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ABSTRACT  

BACKGROUND: Although the advent of two FDA-approved therapies for idiopathic 

pulmonary fibrosis (IPF) has energized the field, their effects are largely suppressive than 

pulmonary fibrosis remission- or reversion-inducing. Hence, the pursuit for newer IPF 

therapeutics continues. Recent studies show that joint analysis of systems biology level 

information with drug-disease connectivity are effective in discovery of biologically relevant 

candidate therapeutics.  

METHODS: Publicly available gene expression signatures from IPF patients are used to query 

large scale perturbagen signature library to discover compounds that can potentially reverse 

dysregulated gene expression in IPF. Two methods are used to calculate IPF-compound 

connectivity: gene expression-based connectivity and feature-based connectivity. Identified 

compounds are further prioritized based on their shared mechanism(s) of action. 

RESULTS: We identified 77 compounds as potential candidate therapeutics for IPF. Of these 39 

compounds are either FDA-approved for other diseases or are currently in phase 2/3 clinical 

trials suggesting their repurposing potential for IPF. Among these compounds are multiple 

receptor kinase inhibitors (e.g., nintedanib, currently approved for IPF, and sunitinib), aurora 

kinase inhibitor (barasertib), EGFR inhibitors (erlotinib, gefitinib), calcium channel blocker 

(verapamil), phosphodiesterase inhibitors (roflumilast, sildenafil), PPAR agonists (pioglitazone), 

HDAC inhibitors (entinostat), and opioid receptor antagonists (nalbuphine). As a proof-of-

concept, we performed in vitro validations with verapamil using lung fibroblasts from IPF and 

show its potential benefits in pulmonary fibrosis.  

CONCLUSIONS: Since about half of the candidates discovered in this study are either FDA-

approved or are currently in clinical trials for other diseases, rapid translation of these 
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compounds as potential IPF therapeutics is feasible. Further, the generalizable, integrative 

connectivity analysis framework in this study can be readily adapted in early phase drug 

discovery for other common and rare diseases with transcriptomic profiles.  
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Introduction 

Idiopathic pulmonary fibrosis (IPF), a chronic and fatal fibrotic lung disease in people over 50 

years old is estimated to affect 14 to 42.7 per 100,000 people (1). IPF is characterized by 

progressive subpleural and paraseptal fibrosis, heterogeneous honeycomb cysts (honeycombing), 

and clusters of fibroblasts and myofibroblasts (2). The median survival time of patients with IPF 

is 2.5 to 3.5 years, with 5-year survival rate around 20% (1).  Currently, two small molecules - 

pirfenidone and nintedanib - are approved for IPF and are reported to slow down lung function 

decline caused by disease progression. However, drug induced side-effect profiles of these two 

drugs are formidable and their therapeutic effects are suppressive rather than pulmonary fibrosis 

remission or reversal (3, 4). The pursuit for relatively safer and efficacious therapies or 

combinatorials that arrest, or reverse fibrosis therefore continues. On the other hand, 

technological advances in experimental and computational biology resulted in rapidly expanding 

genomic and biomedical data, including transcriptomic profiles of disease and small molecules, 

disease or drug associated pathways and protein-protein interactions (5-7). Various approaches 

have been developed to facilitate in silico drug discovery via joint analysis of these data 

including the widely used connectivity mapping approach (8). 

 

The concept of connectivity mapping between a drug and a disease is defined as the gene 

expression-based similarity calculated using a Kolmogorov-Smirnov statistic like algorithm (9, 

10). It was first introduced as the ConnectivityMap (CMap) (8, 11) and succeeded by the LINCS 

L1000 project (CLUE platform) (8, 11), which currently contains gene expression profiles of 

~20,000 small molecule perturbagens analyzed in up to 72 cell lines. The connectivity mapping 
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concept and application have led to the discovery of novel candidate compounds for disease, 

drug repurposing candidates, and novel drug mechanism of actions (12-16).  

 

Recently, similar in silico drug discovery approaches for IPF have been reported wherein joint 

analysis of systems biology level information with drug-IPF connectivity are used to discover 

biologically relevant candidate therapeutics for IPF. For instance, Karatzas et al developed a 

scoring formula to evaluate drug-IPF connectivity obtained from multiple sources and identified 

several IPF candidate therapeutics (17). Interestingly, neither of the two approved IPF drugs 

(pirfenidone and nintedanib) was re-discovered by their approach (17). In another recent study 

using network-based approach and integrated KEGG network with connectivity analysis 

sunitinib, dabrafenib and nilotinib were identified as potential repurposing candidates for IPF 

(18). 

 

Using a similar approach, namely, by examining connectivity between IPF gene signature and 

LINCS small molecules, we have previously reported 17-AAG (a known Hsp90 inhibitor) as a 

potential candidate therapeutic that inhibits fibroblast activation in a mouse model of pulmonary 

fibrosis (14). In another study, we screened connectivity of LINCS small molecules with cystic 

fibrosis (CF) and integrated with systems biology level information from CFTR to identify a 

candidate therapeutic for CF (13).  These results suggest that disease-drug connectivity 

complemented with systems biology level information of drugs and disease could enable 

candidate therapeutic discovery. In the current study, we therefore calculated both gene-

expression and enriched-pathway based connectivity between IPF and small molecules in an 
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unsupervised manner and integrated these results with cheminformatics knowledge to prioritize 

candidate therapeutics for IPF. We identified 77 (out of ~20,000 LINCS small molecules) 

candidate therapeutics for IPF. Significantly, among these 77 compounds was the approved drug 

for IPF (nintedanib), as well as several other compounds that are either currently being 

investigated or reported as a potential candidate therapeutics for IPF or investigated in clinical 

trial and reported to be ineffective (sunitinib, nilotinib, and sildenafil). In vitro and in vivo 

preclinical studies have reported beneficial effects of HDAC inhibitors (HDACIs) in preventing 

or reversing fibrogenesis (19, 20). Likewise, a previous study reported the beneficial effects of 

calcium channel blocking in bleomycin-induced pulmonary fibrosis (21).  All these results 

suggest that the current approach has the potential to identify “true” candidate therapeutics. In 

the current study, we have selected verapamil, an FDA-approved calcium channel blocker, from 

our computational screening results for in vitro validation. 

 

Methods 

IPF studies/cohort selection 

We used publicly available gene expression profiles from the Gene Expression Omnibus (GEO) 

(22) database for generating IPF gene expression signatures. Since gene expression profiles are 

known to be heterogeneous in different patients (23, 24), we selected 6 GEO datasets comparing 

primary healthy human lung tissues with primary IPF lung tissues for this study to potentially 

mitigate such heterogeneity (Figure 1; Table 1). 
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Differential analysis of IPF gene expression profiles  

Differential analysis was performed in R in using the package LIMMA (linear models for 

microarray data) (25). Genes with fold change ≥1.5 and adjusted p-value ≤0.05 were considered 

differentially expressed. Each dataset was analyzed separately. 

 

Known pulmonary fibrosis genes 

We compiled 3278 “known” pulmonary fibrosis genes from literature and several data resources 

(Supplementary Table 1). This list contains human genes associated with “Pulmonary fibrosis”, 

“Idiopathic pulmonary fibrosis” and “Interstitial Lung Disease” from Open Targets platform (26), 

CTD (27), Phenopedia (28), and GeneCards (29) databases along with literature search (from 

PubMed). 

 

IPF-compound connectivity estimation and permutation analysis 

To correct for multiple testing problem introduced by conducting connectivity analysis (Figure 1) 

in multiple datasets, we used permutation analysis to estimate the significance of connectivity. 

First, we constructed a matrix of connectivity score, denoted by s, between CLUE compound i 

and IPF dataset d in cell line j. Next, positive, and negative connectivity to IPF were determined 

by thresholding connectivity score at 90 and -90, respectively: 

��,�,� � � 1, ���,�,� � 90�0, ��90   ��,�,�   90��1, ���,�,� �  �90� � 
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Overall connectivity, denoted by o, between each compound to IPF across all cell lines is 

summarized as the sum of individual connectivity across all datasets and all cell lines: 

�� � ��
�

� ��,�,��

�

 

Permutation was performed by randomly shuffling rows of the connectivity matrix C, so that 

compound names were randomly assigned. Then, the permutated overall compound-to-IPF 

connectivity O’ scores were calculated, and we recorded incidences where �� �  �� ’, which 

indicates the observed compound to IPF connectivity is not larger than random connectivity: 

��� � �1, ��� �  ����0,   ����������� �  
We repeated the permutation tests for 100,000 times and estimated significance as the frequency 

of F over all permutations. The significance cut-off was set at 0.05. 

 

Functional enrichment 

Functional enrichment analysis was performed using pre-compiled gene annotation libraries 

from the ToppGene Suite (30). Enrichment p values were calculated using hypergeometric test in 

Python using the SciPy package. 

 

Annotation-based connectivity analysis 

Annotation-based compound-IPF connectivity (Figure 1) was generated and evaluated as 

follows: 
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 (1) Identify enriched annotation terms in conserved IPF genes (genes that were 

differentially expressed in more than 4 IPF datasets) resulting in two vectors, ��	 and �
��;  

(2) Calculate enrichment score,��,�	 and ��,
��, using the 500 top and 500 bottom genes 

of each LINCS L1000 small molecule expression profile, denoted by i,  in the up-regulated and 

down-regulated IPF pathways identified in step (1);  

(3) Calculate annotation-based connectivity score, defined as Pearson correlation between 

��,�	 and �
��, and between ��,
�� and ��	;  

(4) To correct for false positives from multiple testing, permutation analysis were 

performed by swapping annotation terms in ��,
��  and  ��,�	 , followed up recalculation of 

annotation-based connectivity. 100,000 permutations were performed with significance threshold 

set to 0.05. 

 

Primary lung fibroblast cultures and RT-PCR. IPF lungs were collected in Dulbecco’s 

Modified Eagle Medium (DMEM) containing 10% FBS (Life Technologies, NY, USA) from the 

Interstitial Lung Disease Biorepository at the University of Michigan Medical School following 

the IRB regulations of the institute. Lung pieces were finely minced with sterile razor blades and 

incubated at 37°C for 30min in 5ml of DMEM containing collagenase (2mg/ml). Digested tissue 

was passed through a 100 µm filter, washed twice with DMEM medium, plated onto 100 mm 

tissue-culture plates, and incubated at 37°C, 5% CO2 to allow cells to adhere and migrate away 

from larger remaining tissue pieces. Adherent primary lung fibroblasts were harvested on Day 5 

or 8 and lung-resident fibroblasts isolated with a negative selection using anti-CD45 beads as 

described earlier (JCI insight 2018). These fibroblasts were used for drug treatment studies up to 
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passage four or less. After drug treatments, total RNA was extracted using RNAeasy Mini Kit 

(Qiagen Sciences, Valencia, CA, USA) and RT-PCR assays were performed. Relative quantities 

of mRNA for several genes were determined using SYBR Green PCR Master Mix (Applied 

Biosystems) and target gene transcripts in each sample were normalized to GAPDH and 

expressed as a relative increase or decrease compared with controls. As expected, we observed 

no changes in the copy number of GAPDH in IPF fibroblasts treated with verapamil compared to 

vehicle (0.0001 % DMSO). Also, we performed melt curve analysis to exclude primer sets 

producing non-specific PCR products. RT-PCR Primer sequences for genes, GAPDH (Fwd: 

AGCCACATCGCTCAGACAC; Rev: GCCCAATACGACCAAATCC), Col1α1 (Fwd: 

GGGATTCCCTGGACCTAAAG; Rev: GGAACACCTCGCTCTCCA), Col3α1 (Fwd: 

CTGGACCCCAGGGTCTTC; Rev: CATCTGATCCAGGGTTTCCA), Col5α1 (Fwd: 

CAGCCCGGAGAGAACAGA; Rev: GGTGCAGCTAGGTCATGTGAT), αSMA (Fwd: 

GCTTTCAGCTTCCCTGAACA; Rev: GGAGCTGCTTCACAGGATTC) and FN1 (Fwd: 

CTGGCCGAAAATACATTGTAAA; Rev: CCACAGTCGGGTCAGGAG). 

 

Result 

Differential expression analysis of IPF datasets 

We analyzed 6 gene expression datasets comparing gene expression of IPF lung tissue with 

healthy controls (Table 1). Differential expression analysis was performed in each dataset using 

the R package LIMMA. Differentially expressed genes (DEG) were defined as genes with fold 

change above or equal to 1.5 and FDR-BH adjusted p-value less than or equal to 0.05. The 

number of DEGs ranged from 263 to 2385, and 4677 genes were unambiguously up-regulated, 

and 2210 genes were unambiguously down-regulated in at least one IPF dataset (Figure 2a; 
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Supplementary Table 1). Overall similarity between DEG gene lists was low, as reflected by 

the median Jaccard index between gene lists (0.077). While the lack of concordance between 

datasets suggests disease heterogeneity in IPF, it also provides the rationale for meta-analysis 

using multiple datasets to extract high confidence drug candidates for IPF. Despite the overall 

heterogeneity in DEG among different IPF datasets, there were also a considerable number of 

genes that were consistently dysregulated in 4 or more IPF datasets. We call these genes as 

“conserved” IPF genes (197 up-regulated genes and 84 down-regulated genes). Among these 

conserved DEGs, 179 genes (121 upregulated and 58 downregulated) were known previously to 

be involved in pulmonary fibrosis (Figure 2b). Functional enrichment analysis of conserved IPF 

genes showed that biological processes involved in extracellular matrix formation, inflammation 

responses and cell migration were up-regulated while processes involved in normal lung 

processes such as angiogenesis and alveolar functions were down-regulated.  

 

Expression based connectivity analysis and permutation analysis. 

We used the NIH Library of Integrated Network-Based Cellular Signatures (LINCS) library as 

the compound search space for IPF candidate therapeutics. The LINCs Touchstone dataset 

contains a total of approximately 8,400 perturbagens, including more than 2000 small molecules 

that have produced gene signatures generated from testing on a panel of nine cell lines. These 

cell lines include A375, A549, HEPG2, HCC515, HA1E, HT29, MCF7, PC3, and VCAP. The 

LINCS library contains expression profiles of ~20,000 small molecules assayed in various cell 

lines. To identify potential IPF candidate therapeutics, we adopted the connectivity mapping 

method which assumes small molecules with gene expression profiles negatively correlated with 

that of a disease are likely to be therapeutic for the disease. We first queried the Connectivity 
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Map web platform (CLUE.io) for compounds with a reversed gene expression profile comparing 

to IPF. From each dataset, a gene signature containing up to 150 most up-regulated and down-

regulated genes was extracted and used to query the CLUE platform (Supplementary Table 2). 

Using the hits from CLUE results, we applied a “greedy” approach to capture the highest number 

of compounds connected to IPF by selecting compounds with at least 90 connectivity score in 

any one of the cell lines. This approach returned 1000+ compounds that relate to IPF at least 

once. However, this approach results in several compounds that are connected to IPF in both the 

directions, i.e., potentially inducing, and reversing IPF gene expression profiles at the same time 

(Figure 3a). This suggests that the gene expression perturbation due to technical variation is 

present in our data and is reflected in the form of these low frequency compounds in CLUE 

analysis. Based on the assumption that IPF-related gene expression patterns are consistently 

present in our selected 6 IPF datasets, we performed permutation analysis to estimate the 

significance of IPF-disease connectivity and filter out potential false positives. With a 0.05 

significance cut-off, we identified 82 compounds that were significantly connected with IPF 

(Figure 3b). These compounds were associated with 63 different known drug mechanisms of 

action. 

 

Functional enrichment-based connectivity analysis 

A major limitation of using the Touchstone Library-based CLUE platform to screen for drug 

candidates is that it only covers 2,836 out of ~20,000 small molecules available in the full L1000 

database.  To overcome this, we searched for IPF candidate therapeutics among the remaining 

~17,000 LINCS small molecules. To do this, we used a functional enrichment based metric to 

evaluate drug-IPF connectivity of these LINCS small molecules, wherein gene expression data 
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from both the compound and the IPF data sets were transformed into enrichment p-values using 

hypergeometric tests against gene functional annotations (Gene Ontology Biological Process, 

Mouse Phenotypes and KEGG pathways). To minimize the noise introduced by biological 

processes not relevant to IPF, we only considered functional annotations enriched in the 

conserved IPF gene sets, and thus, each compound enrichment profile was limited to these 

pathways. Connectivity between a compound and IPF was defined as the cosine similarity 

between the p-values of pathways enriched in compound up-regulated genes and those enriched 

in IPF down-regulated genes, and vice versa. Next, we used permutation analysis as discussed in 

the previous sections to estimate the significance of the feature-based compound-IPF 

connectivity and identified 345 compounds that perturbed IPF-related pathways in an overall 

opposite manner compared to IPF. To find groups of functionally related therapeutic candidates 

that could act on IPF perturbed biological processes, we performed clustering analysis on the 

compound enrichment profiles and prioritized four clusters of compounds with high connectivity 

to IPF. The compounds in three clusters selectively down regulated pathways such as ‘cell 

adhesion’, ‘collagen metabolic process’ and ‘regulation of programmed cell death’, which were 

all upregulated in IPF. On the other hand, compounds in the cluster that showed up-regulation of 

‘blood vessel morphogenesis’ and ‘angiogenesis’ were down regulated in IPF. The approved IPF 

drug, nintedanib was in this cluster of compounds. Combining compounds from these four 

clusters, we identified 103 candidates as IPF therapeutic candidates from annotation- or feature-

based connectivity analysis (Figure 4). These compounds include EGFR inhibitor gefitinib, 

PDGFR and VEGFR inhibitor dovitinib, and KIT inhibitor sunitinib. 
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Prioritization of IPF candidate therapeutics based on shared mechanism of action 

In the annotation-based connectivity analysis, we observed that most of the discovered 

compounds shared drug mechanisms of action. For instance, EGFR inhibition, PDGFR inhibition 

and VEGFR inhibition were shared across multiple compounds suggesting potential relevance of 

these MoAs to IPF. This also suggests a likelihood of higher therapeutic potential of multiple 

compounds with shared or similar MoAs. Leveraging the known MoA information of the 

discovered compounds, we further prioritized compounds belonging to MoA that were 

prioritized by annotation-based connectivity analysis. After removing glucocorticoid receptor 

agonists and immunosuppressants from the list because of their known detrimental effects in IPF, 

we identified 48 MoAs meeting these criteria (Supplementary Table 3). Based on these MoAs, 

we selected 77 compounds as our final pre-clinical candidates for IPF (Supplementary Table 4). 

Among these, 39 were FDA-approved drugs or phase-II/III compounds suggesting their 

repositioning potential for IPF (Table 2). These drugs include Bcr-Abl kinase inhibitors, EGFR 

inhibitors, opioid receptor inhibitors, receptor tyrosine kinase (RTK) inhibitors and aurora kinase 

inhibitors. Notably, the approved IPF drug nintedanib was also among this list. This is important 

because nintedanib was not included in the CLUE database and would have been missed if 

annotation-based connectivity were not examined. A closer look at the pharmacological targets 

of these candidates revealed that many of these targets such as PDGFRA, EGFR, FGFR4, FYN 

and KDR were differentially expressed in IPF. Similarly, CACNA1G, SLC29A4, CACNB3, 

SLC6A4 – all targets of verapamil, a known calcium channel blocker, were differentially 

expressed in IPF. Among these targets, KDR, FGFR4 and PDGFRA are associated with 

nintedanib and other multi-targeted RTK inhibitors such as dovitinib, pazopanib and sunitinib 

(Figure 5). These genes are involved in VEGF and PI3K/AKT signaling and VEGFR2 mediated 
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cell proliferation, suggesting a role for multi-targeted RTK inhibitors in controlling IPF through 

VEGF signaling inhibition. 

 

Anti-fibrotic potential of verapamil 

Calcium channel blockers are commonly used in clinical practice and reported to be well-

tolerated. Therefore, in the current study, as a proof-of-concept, we have selected verapamil, a 

known calcium channel blocker and anti-hypertension drug, from our computational screening 

results for in vitro validation. IPF lung fibroblasts were treated with either vehicle (0.001% 

DMSO) or verapamil (Figure 6). We observed a significant reduction in the expression of 

fibroproliferative genes (FN1, COL1A1, COL3A1, and COL5A1), and αSMA with verapamil 

treatment for 16 hrs. compared to vehicle treated IPF fibroblasts (Figure 6). These findings 

support the premise that candidate small molecules identified using in silico screening methods 

are potentially effective in inhibiting fibroblast activation and may serve as potential drug 

candidates for further validation using in vitro and in vivo pre-clinical IPF models. Testing of 

additional candidates however is warranted. 

 

Discussion 

In this study, we developed a multiplexed, generalizable approach to discover novel therapeutics 

by integrating disease-driven and perturbagen-driven gene expression profiles, disease-

associated biological pathways, and cheminformatics of perturbagen. Compound-IPF 

connectivity was examined from different dimensions including transcriptome, functional 

enrichment profiles, and drug mechanisms of actions.  With this approach, we not only identified 
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approved IPF therapeutic drugs (nintedanib) but also identified additional FDA-approved drugs 

that share similar MOA as IPF candidate therapeutics. Notably, these drugs were not 

discoverable using conventional transcriptome-based connectivity analysis alone. Further, 

approved drugs or investigational compounds associated with MoAs such as Bcr-abl inhibitor 

and Aurora kinase inhibitor, were also among our candidate list, which could provide insights 

into novel intervention strategies against IPF.  

 

Transcriptome based connectivity mapping was first introduced more than a decade ago and has 

been applied to facilitate drug discovery for various diseases, including IPF. In a recent study, 

Karatzas et al proposed nine drugs as IPF therapeutics based on their connectivity with 

expression profiles derived from IPF datasets. However, they were not able to re-discover 

approved IPF drugs although these drugs were included in the LINCS L1000 library that was 

queried (17). Likewise, our gene expression-based connectivity approach through CLUE 

prioritized 82 small molecules as IPF therapeutics candidates, but neither of the FDA approved 

IPF drugs (pirfenidone or nintedanib) was in the list. A closer look at the connectivity scores 

revealed that while pirfenidone, one of the two approved IPF therapeutics, had no connectivity to 

IPF in any of the six queried datasets, pirfenidone was connected to verapamil (transcriptionally 

similar – based on connections/internal connectivities in Clue.io platform). Our pre-clinical in 

vitro validations with verapamil using human IPF lung fibroblast revealed therapeutic benefit of 

verapamil in IPF. A previous study reported the beneficial effects of calcium channel blocking in 

bleomycin-induced pulmonary fibrosis (21). Based on these preliminary results and data, we 

hypothesize that verapamil and pirfenidone combination could have potential therapeutic benefit 

in IPF patients. Additional in vitro and in vivo combined (pirfenidone plus verapamil) vs 
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monotherapy (verapamil) are however required to test and confirm this hypothesis. Additionally, 

mining electronic health records and side-effects data (FAERS FDA’s adverse events reporting 

system) for testing whether patients under both therapy have a better response are part of our 

related ongoing studies (31). Nintedanib, the second approved therapeutic for IPF, was not 

included in CLUE and therefore we were unable to assess its connectivity to IPF using Clue.io 

platform.  

 

We also examined the connectivity between IPF and the ~17,000 compounds not covered in the 

Clue.io platform. The gene expression profiles associated with these ~17K small molecules are 

from distinct selections of cell lines. Therefore, direct connectivity mapping analysis may be 

susceptible to biological variation introduced by different cell lines. In addition, it has been 

shown that integration of prior knowledge, particularly in the form of gene sets information in 

biological pathways, improves the accuracy of drug activity predictions (32). We evaluated drug-

IPF connectivity through enriched pathways directly related to IPF under the assumption that 

pathways perturbed by drugs are more stable across different host cell conditions compared to 

individual genes. Annotation-based connectivity analysis lead to discovery of additional 14 small 

molecules that were not included in the CLUE platform. These include aurora kinase inhibitor 

barasertib-HQPA and phosphodiesterase inhibitor roflumilast. Notably, nintedanib was also 

among the 14 additional small molecules, and the enriched pathways that contributed to the 

connection to IPF were related to fibroblast proliferation, ECM production and cell migration, 

which is in consistent with implicated MoA of nintedanib against IPF in vitro (33).  
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Among the 77 prioritized candidates, 31 are FDA-approved drugs and are associated with 

different MoAs. These MoAs include RTK inhibition, which is the known MoA for the approved 

IPF drug nintedanib. Other compounds with this MoA in our discovered candidate compounds 

include pazopanib and sunitinib. Sunitinib is approved for treatment of renal cell carcinoma and 

gastrointestinal stromal tumor, and it has also been shown to be efficacious in inhibiting 

established pulmonary fibrosis in the bleomycin-induced mouse model (34). Additionally, MoAs 

involved with these 31 drugs also included those associated with compounds that are currently 

investigated or are in clinical trial for IPF drugs, such as src-kinase inhibitor and mTOR inhibitor 

(35). The MoAs associated with the remaining IPF repositioning candidates included aurora 

kinase inhibitor, EGFR inhibitor, calcium channel blocker, phosphodiesterase inhibitor, PPAR 

agonist, Bcr-Abl kinase inhibitors and opioid receptor antagonist. HDACIs have been reported to 

improve resolution of pulmonary fibrosis in mice (19, 20). Calcium channel blockers like 

verapamil are commonly used in clinical practice, reported to be well-tolerated, and are 

relatively inexpensive. Further, a previous study using bleomycin model of pulmonary fibrosis 

has reported its benefits (21).  

 

While the computational drug discovery approaches, including the current one, are powerful 

approaches for pre-clinical therapeutic discovery and MoA-based hypotheses, they albeit suffer 

with certain inherent limitations. For example, sildenafil, one of the 77 compounds that we have 

discovered as candidate therapeutics for IPF, has already been investigated in combination with 

nintedanib in clinical trials (36, 37) and was reported to have no significant benefit when 

compared to patients on nintedanib alone. Nevertheless, discovering a compound (sildenafil) that 

is tested in a clinical trial for IPF demonstrates the preclinical discovery power of our approach 
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for candidate therapeutics. Second, the current approach is predominantly monotherapy-centric 

and does not consider potential drug-drug interactions. For example, the current approach cannot 

deduce which of the 77 compounds can be a potential combination compound with nintedanib or 

pirfenidone. Advanced knowledge-mining (e.g., known drug-drug interactions) and machine 

learning based approaches can be potentially explored to address this problem. Third, ours, and 

other computational approaches do not consider the potential off-target effects leading to adverse 

events. For example, as a previous study too reported (21), off-target effects of calcium channel 

blockers on other cell types cannot be ruled out especially because the lung is composed of more 

than 50 different cell types with several of these expressing voltage-dependent calcium channels.  

 

In conclusion, we have developed a generalizable, integrative connectivity analysis combining 

information from transcriptomic profiles, disease systems biology and drug cheminformatics for 

in silico IPF drug discovery.  Application of our approach earlier in the IPF drug discovery 

pipeline may help to avert late stage clinical trial failures. As almost half the candidates we have 

discovered in this study are FDA-approved or are currently in clinical trials for several diseases, 

rapid translation of these compounds is feasible. Finally, we have suggested novel drug 

mechanisms that could shed new insights in the search for better IPF drugs.  
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Tables 

 Table 1: Summary of 6 datasets comparing IPF lung tissue with healthy controls. 

GEO Data set Sample description Reference 

GSE10667 23 IPF samples and 16 controls (38, 39) 

GSE24206 17 IPF samples and 6 controls (40) 

GSE48149 13 IPF samples and 9 controls (41) 

GSE53845 40 IPF samples and 8 controls (23) 

GSE47460 131 IPF samples and 12 controls* LGRC 

GSE101286 7 IPF samples and 3 controls (42) 

 

* Only 12 control samples in the LGRC dataset with ‘normal’ clinical and pathological diagnosis were 

used as control. 

 

Table 2: List of 39 potential repurposing candidates for IPF. 

Compound IPF-related MOA Indication Phase 

febuxostat xanthine oxidase inhibitor hyperuricemia Launched 

nortriptyline tricyclic antidepressant depression Launched 

amsacrine topoisomerase inhibitor cancer Launched 

irinotecan topoisomerase inhibitor cancer Launched 

camptothecin topoisomerase inhibitor cancer Phase 3 

pioglitazone 
ppar receptor agonist, insulin 
sensitizer diabetes mellitus Launched 

roflumilast phosphodiesterase inhibitor COPD Launched 

sildenafil phosphodiesterase inhibitor 
Erectile dysfunction and 
pulmonary hypertension Launched 

nalbuphine opioid receptor antagonist pain relief Launched 

everolimus mTOR inhibitor cancer Launched 

sunitinib mRTK inhibitor cancer Launched 

nintedanib mRTK inhibitor IPF Launched 

dovitinib mRTK inhibitor cancer  Phase 3 

pazopanib mRTK inhibitor cancer Launched 
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selegiline monoamine oxidase inhibitor Parkinson's Disease Launched 

selumetinib mek inhibitor cancer  Phase 3 

curcumin 

lipoxygenase inhibitor, histone 
acetyltransferase inhibitor, 
cyclooxygenase inhibitor   Launched 

tomelukast 
leukotriene receptor 
antagonist asthma Phase 3 

dasatinib mRTK inhibitor cancer Launched 

lafutidine histamine receptor antagonist 

duodenal ulcer disease, 
peptic ulcer disease 
(PUD) Launched 

ranitidine histamine receptor antagonist heartburn Launched 

amodiaquine histamine receptor agonist malaria Launched 

entinostat hdac inhibitor cancer  Phase 3 

remacemide glutamate receptor antagonist 

epilepsy and 
neurodegenerative 
diseases  Phase 3 

riluzole glutamate inhibitor 
amyotrophic lateral 
sclerosis (ALS) Launched 

erlotinib egfr inhibitor cancer Launched 

gefitinib egfr inhibitor cancer Launched 

sulpiride dopamine receptor antagonist schizophrenia Launched 

mycophenolic acid 

dehydrogenase inhibitor, 
inositol monophosphatase 
inhibitor organ rejection Launched 

ketorolac cyclooxygenase inhibitor NSAID Launched 

mestinon cholinesterase inhibitor myasthenia gravis Launched 

fipronil chloride channel blocker insecticide Launched 

verapamil calcium channel blocker hypertension Launched 

gaboxadol 
benzodiazepine receptor 
agonist insomnia  Phase 3 

ivermectin 
benzodiazepine receptor 
agonist gastrointestinal parasites Launched 

nilotinib bcr-abl kinase inhibitor cancer Launched 

barasertib-HQPA aurora kinase inhibitor cancer  
Phase 
2/Phase 3 

regadenoson adenosine receptor agonist 
myocardial perfusion 
imaging (MPI) Launched 

bucladesine adenosine receptor agonist skin ulcer Launched 
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Figure legends 

Figure 1. Overview of expression and annotation-based connectivity analysis. Workflow in 

this study could be summarized into three steps. a) Collection and differential analysis of human 

IPF gene expression datasets; b) Expression-based connectivity analysis through CLUE 

platform; c) annotation-based connectivity analysis examining similarity between pathways 

perturbed by compounds and those involved in IPF.  

 

Figure 2. Heat map view of differentially expressed genes in 6 IPF datasets. Expression of 

2206 genes unambiguously differentially expressed in at least two IPF dataset are shown. Genes 

are represented in rows and patient samples in columns. Cells in heat map were sorted 

discerningly based on median log fold change in 6 datasets and on number of datasets they were 

differentially expressed in. b) Genes that were upregulated or downregulated in at least 4 

datasets. Intersection with all known pulmonary fibrosis genes are shown in the Venn diagram.  

 

Figure 3. Gene expression-based connectivity score of CLUE compounds. Scatter plot of 

positive connectivity score against negative connectivity score between each CLUE compound 

and each IPF dataset across all cell lines. Coordinates of each point were determined by the 

average of highest or lowest 6 connectivity scores among all 54 values across 6 IPF datasets and 

9 cell lines in CLUE. b) Heat map view of connectivity score of 82 compound that were 

significantly connected to IPF based on permutation analysis. 
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Figure 4. Enriched pathway heat map view of 345 drugs significantly connected to IPF in 

annotation-based connectivity analysis. Enrichment terms in categories including KEGG 

pathways, Wiki pathways, REACTOME, Mouse phenotype and Gene Ontology: Biological 

process in either consistently up-regulated or down-regulated IPF genes are arranged in rows. 

LINCS drug profiles were arranged in columns. Blue indicates annotation terms are enriched in 

down-regulated genes by drug or IPF, and yellow indicates annotation terms are enriched in up-

regulated genes by drug or IPF. K-means clustering was used to identify compound modules. 

 

Figure 5. Heat map view of candidate compound targets that are differentially expressed in 

IPF. Log fold changes of 48 target genes of 30 compounds in IPF are shown. Only compounds 

with targets differentially expressed in at least two IPF datasets are included. Differentially 

expressed drug targets in IPF are in rows and discovered IPF candidate compounds are in 

columns. Rows and columns are ordered using 2D hierarchical clustering. 

 

Figure 6. Verapamil treatment attenuates pro-fibrotic gene expression. IPF fibroblasts were 

treated with either vehicle (DMSO 0.001%) or verapamil (1, 10 and 50 µM) for 16 hrs. Total 

RNA was analyzed for the expression of αSMA and ECM genes (FN1, Col1α, Col3α and Col5α) 

using RT-PCR. *P<0.05; **P<0.005 ***P<0.0005; ****P<0.00005. 
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