
BCR clonotypes indicated a detectable bias indicative of barcode multiplets (Fig. S4a;
see Methods). Furthermore, we identified additional clones that were depicted with a
more complex heterogeneous structure that still broadly reflected bead synthesis errors
(Fig. 4c).  
 

 
Figure 4 - Confounding of intratumor clonal lymphocytes inference from barcode multiplets. (a)
Schematic of intra-tumor lymphocytes identified from single-cell V(D)J sequencing on the 10x platform.
(b) Identification of two presumed clonotypes composed of 5 and 4 barcodes. These clonotypes are likely
to have been derived from one cell observed multiple times via barcode multiplets. (c) Example of a
presumed clone composed of 5 barcodes with multiple constant sequences. (d,e) Overall summary of
prevalence of (d) B-cell and (e) T-cell clone size before and after adjusting for observed rates of barcode
multiplets in single-cell data. Error bars represent standard errors of the mean across 100 permutations.  
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Having established the clear possibility of barcode multiplets occurring in these data, we 
sought to determine how the interpretation of the overall clonality would be changed 
when accounting for the barcode multiplets. Using conservative estimates of barcode 
multiplets from the scATAC-seq analyses, we conducted a series of simulations to 
determine how the clonality estimates of these lymphoid cells in tumors would become 
altered after accounting for estimated barcode multiplet levels from bap (see Methods). 
Overall, the percentage of cells associated with a clonotype comprised of at least two 
cells decreases considerably for both BCR (24.5% to 13.0%; Fig. 4d) and TCR (23.6% 
to 12.0% Fig. 4e) clonotypes. Further analyses indicated a clone false discovery rate as 
high as 50.7% (BCR) and 48.4% (TCR) in these data (see Methods), painting a much 
more conservative picture of clonality within NSCLC tumors, assuming similar rates of 
barcode multiplets uncovered from bap in the scATAC-seq analyses. The results from 
these simulations indicate that bead multiplets may significantly confound clonal 
analysis and that this quantifiable discrepancy may falsely lead to conclusions of clonal 
expansion of lymphocytes in primary tumors. 
 
 
Discussion 
Overall, our work provides a new perspective to consider barcode multiplets in single-
cell data. Though the exact chemistry of the training beads and reaction is different than 
what is typically employed in the 10x single-cell reactions, our imaging results confirm 
detectable bead multiplets as previously reported2. Additionally, we show that bap, a 
computational algorithm designed to infer barcode multiplets, can be applied to 
sequenced scATAC-seq data from the 10x platform and confidently identify barcode 
multiplets. Further analyses of multiplets identified by bap indicate that putative 
heterogeneity of beads in the 10x reaction is the predominant driver of the surprisingly 
high rates of multiplets in these datasets. Moreover, our analyses of clonal cells marked 
by BCRs and TCRs further suggest that bead sequence heterogeneity may be an 
artifact present across multiple sources of 10x single-cell data.  
 
As single-cell approaches move toward the precise quantification of rare cell types, 
trajectories, perturbations, and clones, an understanding of potential artifacts is 
essential as their confounding effects may become exacerbated in large datasets. 
Additionally, as these measurements move toward clinical applications8, particularly in 
tumors where TCR repertoire may serve as a prognostic biomarker9, barcode multiplets 
may significantly confound interpretation. In some analyses (with <15% clones), we 
anticipate that many identified clonal cells may arise from bead multiplets. While our 
existing computational approach (bap) can facilitate the identification of barcode 
multiplets in scATAC-seq data, further experimental and computational tools are 
needed to more broadly identify these effects in RNA or genome sequencing droplet-
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based assays. We envision a combination of dense exogenous barcodes via cell 
hashing10 and evolved by CRISPR-Cas911 or intrinsic features such as clonal mutations, 
rearrangements, or highly correlated abundances with barcode sequence similarity 
metrics could be leveraged to better infer barcode multiplets. Such approaches would 
complement existing tools that robustly identify cell doublets12,13 and empty droplets14 
from droplet-based scRNA-seq and further mitigate hidden confounders in single-cell 
data. Until then, we suggest that inferences regarding rare cell events should be 
corroborated across multiple channels or technologies to validate interpretation.  
 
Taken together, our estimation and identification of barcode multiplets has a wide range 
of potential applications and confounding effects that influence widely-used droplet-
based single-cell assays. 
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Supplemental Figures 
 

 
Figure S1 - Supporting information for Figure 1. (a) Alternative field of view. Boxes highlight individual 
droplets shown in subsequent panels. (b-d) Examples of 2, 3, and 4+ beads per droplet, respectively. (e) 
Theoretical support for optimal bead loading under Poisson distribution assumptions. The dotted line (top) 
represents the theoretical maximum for 1 bead loaded into droplets, and the full distribution at this point is 
shown in the bar graph. (f) Quantification of beads per droplet for each replicate. Above each panel, the 
machine and the version of the chip used for the training kit is indicated. Error bars represent standard 
error of mean over 10 fields of view per replicate. (g) Example of presumed merged droplet containing 
multiple (6) beads.  

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/824003doi: bioRxiv preprint 

https://doi.org/10.1101/824003


 

13 

 
Figure S2 - Supporting information for Figure 2. An overview of the inputs and computational workflow 
for the application of bap to 10x scATAC-seq data.  
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Figure S3 - Supporting information for Figure 3. (a) Quantification of barcodes affected by barcode 
multiplets for the PBMC dataset generated with this work (“This Study”). (b) Percentage of barcode 
multiplets identified for different numbers of input barcodes (see Methods). (c) Visualization of seven 
additional barcode multiplets from the Public dataset. (d) Proportion of bead pairs occurring in the same 
chromatin accessibility-defined Louvain cluster compared to a permuted background. Error bars 
represent standard error of mean over 100 permutations per dataset. (e) Downsampling analysis of the 
dataset generated in this work (“This Study”). Barcode multiplets were examined at downsampled 
intervals from 10%-90% by units of 10%. The highlighted sample represents 40% downsampling and 
corresponds to a median 10,000 fragments detected per barcode. At all downsampled thresholds, we 
detected 0 pairs that were not present in the 100% sample. (f) Distribution of the restricted longest 
common subsequence (rLCS) for 1,000,000 randomly-sampled barcode pairs in the 10x barcode 
universe. A threshold at 6 is drawn for use in other analyses.  
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Figure S4 - Supporting information for Figure 4. (a) Overall summary of prevalence of B-cell clone
size before and after adjusting for observed rates of barcode multiplets in single-cell data.  

 
 
Supplemental Tables 
Table S1 - Quantifications of bead abundances in droplets across 30 fields of
view.  
Table S2 - Identified barcode multiplets in 10x Chromium scATAC-seq data.  
Table S3 - Highlighted barcode multiplets in Fig. 3d and S3c. 
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The public 10x scATAC-seq datasets are available for download at 
https://support.10xgenomics.com/single-cell-atac/datasets and the public NSCLC 
clonotypes at https://www.10xgenomics.com/solutions/vdj/.  
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Methods 

Loading and visualizing bead loading in droplets 

We used the 10x Chromium Controller Training Kit (PN-12024, PN-120238) to generate 
GEMs following manufacturer's instructions. The GEMs were carefully collected without 
disrupting the emulsion. After GEM formation, 10 µL of GEMs from each 10x channel 
was immediately loaded onto Countess Cell Counting Chamber Slides (C10228, 
Thermofisher) for visualization. We captured 10 bright field images under an Olympus 
IX70 microscope, and beads per droplet were counted based on manual inspection of 
images. To quantify the proportion of barcodes affected by multiple beads (barcode 
multiplets), we used the following equation: 

% multiplets = ∑ ���
�
��� / ∑ ���

�
���  �  100 

where � is the number of beads present in a given droplet and �� is the number of 
droplets with � beads. Here, the expression is capped at 4 as droplets with 4+ beads 
could not be reliably quantified. Thus, in these instances, the value of barcodes per 
droplet were conservatively assigned a count of 4. For the Zheng et. al2 data, we used 
the following abundances from previous imaging data: 15% of droplets had 0 beads; 
80% of droplets had 1 bead; and 5% of droplets had 2 beads. As neither the raw data 
nor the quantification values have been published, these values were approximated 
from an examination of a plot previously reported2. 

 

Profiling PBMCs using 10x scATAC-seq 

For 10x scATAC-seq experiments with PBMCs (PB003F, Allcells), frozen cells were 
quickly thawed in a 37°C water bath for about 30s and transferred to a 15 mL tube. 5 
mL of pre-warmed RPMI 1640 (ATCC, 30-2001) supplemented with 10% Fetal Bovine 
Serum (FBS) were added to the sample drop by drop. The cells were pelleted by 
spinning at 300g for 5min at room temperature. The supernatant was removed and cells 
were washed with 1 mL PBS. The cells were then pelleted again, resuspended in 1 mL 
PBS, and used for 10x ATAC v1.0 protocol following manufacturer's instructions. The 
corresponding library was sequenced on an Illumina NextSeq 500. 

 

Data preprocessing 

Raw sequencing data was processed with Cell Ranger ATAC version 1.0.0. Reads 
were aligned to the hg19 reference genome available on the 10x Genomics website. 
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Processed 10x PBMC datasets were downloaded from 
https://www.10xgenomics.com/resources/datasets/ from the version 1.1 PBMC 5k 
scATAC-seq dataset. The requisite input files for bap included the .bam file and the 
high-quality barcodes file. Additional annotations from Louvain clustering and t-SNE 
coordinates were also downloaded for downstream visualization and analyses. For the 
comparison of the chip technologies (Fig. 3g), we again downloaded the PBMC 5k 
scATAC-seq datasets from the “Chromium Next GEM ATAC Demonstration.”    

 

Processing 10x scATAC-seq data with bap 

In order to facilitate the processing of 10x scATAC-seq data with bap, no major 
substantive changes were required for the underlying barcode multiplet identification 
algorithm that has been previously outlined3. However, additional command-line options 
were added, including the --barcode-whitelist flag, which imports the error-corrected, 
quality-controlled barcodes identified as “cells” by CellRanger, enabling analysis of the 
filtered output from the default 10x pipeline. This functionality augments the default 
process in bap where abundant barcodes are identified via quantification and knee-
calling in terms of total reads observed per barcode. Versions 0.5.9+ of bap facilitate full 
analysis and merging of barcode multiplets with 10x scATAC-seq data.  

 

In silico mixing experiment 

Using two different public PBMC 5k datasets, we sought to determine a putative false 
positive rate for the application of bap to 10x scATAC-seq data. Here, we denoted the 
PBMC-5k “Public” dataset as Channel 1 and the PBMC-5k from the NextGEM beads as 
Channel 2. We modified the CB tags (which contains the error-corrected barcodes) in 
the .bam files for each channel to ensure that each barcode for each experiment was 
uniquely identifiable. These modified bam files were subsequently merged. Next, the 
same modification to the barcodes was made, and the two high-quality barcodes files 
were combined into a single file. We then executed bap using the default parameters 
with this merged .bam and merged barcode list file. Using a single threshold determined 
by the knee call, we identified pairs of barcodes originating from the same or different 
channels as summarized in Fig. 2c-e. The top 500,000 barcode pairs were plotted in 
rank order for each of these three plots, and the same single threshold was visualized in 
all three panels. 

 

Assigning bead barcodes to multiplets 
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The identification of multiplets follows the same strategy previously described3. In brief, 
a per-barcode pair summary statistic (modified jaccard index) is computed using the 
one base pair locations of Tn5 insertions. We emphasize that this statistic has been 
validated using an orthogonal oligonucleotide library as we have previously described3. 
From this distribution of millions of barcode pairs, we computationally infer an inflection 
point threshold 	 (similar to a “knee-call” used by CellRanger to identify true cell 
barcodes). To derive multiplets, we iteratively consider the barcode pairs (e.g. ��and ��) 
with the highest remaining overlap score and append any additional barcodes whose 
overlap value with either ��or ��exceeds 	. For example, if the statistic between ��and 
�� exceeds 	, then ��, ��, and ��are assigned to one multiplet. This process continues 
until all barcodes are assigned a multiplet that had an overlap score exceeding 	. All 
remaining barcodes are assigned as singlets. To facilitate processing of the 10x 
scATAC-seq data, we modified the command line interface and internal data structures 
of bap, but the conceptual basis and execution is the same as previously described3. 

 

Classifying and quantifying complex beads 

To determine multiplets driven by putative bead barcode synthesis errors, we 
considered all pairs of barcodes within an annotated multiplet and computed the 
restricted longest common subsequence (rLCS) between them. Explicitly, the rLCS is 
the largest consecutive number of characters that match between two strings without 
shifting the strings. We note the necessity of defining a distance metric (rLCS) that is 
distinguished from the longest common subsequence (LCS) as our metric does not 
allow insertions or deletions when performing the string matching. Additionally, rLCS is 
distinguished from the Hamming distance as the matching characters must all occur in a 
continuous unit (which is not enforced by Hamming).  

To determine an appropriate threshold to classify multiplets as having originated from 
multiple beads or a single heterogeneous bead, we established a null distribution of the 
rLCS shown in Fig. S3f. To achieve this, 1,000,000 random draws of barcode pairs 
were determined and the rLCS was computed. We selected an rLCS threshold of 6 as 
pairs with an rLCS ≥6 represented less than 0.5% of the data, which was used to 
classify multiplets from the real data (Fig. 3f). To determine whether the number of 
fragments was similarly captured between barcodes contained in multiplets, we 
computed the pairwise percent difference of the log2 unique fragments (“passed_filter” 
in the CellRanger-ATAC .csv file). The per-multiplet average of the mean pairwise 
percent difference is plotted in the boxplots in Fig. 3g, and we used a two-sided 
Kolmogorov–Smirnov test to verify that the droplets containing multiple beads had a 
more even ratio of reads compared to multiplets driven by bead heterogeneity.   
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To quantify the percent of beads that had heterogeneity, the numerator was the number 
of multiplets identified with an rLCS ≥ 6 (from Fig. 3f). The denominator was the total 
number of barcodes analyzed while 1) still counting all barcodes in perceived bead 
multiplets but 2) collapsing the heterogenous barcode multiplets to only 1 barcode.  

 

Chi-square test for cluster / multiplet 

To test for association between barcode multiplets and cluster identification, we 
performed a chi-square test for independence. For the � Louvian clusters identified by 
CellRanger, we assembled a 2�� contingency table, tabulating barcodes into 
corresponding entries in the contingency table. The two rows specified whether each 
bead barcode was predicted to occur in a multiplet or not as identified by bap. P-values 
were computed using the chi-squared statistic with � � 1 degrees of freedom.  

 

Evaluation of barcode multiplets with different numbers of input barcodes 

To test the abundance of barcode multiplets with different numbers of considered 
barcodes, we executed bap with 5,000-10,000 barcodes at intervals of 1,000 barcodes 
(6 additional executions) in addition to the 5,205 found by CellRanger’s knee call. Each 
barcode set was nominated based on the ranking of fragments in peaks, the same 
metric used by CellRanger to determine an optimal threshold. Our results (Fig. S3b) 
show that the inferred cutoff underestimates the barcode multiplets in the Public data, 
consistent with our imaging results. We interpret this plot to show that barcode 
multiplets often occur near the inflection point (consistent with these barcodes having 
fewer reads due to the fractionated data). However, this rate flattens when additional 
barcodes added do not represent multiplets but other ambient fragments that cannot be 
associated with a highly-observed barcode. 

 

Enrichment for barcode multiplet pairs in the same cluster 

For each barcode multiplet identified by bap, we considered all possible pairwise 
combinations of constitutive barcodes. For example, multiplets consisting of precisely 
two bead barcodes had one pair whereas multiplets consisting of four barcodes 
contained six barcode pairs (all combinations; choose two). For these pairs, we 
computed the proportion that occurred in the same Louvain cluster produced by the 
default CellRanger execution. A background rate was generated by performing 100 
permutations of the full dataset where cluster labels were permuted.  
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Downsampling analyses 

To evaluate the stability of the bap statistic as a function of coverage, we downsampled 
the dataset generated here (“This Study”) at intervals of 10% and reran bap on the 
resulting downsampled .bam files. Here, we used the full set of high-quality barcodes 
determined from the CellRanger execution on the full dataset. Moreover, we determined 
the set of identified barcode pairs from the full dataset as a ‘true positive’ set of pairs to 
compare the downsampled results. Fig. S3e shows the results of this downsampling, 
including the 40% subsample (that corresponded to a median 10,132 fragments per 
barcode) that achieved >90% sensitivity in detecting the set of barcode pairs from the 
full data. Critically, in each of the 9 downsampled executions of bap, no barcode pairs 
were identified that were not present in the full dataset.  

 

Estimation of multiplet-adjust BCR / TCR clonotype abundances 

In order to estimate the number of cells contributing to each clonotype (defined by a 
unique BCR or TCR sequence), we downloaded the per-barcode clone identification 
files (BCR: vdj_v1_hs_nsclc_b_all_contig_annotations.csv; TCR: 
vdj_v1_hs_nsclc_t_clonotypes.csv) from the 10x CellRanger output for the public 
NSCLC tumor dataset. Here, each barcode is assigned a clonotype group when 
detected with high confidence in the CellRanger pipeline. To simulate the occurrence of 
barcode multiplets, we executed the following simulation procedure. 

For each barcode 
 with a total of � barcodes in the experiment (all assigned a 
clonotype), we simulate a corresponding multiplet value �� which defines the barcode 
multiplicity (i.e. the number of unique barcodes in the droplet) associated with the 
specific barcode 
. This simulation was performed by drawing from the following 
probability distribution function: 

���� � 1�  � 0.85;  ���� � 2�  � 0.1;  ���� � 3�  � 0.02;  ���� � 4�  � 0.02;  ���� � 5�  � 0.01 

Importantly, the values defined in the probability distribution function are grounded in 
the empirical estimates from bap across our two datasets (see Fig. 4d and Fig. 4e) but 
likely represent conservative estimates assuming a similar distribution of barcode 
multiplets from scATAC-seq holds in this assay. In other words, ���� � 1�  �  0.85 is 
likely overestimated and ���� �  5� � 0is underestimated. Here, we denote the set of 
values �� as �(of length �). To account for � clonotypes with exactly one barcode that 
could only be generated from a barcode singlet, we define a new set �� such that 
�� � � � � where |�| � � and ��� � �, ��  � 1. Thus, the elements of �� represent the 
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barcode multiplicities for clonotypes annotated with two or more cells.  

To estimate the multiplet-adjusted cell number per clonotype, we iteratively sample from 
the set �� until we have observed sufficient barcode numbers to explain the original 
clonotype abundances. More precisely, for a given clonotype   comprised of !� barcodes 

(from the raw CellRanger output), we seek to compute the multiplet-adjusted number of 
cells !�

 �. To achieve this, we sample from �� until the sum meets or exceeds !�. !�
 � then 

is the number of draws corresponding to the number of multiplet-aware droplets needed 
to explain the clonotype abundance and can be interpreted as the number of cells 
present in the clone under the simulation setting. Last, the new per-clonotype 
abundances in the library are then represented by the union of � with the set of all !�. 

These multiplet-adjusted abundances were computed over 100 iterations, and the 
numbers reported in the main text represent the mean over these simulations. We note 
that an R script that achieves this approach is available in the repository noted in Code 
Availability.  

Finally, we define the “clone false discovery rate” as the proportion of clonotypes with at 
least 2 cells that then becomes explained by a barcode multiplet (i.e. !�

 � � 1; !� � 1) 

under our simulation setting. The numbers reported in the main text represent means 
for each of the BCR and TCR clones over the 100 simulations.  

 

Determination of multiplet-driven clonotypes  

In scATAC-seq data, barcode multiplets were identified using our approach previously 
described. However, no such approach exists for scRNA-seq. Thus, to identify potential 
multiplets, we were required to consider potential multiplets defined only by barcode 
similarity, which would be reflective of synthesis errors resulting in a bead with 
heterogeneous barcodes (Fig. 1a). To determine these potential multiplets, we 
considered all pairs of barcodes within an annotated clonotype and computed the 
restricted longest common subsequence (rLCS) between them. Analysis of the 
distribution of pairs (Fig. S4a) within clonotype labels revealed was used to identify the 
clones shown in Fig. 4. When computing a permuted distribution (Fig. S4a), labels of 
clonotypes were shuffled such that random barcode pairs were considered.  
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