Abstract
Background For assembling large whole-genome sequence datasets to be used routinely in research and breeding, the sequencing strategy should be adapted to the methods that will later be used for variant discovery and imputation. In this study we used simulation to explore the impact that the sequencing strategy and level of sequencing investment have on the overall accuracy of imputation using hybrid peeling, a pedigree-based imputation method well-suited for large livestock populations.
Methods We simulated marker array and whole-genome sequence data for fifteen populations with simulated or real pedigrees that had different structures. In these populations we evaluated the effect on imputation accuracy of seven methods for selecting which individuals to sequence, the generation of the pedigree to which the sequenced individuals belonged, the use of variable or uniform coverage, and the trade-off between the number of sequenced individuals and their sequencing coverage. For each population we considered four levels of investment in sequencing that were proportional to the size of the population.
Results Imputation accuracy largely depended on pedigree depth. The distribution of the sequenced individuals across the generations of the pedigree underlay the performance of the different methods used to select individuals to sequence. Additionally, it was critical to balance high imputation accuracy in early generations as well as in late generations. Imputation accuracy was highest with a uniform coverage across the sequenced individuals of around 2x rather than variable coverage. An investment equivalent to the cost of sequencing 2% of the population at 2x provided high imputation accuracy. The gain in imputation accuracy from additional investment diminished with larger populations and larger levels of investment. However, to achieve the same imputation accuracy, a proportionally greater investment must be used in the smaller populations compared to the larger ones.
Conclusions Suitable sequencing strategies for subsequent imputation with hybrid peeling involve sequencing around 2% of the population at a uniform coverage around 2x, distributed preferably from the third generation of the pedigree onwards. Such sequencing strategies are beneficial for generating whole-genome sequence data in populations with deep pedigrees of closely related individuals.
Footnotes
Email addresses: AW: awhalen{at}roslin.ed.ac.uk, GG: gregor.gorjanc{at}roslin.ed.ac.uk, AJM: alan.mileham{at}genusplc.com, JMH: john.hickey{at}roslin.ed.ac.uk