
 

 

MONOSYNAPTIC INPUTS TO EXCITATORY AND INHIBITORY NEURONS OF THE 

INTERMEDIATE AND DEEP LAYERS OF THE SUPERIOR COLLICULUS 

 

Abbreviated title: MONOSYNAPTIC INPUTS TO SUPERIOR COLLICULUS 

 

Ted K. Doykos1,2, Jesse I. Gilmer1,2, Abigail L.Person1,2,*, Gidon Felsen1,2,* 

 

1Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045 USA 

2Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, CO 80045 USA 

*Joint senior authors  

 

ACKNOWLEDGEMENTS  

We thank Nathan D. Baker for help with histology and imaging. Light microscopy was performed at the 

University of Colorado Anschutz Medical Campus Advance Light Microscopy Core supported in part by Rocky 

Mountain Neurological Disorders Core Grant Number P30NS048154. This work was supported by the 

NIH/NINDS (R01NS079518) and NIH (R01NS084996).  

 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/824250doi: bioRxiv preprint 

https://doi.org/10.1101/824250


 

ABSTRACT  

The intermediate and deep layers of the midbrain superior colliculus (SC) are a key locus for several 

critical functions, including spatial attention, multisensory integration and behavioral responses. While the SC is 

known to integrate input from a variety of brain regions, progress in understanding how these inputs contribute 

to SC-dependent functions has been hindered by the paucity of data on innervation patterns to specific types of 

SC neurons. Here, we use G-deleted rabies virus-mediated monosynaptic tracing to identify inputs to excitatory 

and inhibitory neurons of the intermediate and deep SC. We observed stronger and more numerous projections 

to excitatory than inhibitory SC neurons. However, a subpopulation of excitatory neurons thought to mediate 

behavioral output received weaker inputs, from far fewer brain regions, than the overall population of excitatory 

neurons. Additionally, extrinsic inputs tended to target rostral excitatory and inhibitory SC neurons more 

strongly than their caudal counterparts, and commissural SC neurons tended to project to similar rostrocaudal 

positions in the other SC. Our findings support the view that active intrinsic processes are critical to SC-

dependent functions, and will enable the examination of how specific inputs contribute to these functions. 
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1. INTRODUCTION 

The superior colliculus (SC) is a highly conserved midbrain structure critical for orienting behavior 

(Basso and May, 2017), as well as other associated functions such as spatial attention (Krauzlis et al., 2013) and 

multisensory integration (Stein and Stanford, 2008). The SC is organized into a superficial visual layer, which 

receives projections from the retina (Apter, 1945) and descending inputs from the neocortex (Kawamura et al., 

1974), and intermediate and deep layers (SCid) that receive widespread input from several cortical and 

subcortical regions (Sparks and Hartwich-Young, 1989). The SCid is organized into a topographic map of 

movement space, whereby small amplitude orienting movements are encoded rostrally and larger amplitude 

movements are represented caudally (Robinson, 1972; Wang et al., 2015). While much of our understanding of 

the role of the SCid during behavior originated with work in primates making saccades to visual targets 

(Goldberg and Wurtz, 1972a; b; Wurtz and Goldberg, 1972; Lee et al., 1988), other work across a wider range 

of species points to a broader involvement of the SCid (or the optic tectum (OT) the nonmammalian homologue 

of the SC) in other orienting behaviors (Sparks, 1999). For example, SCid/OT activity encodes orienting 

movements of the head in cats (Guillaume and Pélisson, 2001), monkeys (Freedman et al., 1996; Corneil et al., 

2002; Walton et al., 2007), owls (du Lac and Knudsen, 1991), frogs (Meyer and Sperry, 1973), and bats 

(Valentine et al., 2002). SCid/OT neural activity also controls limb movements in cats (Courjon et al., 2004, 

2015), monkeys (Werner et al., 1997; Philipp and Hoffmann, 2014), and mice (Steinmetz et al., 2018) as well as 

full body orienting movements in goldfish (Herrero et al., 1998) and rodents (Felsen and Mainen, 2008; 

Stubblefield et al., 2013). In addition to its role in orienting to targets across a wide range of evolutionarily 

diverse species, the SC is also critical for producing escape behavior away from aversive stimuli (Dean et al., 

1986, 1989; Sahibzada et al., 1986). 

 Alongside our understanding of the SCid’s roles in behavior, a great deal is also known about which 

brain centers project to the SCid (Edwards et al., 1979; Sparks and Hartwich-Young, 1989; Wolf et al., 2015). 

Several studies have employed anterograde and/or retrograde tracers demonstrating SCid afferents originating 

from cerebral cortex (Garey et al., 1968; Edwards et al., 1979; Fries, 1984), thalamic areas (Edwards et al., 

1974, 1979; Graybiel, 1974; Grofová et al., 1978), cerebellar nuclei (Batton et al., 1977; Kawamura et al., 
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1982), and several mesencephalic regions (Hopkins and Niessen, 1976; Grofová et al., 1978; Edwards et al., 

1979). Potential roles for individual SCid afferents range from transmitting behaviorally-relevant information 

about visual input (frontal eye field (FEF): Segraves and Goldberg, 1987; Sommer and Wurtz, 2000, 2001; 

Wurtz et al., 2001; lateral interparietal cortex: Paré and Wurtz, 2001; Wurtz et al., 2001; V1: Liang et al., 2015), 

recent experience (FEF: Sommer and Wurtz, 2001; M2: Duan et al., 2019), and target value (substantia nigra 

pars reticulata (SNr): Handel and Glimcher, 2000; Basso and Wurtz, 2002; Sato and Hikosaka, 2002; Bryden et 

al., 2011), to more active roles such as saccade initiation (FEF: Schiller et al., 1980; Hanes and Wurtz, 2001) 

and cessation (cerebellum: Goffart et al., 1998).  

While these and other studies point to an integrative role for the SC in mediating behavior (Wolf et al., 

2015), the SCid itself contains a variety of cell types, and in order to fully elucidate its functional circuitry we 

need to better understand its cell-type-specific inputs (Oliveira and Yonehara, 2018; Masullo et al., 2019). As a 

first step, we focused on inputs to excitatory and inhibitory SCid neurons (“eSCNs” and “iSCNs,” respectively). 

The SCid is composed of ~70% glutamatergic cells and ~30% GABAergic cells (Mize, 1992) each with 

projection patterns within and between SC layers, to the contralateral SC, and out of the SC (Pettit et al., 1999; 

Isa and Hall, 2009; Sooksawate et al., 2011; Ghitani et al., 2014), suggesting that the interactions between 

eSCNs and iSCNs may play a key role in the SCid computations underlying orienting behaviors. Thus, a critical 

piece of understanding SCid function lies in discovering the specific projection patterns to eSCNs and iSCNs. 

Recent technological advances in mouse transgenics (Branda and Dymecki, 2004) and transsynaptic tracers 

(Wickersham et al., 2007; Wall et al., 2010; Luo et al., 2018) have allowed us to probe the organization of 

microcircuits with greater specificity. Thus, we leveraged Cre-lox recombination in conjunction with a 

transsynaptic retrograde rabies virus tracer strategy to label monosynaptic inputs to eSCNs and iSCNs, as well 

as to a subset of brainstem-projecting eSCNs neurons thought to drive orienting movements (Sooksawate et al., 

2005, 2008). We found that projection patterns differed to these populations, suggesting cell-type-specific input 

integration, which has important implications for SCid function.  

 

2. MATERIALS AND METHODS 
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Animals 

All procedures followed the National Institutes of Health Guidelines and were approved by the 

Institutional Animal Care and Use Committee at the University of Colorado Anschutz Medical Campus. 

Animals were housed in an environmentally controlled room, kept on a 12-hour light/dark cycle and had ad 

libitum access to food and water. Adult mice of both sexes were used in these experiments (n = 7 males; n = 5 

females). All mice were adult C57BL/6 (including Jackson labs homozygous Vglut2-Cre (RRID: 

IMSR_JAX:028863, Vong et al., 2011) and heterozygous Gad2-Cre (RRID: IMSR_JAX:010802, Taniguchi et 

al., 2011)) bred in house. 

 

Viral injections 

AAV1-EF1.Flex.TVA.mCherry (UNC Vector Core; Watabe-Uchida et al., 2012) and 

AAV9.Flex.H2B.GFP.2A.oG (Salk Gene Transfer, Targeting and Therapeutics Core; Kim et al., 2016) were co-

injected (100 nL of each; vortexed together after combining in equal proportions; Fig. 1A) unilaterally into the 

SCid of Vglut2-Cre, Gad2-Cre, and wild-type mice. After a three week incubation period, a second injection of 

EnvA.SAD∆G.eGFP virus was made at the same location (Salk Gene Transfer, Targeting and Therapeutics 

Core; Wickersham et al., 2007; Wall et al., 2010; Kim et al., 2016; Fig. 1A). Rabies virus injections (400 nL) 

were made at a 20° angle relative to vertical to avoid labeling cells in the superficial SC. Injection coordinates 

were varied along the rostrocaudal and dorsoventral axes and were made at -0.75 mm or -0.8 mm with respect 

to the midline. Mice were then sacrificed after an additional week and prepared for histological examination.  

In experiments where rabies virus infection was targeted to SCid output neurons, the above-described 

procedures were followed except wild-type mice were used and during the first surgery a retrograde Cre virus 

(CAV2-Cre; Peltékian et al., 2002) was injected into the medial pontine reticular formation (MPRF) 

contralateral to the injected SCid, a structure known to receive inputs from the SCid (Huerta and Harting, 1982; 

Redgrave et al., 1990; Isa and Sasaki, 2002). 
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Figure 1. Rabies expression and identification of starter 

neurons 

(A) Experimental strategy for targeting rabies virus to 

eSCNs and iSCNs. (B) Example image of an SCid injection 

site. Green: oG-GFP and Rabies-GFP. Magenta: TVA-

mCherry. White box indicates magnified area shown in C-

E, and dashed outlines depict borders of the SCid and 

surrounding brain areas. (C-E) Boxed area in B. 

Arrowheads indicate double-labeled starter neurons. (F) 

Dots indicate the location of the identified starter neurons 

displayed in panel B. Arrowheads indicate the starter 

neurons highlighted in C-E. Scale bars: 500 µm (B, F); 20 

µm (C-E). Abbreviations: anterior pretectal nucleus (APT); 

inferior colliculus (IC); mesencephalic reticular formation 

(mRt); olivary pretectal nucleus (OPT); nucleus of the optic 

tract (OT); posterior pretectal nucleus (PPT); precuneiform 

area (PrCnF).  

 

Tissue preparation and imaging  

Mice were overdosed with an intraperitoneal 

injection of a sodium pentobarbital solution, 

Pentobarbital (Sigma-Aldrich Inc.), and perfused 

transcardially with 0.9% saline followed by 4% 

paraformaldehyde. Brains were removed and 

postfixed for 4-24 hours then cryoprotected in 30% 

sucrose. Tissue was sliced in 40 µm serial sagittal 

sections using a freezing microtome and stored in 

0.1 M phosphate buffered saline. Every third 

section was Nissl stained (Thermo Fisher Scientific, 

Cat# N21483, RRID: AB_2572212), mounted onto 

slides, and imaged in three colors using a slide-

scanning microscope (Leica DM6000B 

Epifluorescence & Brightfield Slide Scanner; Leica HC PL APO 10x Objective with a 0.4 numerical aperture 

air; Objective Imaging Surveyor, V7.0.0.9 MT). Images were then converted to TIF files (OIViewer 

Application V9.0.2.0) for subsequent analysis. An additional set of images used for starter neuron analysis were 

acquired in sections near the injection site.  
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Images of input neurons displayed in Figure 2 were acquired with an Olympus IX81 with a disk 

scanning unit for confocal imaging (Olympus UPlanFL 20x Objective, 0.5 numerical aperture air) controlled 

with µManager software (https://micro-manager.org/, RRID: SCR_016865, Edelstein et al., 2010, 2014). Tile 

correction was performed in ImageJ (https://imagej.net/, RRID: SCR_003070, Rueden et al., 2017)/FIJI 

(http://fiji.sc, RRID: SCR_002285, Schindelin et al., 2012; Peng et al., 2017). 

 

Starter neuron quantification and brain area classification:  

Rabies positive “starter neurons” were identified in ImageJ (FIJI) based on the following criteria: 1) the 

presence of GFP and mCherry, 2) visible neurites (Fig. 1C-E), and 3) fully overlapping mCherry-GFP signal. 

Neurons in which the mCherry signal extended beyond the borders of the GFP signal were not counted, since 

such labeling was more consistent with overlap of histone-tagged oG-GFP, not rabies-GFP, which readily fills 

cells.  

Starter neuron coordinates were then exported to a MATLAB 

(http://www.mathworks.com/products/matlab/, RRID: SCR_001622) custom-written image viewer and 

classified as being within the SCid, the superficial SC, or any other region. Animals were only included in 

analyses if the majority of their starter neurons were located within the SC and the majority of those neurons 

were located within the SCid.  

 

Input neuron quantification and brain area classification:   

GFP-expressing input neurons were automatically identified using a semantic segmentation artificial 

neural network (SSN). The SSN was trained in MATLAB (Computer Vision System Toolbox) using custom-

written scripts, to identify somata based on previously identified cell morphological data.  

We used an initial training set of 4327 labelled images from 44 tissue sections obtained from 6 mice. 

2581 of the sample images were images of known cells, and the remaining 1746 were images that were verified 

not to contain any cells, to provide examples of negative data. Each image was a 200 x 200 pixel image either 

centered on the cell coordinates, or arbitrarily chosen from the images of the sections. Tissue containing labeled 
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and unlabeled neurons was used for semantic labeling in the training set. Cell body morphology was estimated 

by taking pre-identified soma coordinates and using the MATLAB ‘regionprops’ function to isolate features in 

the selected images. This process was optimized to find the human-identified cells within an image. If the cell 

body boundaries could not be resolved algorithmically, a circle with a radius of six pixels was drawn centered 

on the cell coordinates instead.  

The extracted images were prepared for SSN usage using a custom MATLAB script, and the network 

was trained iteratively to optimize accuracy, using the following method: after each round of training and 

scoring, misses were saved as an image and replicated in the training data pool, and false positives were added 

to the negative image training pool. After several iterations, the final training dataset contained 16,443 images.   

To validate that the network performed at an accuracy similar to a human observer, three experimenters 

who had not previously labelled images (A.P., G.F., and J.G.) performed the image coordinate identification 

process on 5 sample images. The agreement in labeling between the SSN and experimenters was comparable to 

inter-experimenter agreement (agreement between experimenters on detected cells: 69.1% ± 6.3% of all cells 

[standard deviation]; experimenter agreement with deep learning algorithm: 70.7% ± 8.3% [standard 

deviation]). 

A quality control step was added to ensure that machine identified neurons were in agreement with 

human assessment. Each machine identified neuron was output as an image, and false positives were manually 

deleted. Thus, the final dataset included only neurons remaining after manual curation.  The coordinates of SSN 

identified neurons were then exported to a MATLAB custom-written image viewer and classified according to 

brain area based on a standard mouse atlas (Paxinos and Franklin, 2013). We mainly focused on descending 

projections that were sufficiently far from the injection site to exclude contamination by starter neurons (See 

Results).  

 

Starter and input neuron analyses 

Input neuron counts in each brain area were normalized to the number of SCid starter neurons in that 

mouse to yield a measure of “projection strength”, a standard metric to correct for variability in viral expression 
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(Watabe-Uchida et al., 2012; Sun et al., 2014). Subsequent analyses of projection strength were performed in 

MATLAB. Brain areas included in analyses comparing eSCNs to iSCNs had projection strengths to eSCNs or 

iSCNs > 0.01 (> 1 input neuron per 100 starter neurons). Areas with projection strengths to iSCNs > 0.005 were 

used in Figure 5C and 5D. The laterality preference in Figure 4 was computed as: LP = (2 x C) – 1, where C is 

the fraction of contralateral inputs. This yielded normalized values between -1 (strongest ipsilateral preference) 

and 1 (strongest contralateral preference). Random inputs in Figure 7F were obtained by averaging iterations of 

randomly generated input neuron positions (1000 iterations; 1707 random input neuron positions [eSCNs] or 

145 random input neuron positions [iSCNs] per iteration).    

The normalized rostrocaudal positions of starter and input neurons used in Figures 5 and 7 were 

obtained by setting the rostral-most and caudal-most extents of the SCid in each section to 0 and 1, respectively, 

and determining the fractional location of each neuron along the rostrocaudal axis.   

  

3. RESULTS 

Rabies expression and identification of starter neurons 

We used a modified rabies virus, EnvA-∆G-Rabies-GFP, to transsynaptically label neurons projecting 

monosynaptically to eSCNs in Vglut2-Cre (RRID: IMSR_JAX:028863, Vong et al., 2011) or iSCNs in Gad2-

Cre mice (RRID: IMSR_JAX:010802, Taniguchi et al., 2011; Fig. 1A). Cell-type specificity of viral infection 

and spread was achieved using a Cre-dependent trans-complementation strategy (Wickersham et al., 2007; Wall 

et al., 2010; Watabe-Uchida et al., 2012; Kim et al., 2016; Beitzel et al., 2017). The majority of rabies “starter” 

neurons were located within the SCid (Fig. 2B, F). Only cells with visible neurites that were both GFP+ and 

mCherry+ were classified as starter neurons (see Materials and Methods; Fig. 1C-E). Subsequent analyses were 

then used to identify input neurons and map them according to brain area (see Materials and Methods). Neuron 

counts in each area were then normalized to the number of SCid starter neurons to yield a measure of “projection 

strength”, a standard metric to correct for variability in viral expression (Watabe-Uchida et al., 2012; Sun et al., 

2014). Using this approach we quantified projection patterns to eSCNs and iSCNs. 
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Extrinsic inputs to eSCNs and iSCNs  

We found that eSCNs receive a greater number and a more diverse set of extrinsic inputs than iSCNs, 

even after accounting for the fact that eSCNs are more numerous than iSCNs. Strikingly, we observed much 

stronger projections to eSCNs than iSCNs, both across the brain (eSCN projection strength: 15.46 ± 6.56 

[median ± median absolute deviation], n = 4 mice; iSCN projection strength: 0.73 ± 0.59 [median ± median 

absolute deviation], n = 6 mice; Wilcoxon rank sum test [one-tailed], p < 0.005; Fig. 2A; Fig. 3B), and within 

individual brain areas (Fig. 2B-K; Fig. 3A-B). With respect to individual brain areas, 36.73% (18/49) were 

found to send significantly stronger projections to eSCNs than iSCNs (Wilcoxon rank sum test [one-tailed]; p < 

0.05; Fig. 3A). We also found that eSCNs tend to receive more inputs than iSCNs when input areas are grouped 

 

Figure 2. eSCNs receive more extrinsic inputs than iSCNs 

Representative sagittal sections depicting inputs ipsilateral (top row) and contralateral (bottom row) to the injected SC id in Vglut2-

Cre (left column) and Gad2-Cre mice. Distance of section from midline (in mm) indicated by values in the lower left corner. (B-K) 

Representative images of input neurons to eSCNs (B-F) and iSCNs (G-K). Scale bars: 1 mm (A); 100 µm (B-K). (L) Injection 

sites depicting SCid (gray dashed outline) and location of identified starter neurons (black dots) in a representative sagittal plane 

(between 0.36 mm and 1.08 mm lateral to midline) from each mouse. Dashed boxes indicate the two mice displayed in A-K. 
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by developmentally-defined categories of telencephalon, diencephalon, mesencephalon, and cerebellum 

(Wilcoxon rank sum test [one-tailed]; p < 0.01; n = 4 mice [eSCNs]; n = 6 mice [iSCNs]; Fig. 3C).     

eSCNs and iSCNs tended to receive their strongest projections from the same brain areas. The areas 

with the most prominent projections to the SCid were zona incerta and SNr, although inputs from the 

 

Figure 3. Projection strength to eSCNs and iSCNs 

(A) Projection strength to eSCNs (left) and iSCNs (right) for each brain area. Note eSCNs and iSCNs are plotted on different 

scales for visibility. (B) Direct comparison between projection strength to eSCNs and iSCNs, shown on the same scale. (C) Total 

projection strength to eSCNs and iSCNs from developmentally defined brain regions. Tel (telencephalon); Cb (cerebellum); Mes 

(mesencephalon); Di (Diencephalon). (D) Total projection strength to eSCNs and iSCNs from regions of cortex and thalamus 

grouped according to sensory or motor function. Mean ± SEM (eSCNs: n = 4 mice; iSCNs: n = 6 mice).  *: p<0.05; **: p<0.01. 
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pregeniculate nucleus of the prethalamus made up a substantial proportion (12%) of all inputs to iSCNs (Fig. 

3A). Additionally, eSCNs and iSCNs both received their strongest cortical projections from visual and cingulate 

cortex and their strongest cerebellar projections from lateral and intermediate cerebellar nuclei (Fig. 3A).  

Interestingly, when we classified cortical or thalamic brain areas as “sensory” or “motor” (Watson et al., 

2012) we found that iSCNs were targeted by sensory areas more than motor areas (Wilcoxon signed rank test 

[two-tailed]; n = 6 mice; p = 0.0313; Fig. 3D); however, this was not true of eSCNs (Wilcoxon signed rank test 

[two-tailed]; n = 4 mice; p = 0.125; 

Fig. 3D). Taken together, these 

results suggest that eSCNs and 

iSCNs receive their strongest inputs 

from a similar set of brain areas, but 

that eSCNs receive a greater 

number and more diverse set of 

inputs overall.   

 

Laterality of inputs to eSCNs and 

iSCNs  

Consistent with previous 

findings (Sparks and Hartwich-

Young, 1989), the SCid exhibited 

much stronger ipsilateral than 

contralateral input from most brain 

regions (Fig. 4; see Materials and 

Methods). Cerebellotectal 

projections deviated from this 
 

Figure 4. Laterality of SC inputs 

Laterality preference to eSCNs (left) and iSCNs (right) for each brain area. Areas 

ordered as in Figure 3. Mean ± SEM (eSCNs: n = 4 mice; iSCNs: n = 6 mice).  
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pattern, which is consistent with the well-established robust interconnectivity of the cerebellum with the 

contralateral side of the brain. The ipsilateral preferences from other areas were most strongly observed in 

inputs to iSCNs; however, input preference to eSCNs, specifically from cortical and thalamic areas, ranged 

from strongly ipsilateral to weakly contralateral (Fig. 4). For example, inputs to eSCNs from primary 

somatosensory cortex were almost entirely ipsilateral, while eSCN inputs from agranular insular cortex had a 

mild contralateral preference. Our observations indicate that overall, eSCNs receive more bilateral input than 

iSCNs, suggesting that eSCNs may be more involved in integrating sensory inputs from both sides of the body, 

while iSCNs may process more exclusively ipsilateral input.  

 

Relationship between projection strength and rostrocaudal position of starter neurons 

The SCid has a well-

characterized topographic 

organization along its 

rostrocaudal axis, with 

small orienting movements 

encoded rostrally, and 

larger orienting movements 

represented caudally 

(Sahibzada et al., 1986; 

Gandhi and Katnani, 2011). 

We therefore examined the 

extent to which input 

neuron pattern depended 

upon the rostrocaudal 

position of starter neurons 

within the SCid. Across mice, we labeled both eSCNs and iSCNs at several points along the rostrocaudal axis 

 
Figure 5. Extrinsic inputs favor the rostral SC 
(A) Normalized rostrocaudal position of the starter neuron population for each mouse. (B) 

Pearson’s correlation between mean rostrocaudal position of starter neurons and projection 

strength from SNr to iSCNs. (C, D) Correlation coefficients relating mean projection strength 

to rostrocaudal index of injection, as in B, for all areas: eSCNs (C); iSCNs (D). Dashed line at 

x = 0 indicates no rostrocaudal bias. 
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(Fig. 5A). We observed a tendency across areas for stronger projection strengths to be associated with more 

rostrally located starter neurons: (eSCN: median Pearson Correlation Coefficient r = -0.36, p = 0.0024, n = 49 

brain areas [Wilcoxon signed rank test]; iSCN median Pearson Correlation Coefficient r = -0.41, p = 0.0044, n 

= 16 brain areas [Wilcoxon signed rank test]; Fig. 5C, D). This trend was observed in both cell types. Overall, 

these findings indicate that eSCNs and iSCNs toward the rostral pole of the SCid receive moderately more 

inputs than their caudal counterparts.   

 

Extrinsic inputs to subset of tectofugal eSCNs  

eSCNs comprise about 

70% of SCid neurons (Mize, 

1992) and are diverse with 

respect to morphology and 

projection patterns (Pettit et 

al., 1999; Isa and Hall, 2009; 

Sooksawate et al., 2011; 

Ghitani et al., 2014). As a first 

step toward identifying 

patterns of inputs to putative 

subclasses of eSCNs, we 

focused on inputs to crossed 

tecto-reticular neurons (“CTRNs”) which are thought to be critical drivers of orienting movements and have 

been characterized in slice experiments (Sooksawate et al., 2005, 2008). We combined our Cre-dependent 

rabies trans-complementation approach with a retrograde Cre virus (Peltékian et al., 2002) injection into the 

contralateral MPRF of wild-type mice (see Materials and Methods; Fig 6A), such that starter neurons would be 

limited to MPRF-projecting SCid neurons. We found that secondary motor cortex, the lateral cerebellar nuclei, 

SNr, and zona incerta were the only areas that provided measurable input to CTRNs (Fig. 6B), and that eSCNs 

 

Figure 6: CTRNs receive fewer inputs than eSCNs 

Experimental strategy targeting CTRNs. (B) Projection strength from areas targeting 

CTRNs. Mean ± SEM (n = 2 mice). (C) Projection strength to eSCNs vs. CTRNs. Mean ± 

SEM (eSCNs: n = 4 mice; CTRNs: n = 2 mice). 
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received much stronger projections than CTRNs from these and other areas (Wilcoxon signed rank test [one-

tailed]; p < 2 x 109; n = 49 brain areas; Fig. 6C). There was no difference in the laterality preference to eSCNs 

and CTRNs. Together, these results indicate that, although CTRNs play a direct role in the orienting motor 

output function of the SCid, they receive a smaller and less diverse set of extrinsic inputs than the general eSCN 

population. 

Layer-specific targeting of contralateral SC 

Commissural SC neurons are thought to play a role in coordinating activity between the two SCs (Takahashi et 

al., 2005, 2007, 2010). To broaden our understanding of these inter-SC projection patterns, we examined the 

cell-type-, layer- and, rostrocaudal-specificity of inputs from the contralateral SC. We found that eSCNs 

 
Figure 7: Layer-specific targeting of contralateral SC 
(A-B) Contralateral SC inputs to eSCNs (A) or iSCNs (B). Dashed lines depict the borders of the superficial SC, SC id, and 

underlying periaqueductal gray. (C) Projection strength from the contralateral SCid and superficial SC to eSCNs (n = 4 mice), 

iSCNs (n = 6 mice), and CTRNs (n = 2 mice). Mean ± SEM; **: p<0.01. (D) Normalized rostrocaudal position of excitatory SC id 

starter and input neurons in the contralateral SCid for two Vglut2-Cre mice. (E) Same as in D except for inhibitory SCid starter 

neurons in two Gad2-Cre mice. (F) Normalized rostrocaudal distance between input neurons and mean position of starter neurons 

in each mouse, compared to expected distance for randomly distributed input neurons. eSCNs (top): n = 4 mice; iSCNs (bottom): 

n = 6 mice. 
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received more input from the contralateral SCid, as well as the superficial SC, than iSCNs (Wilcoxon rank sum 

test [one-tailed]; n = 6 mice [eSCNs]; n = 4 mice [iSCNs]; SCid: p = 0.0048; superficial SC: p = 0.0095; Fig. 

7A-C). We also observed that the rostrocaudal position of contralateral SCid inputs mirrored the rostrocaudal 

position of starter neurons (Fig.7D-F), such that rostral poles of the two SCs were preferentially interconnected, 

as were caudal segments. Together, these results suggest that commissural SC neurons mainly target eSCNs 

located in analogous rostrocaudal positions.  

 

4. DISCUSSION 

The SC is critical for a wide range of functions, ranging from spatial attention to multisensory 

integration to adaptive behavioral responses (Dean et al., 1989; Stein and Stanford, 2008; Gandhi and Katnani, 

2011; Krauzlis et al., 2013; Basso and May, 2017). Its intricate internal circuitry is organized into seven 

cytoarchitechtonically-defined layers composed of excitatory and inhibitory neurons each with diverse 

projection patterns (Edwards, 1977; Mize, 1992; Olivier et al., 1998, 2000; Pettit et al., 1999; Takahashi et al., 

2005, 2007, 2010; Isa and Hall, 2009; Sooksawate et al., 2011; Ghitani et al., 2014). SCid computations are also 

influenced by the dense innervation from a network of brain structures involved in sensory and motor functions. 

While this complex anatomical arrangement presents challenges to identify subcircuits for putative SC 

functions, our study makes inroads into this challenge by employing monosynaptic tracing from identified 

neuronal subtypes within the SCid and identifies a number of thematic input patterns to the structure varying 

along a functional axis of rostrocaudal organization. We found that eSCNs received more inputs than iSCNs, 

extrinsic inputs to eSCNs and iSCNs had a rostral bias, CTRNs were targeted by many fewer brain areas than 

the general population of eSCNs, and populations of commissurally connected SC neurons were located in 

similar rostrocaudal positions. While our study has implications for the full range of SCid functions, we focus 

here on how our findings inform the contributions of the SCid to orienting movements and multisensory 

integration.  

Orienting behaviors can be conceptualized as two discrete components: selecting a target from among 

multiple options and terminating a target-directed movement appropriately to acquire the target. While these 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/824250doi: bioRxiv preprint 

https://doi.org/10.1101/824250


 

functions are coordinated by computations performed within a network of interconnected brain areas, the dual 

maps of visual and movement space within the SCid make it a model system in which to study the components 

of orienting behavior. The superficial layers of the colliculus contain a map of visual space inherited from its 

direct retinal inputs, raising the question of whether the map of movement space contained within SCid similarly 

arises from the orderly arrangement of its inputs. For example, does the SCid receive movement commands 

from the superficial layers or from outside the SC which are then relayed to downstream motor structures, or do 

critical intrinsic processes within the SCid produce the map of movement space that ultimately determines the 

vector of the executed movement? 

Our findings that different populations of SC neurons receive unique patterns of input argue against the 

view of the SCid as a simple relay and instead support the idea that intrinsic processing gives rise to SCid 

computations for orienting behavior. Studies examining SCid activity when multiple targets are present (Basso 

and Wurtz, 1997; McPeek and Keller, 2004; Li and Basso, 2005; Felsen and Mainen, 2008) support a model of 

SCid function whereby a “competition” takes place between two or more active foci within the colliculus (Basso 

and May, 2017). While this competition could simply reflect differences in the activity level of different inputs, 

local inhibitory connectivity within and between the two SCids (Takahashi et al., 2005, 2007, 2010; Isa and 

Hall, 2009; Sooksawate et al., 2011; Ghitani et al., 2014) suggests that active intrinsic SCid processes may be at 

work. Potential roles of inhibition include mediating the competition between multiple regions of SCid 

representing movement vectors to available targets and sharpening and refining the activity needed to acquire a 

chosen target. Our finding that iSCNs receive fewer inputs than eSCNs indicates that whichever processes they 

mediate, a smaller subset of inputs relative to eSCNs is used. Further, our observations that CTRNs receive far 

fewer inputs than the general population of eSCNs argues against the SCid acting as a relay, and instead 

suggests that these output neurons are likely sampling and transforming information processed within the SC. 

Indeed, CTRNs have been found to receive commissural inputs from both eSCNs and iSCNs (Takahashi et al., 

2005, 2007, 2010). Thus, our findings support the view that the SC is a critical node in the network of 

interconnected brain regions responsible for spatial decision making.  
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Target selection and acquisition are unique components of orienting behavior and are therefore likely to 

be modulated by distinct inputs. Target selection requires information pertaining to the relative position(s) of 

one or multiple targets in space, as well as predicted value(s) associated with each target, while acquiring a 

target will require information with both a high degree of spatiotemporal resolution and up-to-date information 

on the state of the effector(s) that will be used for acquiring the target. Notably, the strongest projections we 

observed arise from brain areas well-equipped to provide the various forms of information needed for both 

target selection and acquisition. Visual, auditory, and barrel cortex are among the regions projecting most 

strongly to the SCid (Fig. 3) and are likely important for localizing potential targets in space, while the SNr 

sends a robust inhibitory projection (Graybiel and Ragsdale, 1979), which likely conveys the necessary values 

associated with individual targets that are required to select among them (Handel and Glimcher, 2000; Basso 

and Wurtz, 2002; Sato and Hikosaka, 2002; Bryden et al., 2011). Additionally, cerebellar projections to the SCid 

may be critical in conveying predictive information regarding the position of effectors throughout the trajectory 

of the movement (Ohyama et al., 2003; Shadmehr, 2017; Owens et al., 2018; Becker and Person, 2019), 

ultimately mediating successful target acquisition. Indeed, studies performing muscimol inactivation of the cFN 

in monkeys making saccades to visual targets concluded that cerebellotectal projections might provide the SCid 

with information about the displacement needed to acquire spatial targets (Goffart et al., 1998). In addition to 

cerebellar inputs to the SCid, our finding that eSCN and iSCN inputs tend to favor the rostral pole of the SCid is 

also likely to play a role in mediating the small movements required for target acquisition.  

The observation that eSCNs receive more inputs than iSCNs suggests that they may also receive a 

higher degree of convergent inputs, which has implications for how the SCid might process behaviorally 

relevant multisensory information. Previous work has shown that SCid neurons receive convergent visual, 

auditory, and somatosensory input (Meredith and Stein, 1986). These multisensory inputs synergistically drive 

SCid spike output (Miller et al., 2015), which is thought to underlie the saliency of biologically relevant stimuli, 

allowing animals to produce appropriate orienting responses (Stein and Stanford, 2008; Stein et al., 2014). 

Modeling work suggests that the supralinear response to multisensory information is attributable to local 
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inhibitory input (Miller et al., 2015). Thus, our observation that iSCNs receive far fewer inputs than eSCNs, and 

are therefore also less likely to receive convergent multisensory information, allows us to imagine a system 

whereby fast-spiking iSCNs (Sooksawate et al., 2011) receiving unisensory information contribute to the 

multisensory enhancement of eSCNs via a local disinhibitory mechanism. 

 This study has extended our knowledge of SCid inputs and has critically elucidated their cell-type 

targeting. While technique-specific caveats exist, they do not clearly challenge our interpretations. First, while 

G-deleted rabies virus-mediated monosynaptic tracing is a powerful tool capable of labeling direct inputs to 

populations of genetically defined neurons (Wickersham et al., 2007; Callaway and Luo, 2015; Luo et al., 

2018), the transmission efficiency can vary based on the molecular composition of presynaptic proteins 

(Callaway and Luo, 2015). This should be considered when comparing projection strengths across different 

brain areas. However, since the transmission efficiency is thought to be affected minimally by differences in the 

cell-type from which the virus is “jumping”, this caveat does not affect our findings that eSCNs receive more 

inputs than iSCNs and CTRNs, that there is a rostral bias of inputs to eSCNs and iSCNs, or that commissurally 

connected SC neurons are located in similar rostrocaudal positions.  

There are several potential avenues through which future studies can build upon our findings. For 

example, learning-dependent developmental changes in synaptic connectivity can be examined by combining 

monosynaptic rabies tracing with a behavioral approach in juvenile mice. Previous work in owls showing that 

corrupted visual information leads to a topographical misalignment of auditory and visual information within 

the OT (Brainard and Knudsen, 1998) suggests that task-relevant changes in SCid connectivity might take place 

during learning. Additionally, similar to the rostrocaudal organization of the SCid map of movement space, there 

is a mediolateral organization that governs approach vs. avoidance behaviors (Dean et al., 1986, 1989; 

Sahibzada et al., 1986). While we did not address this in our study, future experiments may wish to examine the 

extent to which these areas receive unique or overlapping inputs. Finally, the behavioral role of specific inputs 

to the SCid can be examined by using a self-inactivating rabies virus (Ciabatti et al., 2017) to transport a calcium 

indicator (Osakada et al., 2011) to reveal input-specific population level neuronal activity during task 

performance. 
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Table 1 List of anatomical abbreviations used in this study 

AI Agranular insular cortex  
CbNI Cerebellar nuclei, interposed 
CbNL Cerebellar nuclei, lateral 
CbNM Cerebellar nuclei, medial 
Cin Cingulate cortex 
CL Centrolateral thalamic nucleus  
CM Central medial thalamic nucleus  
DLG Dorsal lateral geniculate nucleus  
IGL Intergeniculate leaflet 
LO Lateral orbital cortex 

LPMR Lateral posterior thalamic nucleus, mediorostral 

LPtA Lateral parietal association cortex  

M1 Primary motor cortex 

M2 Secondary motor cortex  

MDL Mediodorsal thalamic nucleus, lateral 

MGV Medial geniculate nucleus ventral 

MPtA Medial parietal association cortex  

OPC Oval paracentral thalamic nucleus  

PaF Parafasicular thalamic nucleus 

PaXi Paraxiphoid nucleus of thalamus  

PC Paracentral thalamic nucleus  

PIL Posterior intralaminar thalamic  

Po Posterior thalamic nuclear group  

PoT Posterior thalamic nuclear group, triangular  

PPTg Pedunculotegmental nucleus  

PrG Pregeniculate nucleus of the prethalamus 

PtPD Parietal cortex, post, dorsal part 

PtPR Parietal cortex, post, dorsal part 

Reth Retroethmoid nucleus  

RRe Retroreuniens nucleus  

Rt Reticular nucleus (prethalamus) 

S1 Primary somatosensory cortex 

S1BF Primary somatosensory cortex 

S1FL Primary somatosensory cortex 

S1HL Primary somatosensory cortex 

S1Sh Primary somatosensory cortex 

S1Tr Primary somatosensory cortex 

S2 Secondary somatosensory cortex 

SNr Substantia nigra pars reticulata 

SPF Subparafascicular thalamic nucleus  

str Superior thalamic radiation  

SubG Subgeniculate nucleus of the prethalamus 

VM Ventromedial thalamic nucleus 

VO Ventral orbital cortex 

VPM Ventral posteriomedial thalamic  

VPPC Ventral posterior nucleus parvicellular 

ZI Zona incerta  
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