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26 Abstract

27 Objective:
28 To assess peripheral lymphocyte DNA methylation profiles in prediabetes using a high fat-

29 diet-fed C57BL/6 animal model. We further evaluated whether low dose-aspirin, or low-dose 

30 aspirin in combination with metformin, could modulate global DNA methylation levels in 

31 peripheral blood lymphocytes.

32

33 Methods

34 Twenty-eight (28) male C57BL/6 mice were used in two experimental phases. The first 

35 experiment involved animals (n=16) which were randomised to receive a low-fat diet (LFD) or 

36 high-fat diet (HFD) (n = 8/group) for 10 weeks. Whereas in the second experiment, HFD-fed 

37 mice (n=15) were randomised into 3 treatment groups, a low-dose aspirin (LDA), LDA and 

38 metformin group, and a clopidogrel group. DNA methylation profiles of were determined using 

39 flow cytometry. 

40 Results
41 The HFD group showed moderate weight gain and elevated postprandial blood glucose levels 

42 when compared to the LFD group after 2 weeks of HFD-feeding (p < 0.05). Interestingly, the 

43 HFD group had elevated levels of T cells expressing high levels %5-methylcytosine (p<0, 05). 

44 Notably, these elevated levels were lowered by short-term low-dose aspirin treatment. 

45 Discussion
46 T cells are involved in the propagation of the inflammatory response. Persistent T cell 

47 activation promotes chronic inflammation and insulin resistance. Low-dose aspirin may be 

48 effective in modulating T cell-specific global methylation.

49

50 Keywords: Global DNA methylation, type 2 diabetes mellitus, prediabetes, anti-

51 hyperglycaemic, anti-coagulant, anti-inflammatory. 
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53 Introduction
54

55 The global prevalence of type 2 diabetes (T2DM) continues to increase with several studies 

56 linking aberrant DNA methylation with the development of these metabolic disease (Van 

57 Otterdijk et al., 2017; Zhang et al., 2017; Shah et al., 2019; Wittenbecher et al., 2019). Aberrant 

58 DNA methylation profiles are associated with an increased risk of developing T2DM (Zhou et 

59 al., 2018; Zhang et al., 2018). Differential DNA methylation has been reported in patients with 

60 T2DM (Kuroda et al., 2009; Nilsson et al., 2014; Dayeh et al., 2014; Zhang et al., 2018).  DNA 

61 hypermethylation (Ban et al., 2002; Yang et al., 2011; Gu et al., 2013; Zou et al., 2013; Seman 

62 et al., 2015; Bacos et al., 2016) and DNA hypomethylation (Zhang et al., 2014; Nilsson et al., 

63 2015) levels have been reported in T2DM. Moreover, increased levels of global DNA 

64 methylation were associated with insulin resistance (Zhao et al., 2012) and in another study, 

65 aberrant DNA methylation was reported in women with obesity-related systemic insulin 

66 resistance (Zhang et al., 2018). Hypermethylation on the insulin promoter in type 2 diabetic 

67 patients is also associated with the downregulation of the insulin gene in human pancreatic 

68 islets (Yang et al., 2011). Furthermore, Kuroda et al., also reported that the expression of the 

69 insulin gene was regulated by differential DNA methylation (Kuroda et al., 2009).

70 Several studies have associated dietary patterns with DNA methylation profiles studies and 

71 obesity-related conditions such as chronic inflammation, insulin resistance, T2DM and 

72 subsequently cardiovascular disease (Mckay & Mathers, 2011; Park et al., 2017; Milagro et 

73 al., 2013). 

74 Chronic inflammation promotes insulin resistance and the development of type 2 diabetes 

75 (Goldfine et al., 2011). Chronic inflammation also provides a link between  type 2 diabetes and  

76 cardiovascular disease (Goldfine et al., 2011). Previous studies have shown that differential 

77 methylation in adipose tissues, muscles and pancreatic islets are associated with localised 

78 inflammation in patients with T2DM (Kulkarni et al., 2012; Yang et al., 2012; Ribel-Madsen et 

79 al., 2012; Nilsson et al., 2014; Dayeh et al., 2014). 
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80 Low-dose aspirin (LDA) is widely used for the primary prevention of cardiovascular events in 

81 patients with type 2 diabetes who are at an increased risk of developing thrombotic 

82 complications (Goldfine et al., 2011). Furthermore, the use of low-dose aspirin as a primary 

83 preventive measure for patients with type 2 diabetes and heart failure (HF) has been reported 

84 to be associated with lower all-cause mortality, though in the absence of other 

85 contraindications including a history of myocardial infarction, stroke, coronary artery disease, 

86 peripheral artery disease (Abi Khalil et al., 2018) (Chang et al., 2013). Furthermore, it has 

87 been suggested that an increased dose of aspirin or twice-daily low-dose aspirin therapy could 

88 be possible therapeutic options for cardiovascular prevention in diabetes mellitus patients 

89 (Capodanno & Angiolillo, 2016). The combination of aspirin with a potent anti-platelet drug 

90 such as clopidogrel is an antiplatelet therapy option of choice in the prevention of 

91 macrovascular conditions (Silber et al., 2015; Smith et al., 2006; Anderson et al., 2007; King 

92 et al., 2008; Werf et al., 2008; Kushner et al., 2009). Notably, the occurrence of cardiovascular 

93 events in coronary artery disease patients receiving dual clopidogrel and low-dose aspirin 

94 therapy is associated with a poor response to clopidogrel (Kuliczkowski et al., 2009). The poor 

95 response and variability in clopidogrel action, as well as the recurrence of ischemic events in 

96 patients with stroke, has been attributed to differential DNA methylation (Gallego-Fabrega et 

97 al., 2016). In fact, hypomethylation of the ATP Binding Cassette Subfamily B Member 1 

98 (ABCB1) gene promoter has been reported to be associated with a decreased clopidogrel 

99 response in ischemic stroke patients via increased ABCB1 mRNA expression (Yang et al., 

100 2015).

101 In this study, we hypothesized that low dose aspirin (LDA) as a monotherapy and in 

102 combination with metformin (LDA + Metformin) may induce differential global DNA methylation 

103 in B and T lymphocytes (Nishimura et al., 2009; DeFuria et al., 2013). The study aimed to 

104 assess the global DNA methylation profiles of the lymphoid cell subsets using a HFD-fed 

105 animal model of prediabetes. We further assessed whether low-dose aspirin and clopidogrel 

106 modulate the global DNA methylation profiles of peripheral blood lymphocytes. 
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107 Methods and Materials

108 Animals and animal handling
109 Male C57BL/6 mice (n = 28) at 6 weeks of age were purchased from the Biomedical Resource 

110 Unit (BRU) at the University of KwaZulu-Natal (UKZN). The C57BL/6 mice strain is well 

111 characterized and has been shown to become glucose intolerant when kept on a high-fat diet 

112 (Pinchuk & Filipov, 2008).The mice were housed in cages at the BRU in a controlled 12-hour 

113 light/dark cycle and a temperature range of 23 - 25 0C (relative humidity: approximately 50 %). 

114 The animal well-being was monitored in accordance with the principles of laboratory animal 

115 care (National Institute of Health publication 80-23, revised 1978).  The mice were allowed 

116 free access to water throughout the experimental period. The animal study followed the Animal 

117 Research: Reporting In Vivo Experiments (ARRIVE) (Kilkenny et al., 2013) (Supplementary 

118 File 1). The ARRIVE guideline was used to improve the standard of reporting in animal 

119 research. The study received ethical approval from the University of KwaZulu-Natal Animal 

120 Research Ethics Committee (AREC), under the ethics registration number AREC/086/016.

121 Study design and experimental procedures

122 The study comprised of two major experiments (Figure 1). The first experiment comprised of 

123 16 male mice which were randomized into two diet groups, the low-fat diet (LFD) and the high-

124 fat diet (HFD) group (table 1). The LFD group received a low-fat diet (D12450J) (Research 

125 Diets, New Brunswick, NJ, USA) containing 10 % kcal fat, 20 % kcal Protein, 70 % kcal 

126 carbohydrates and 3.82 kcal/g energy density, whereas the HFD group (D12492) (Research 

127 Diets, New Brunswick, NJ, USA) received a high-fat diet containing 60 % kcal  fat, 20 % kcal 

128 protein, 20 % kcal carbohydrates and 5.21 kcal/g energy density).  

129 Table 1. Diet composition (g/kg)

Ingredients LFDa HFDb

Casein, 30 mesh 200.00 200.00

L-Cystine 3.00 3.00

Corn starch 506.20 -
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Lodex 10 125.00 125.00

Sucrose 72.80 72.80

Solka Floc, FCC200 (Fiber) 50.00 50.00

Soybean Oil 25.00 25.00

Lard 20.00 245.00

Mineral mix S10026B 50.00 50.00

Choline Bitartrate 2.00 2.00

Vitamin mix V10001C 1.00 1.00

Dye, Yellow FD&C #5, Alum. Lake 35-42% 0.04 -

Dye, Blue FD&C #1, Alum. Lake 35-42% 0.01 0.05

130 a The LFD obtained from Research Diets Inc (#D12450J, rodent diet with 10% kcal% fat) provided 3.82 
131 kcal/g from 20%, 70%, and 10% of protein, carbohydrate, and fat, respectively.
132 b The HFD obtained from Research Diets Inc (#D12492, rodent diet with 60% kcal% fat) provided 5.21 
133 kcal/g from 26.2%, 26.3%, and 34.9% of protein, carbohydrate, and fat, respectively.
134 c Typical analysis of cholesterol in lard = 0.72 g/kg.

135

136 Experiment one: 

137 The first experiment aimed at measuring the baseline DNA methylation profiles of isolated B 

138 and T lymphocytes, following 8-weeks of high fat-diet feeding. The study comprised of 5-week 

139 old male C57BL/6 mice (n = 16). The mice were allowed a week for acclimatisation while 

140 receiving normal mice chow and had free access to water ad libitum. The mice were then 

141 randomised into two groups, the LFD and HFD group (n = 8/group). The animals were then 

142 housed in separate cages (n = 8/cage) based on their respective diets (figure 1). Two-hundred 

143 microliters of venous blood was drawn from each animal and baseline haematological 

144 measurements, glucose, insulin and DNA methylation measurements (%5-methylcytosine) 

145 were determined (Supplementary file 2). Monocyte and granulocytes were depleted from the 

146 whole blood samples and B and T lymphocyte were then isolated using the BD™ IMag Cell 

147 Separation system (BD Bioscience,USA) (Supplementary file 2). 

148
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149 Experiment two: 

150 In experiment two we assessed whether the short-term treatment with low-dose aspirin (LDA), 

151 LDA with metformin (LDA+MET), and clopidogrel modulates DNA methylation profiles in HFD-

152 fed (HFF) mice. Fifteen (n=15) HFF mice were randomized into three treatment groups (n = 

153 5/group). These included; (1) a low-dose aspirin (LDA) (3 mg/kg) (Kroesen et al., 2018) group; 

154 (2) LDA and metformin (150 mg/kg) (Saisho, 2015) group and clopidogrel (0.25 mg/kg) 

155 (Iannacone et al., 2007). The mice received their respective treatment for 6 weeks via daily 

156 oral gavage (figure 1). Blood was then drawn and the serum insulin levels, haematological 

157 indices, DNA methylation profiles were determined (Supplementary file 2). 

158

159

160 Statistical analysis
161

162 All statistical analysis was performed using GraphPad Prism 5 (GraphPad Software Inc.; La 

163 Jolla, CA, USA).The comparisons of baseline measurements between the two diets groups 

164 the LFD and HFD were performed using an unpaired t-test for parametric data and reported 

165 as mean and standard deviation. In addition, the one-way analysis of variance (ANOVA) was 

166 used for comparisons of DNA methylation levels across the three treatment groups, followed 

167 by the Bonferroni post-hoc test.  While non-parametric data was analysed using the Mann 

168 Whitney U test and reported as median and interquartile range. For comparisons across the 

169 three treatment groups the Kruskal-Wallis test followed by the Dunn's multiple comparison test 

170 were used. The dependent variable was the global DNA methylation level (% 5-

171 Methylcytosine) while the independent variables were the lymphocyte subsets, treatment 

172 drug, and diet group. A p-value of ˂ 0.05 was considered statistically significant. 

173
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174 Results
175

176 Baseline characteristics and haematological parameters following 8-weeks of HFD-
177 feeding.
178

179 The HFD-fed (HFF) group showed increased body weight gain after two weeks of HFD-feeding 

180 (p < 0.05). The weight gain were noticeable in weeks 2, 4, 6 and 8 weeks of HFD-feeding; with 

181 mean percentage weight gain of 7.9%, 22.12%, 27.18% and 31.33% (p < 0.0001) respectively. 

182 The HFF group had an elevated 2-hour postprandial blood glucose and insulin levels when 

183 compared to the LFD group (p<0.05), indicating impaired glucose metabolism following 8-

184 week HFD-feeding (Table 2). The haematological indices were comparable between the HFD 

185 and LFD groups (p>0.05).

186

187 Table 2. Baseline metabolic and haematological characteristics 

Parameter LFD  HFD P value
Weight (g) 25.0 ± 2.5 26.0 ± 1.9 0.43

Metabolic profile
2hr postprandial glucose
Glucose Levels (mg/dL) 6.1 (5.4 - 6.9) 8.7 (8.5 - 9.2) 0.008
AUC mmol/L*120 min 636.0 (559.9 - 702.0) 765.0 (715.5 - 784.5) 0.032
Insulin conc (µIU/ml) 4.5 (4.4 - 4.6) 4.8 (4.6 - 8.1) 0.026

Haematological parameters
RBC (103µl) 7.2 ± 0.2 6.3 ± 1.0 0.14
WBC (103µl) 4.9 ± 1.0 5.5 ± 3.0 0.62
MO (%) 2.0 (2.0 - 2.2) 2.6 (1.9 - 3.3) 0.32
LY (%) 89.2 ± 1.4 87.4 ± 3.1 0.31
LY # (103µl) 4.4 ± 0.9 4.8 ± 2.6 0.72
PLT (103µl) 701.0 ± 156.3 548.8 ± 276.6 0.43

188 LFD: low fat diet, HFD: high fat diet, AUC: area under curve, RBC: red blood cell, WBC: white blood 
189 cells, MO (%): monocyte percentage, PLT: platelet count, LY (%): lymphocyte percentage, LY #: 
190 absolute lymphocyte count.

191 Global DNA methylation levels comparison among different cell subsets in 
192 prediabetic mice (HFD). 
193

194 The HFF group had increased %5mC expression on circulating peripheral blood lymphocytes 

195 when compared to the LFF group (p=0.049). Notably, T lymphocytes isolated from the HFD 

196 group also showed elevated levels of %5mC (p=0.038) when compared to the LFD group. 
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197 However, in the isolated B lymphocytes the levels of %5mC were comparable between the 

198 two diet groups (p = 0.43) (Table 3). 

199 Table 3. %5-methyl cytosine levels in HFD-fed compared to LFD-fed mice

Parameter LFD HFD P value
CD45+ Lymphocytes 5.5 (2.8 – 12.0) 13.25 (10.3 – 15.9) 0.049
CD3+ T cells 30.9 (14.6 – 43.2) 68.5 (28.9 – 74.5) 0.038
CD19 + B cells 99.8 ± 0.1 99.93 ± 0.03 0.432

200 LFD: low fat diet, HFD: high fat diet.
201 Significant values (p ˂ 0.05) shown in boldface.
202

203

204 Changes in haematological indices in HFD-fed mice treated mice.
205

206 There were significant differences in the levels of circulating lymphocyte (F (3,16) = 5.44, p = 

207 0.010), monocytes (F(3,16) =3.69 , p = 0.033) and platelets (x2=9.08, p = 0.028). The post-hoc 

208 test showed that the lymphocytes were significantly elevated in the HFD group as compared 

209 to the LDA+MET group (p<0.05). In addition, the levels of circulating platelets in the LDA group 

210 as compared to the HFD group (Table 4). While no significant differences in the levels of 

211 circulating monocytes were observed between the treatment groups (p>0.05) (Table 4).

212

213

214

215 Global DNA methylation levels in HFD-fed compared to treated mice
216

217 In order to assess whether DNA methylation profiles are modulated following short-term 

218 treatment of 6 weeks, we compared the % 5mC levels across three treatment groups. There 

219 were significant changes in the levels of T cells expressing 5mC (F(4, 20) = 6.34, p=0.0016) but 

220 not in the total lymphocyte (F(3, 16) = 1.59, p=0,2311) and B cell population (F(3, 16) = 1,472, 
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221 p=0.2597). The post-hoc test comparing the levels of %5mC expression on T cells showed 

222 that LDA significantly lowered levels of %5mC on T cells (p=0.0045). In addition, clopidogrel 

223 treatment also lowered the levels of %5mC expressed on T cells when compared to the 

224 LDA+MET group (p=0.0051) (Table 4).

225

226 Table 4. %5-methyl cytosine levels in untreated HFD-fed compared to treated HDF-fed mice

Parameter HFD   LDA  LDA + MET CLO P Value

Lymphocytes 12.5 ± 12.4 6.7 ± 6.4 14.1 ± 9.6 7.000 ± 4.7 0.453

CD19+ B cells 100.0 (99.9 - 
100.0)

99.7 (99.5 - 100.0) 99.7 (99.1 - 99.9) 100.0 (99.7 -
100.0)

0.087

CD3+ T cells 41.2 ± 21.9 18.8 ± 19.3a 49.88 ± 26.2 35.4 ± 28.3b 0.001

227 a compared to the HFD group, 
228 b compared to the  LDA+MET group.
229 Statistical significance (p ˂ 0.05) is shown in boldface. 
230
231

232 Discussion

233 This study aimed at measuring the global DNA methylation levels of the major lymphoid cell 

234 subsets following short-term high-fat diet feeding. We further assessed whether the levels of 

235 DNA methylation are modulated by clopidogrel, low dose aspirin, or low-dose aspirin 

236 combined with metformin. The increase in T lymphocyte-specific global DNA methylation in 

237 the high-fat diet (HFD) group persisted even during short-term clopidogrel treatment. In fact, 

238 our findings showed that elevated DNA methylation levels in T cells following high-fat diet 

239 feeding. This may suggest that T cell-specific DNA methylation changes could affect diverse 

240 biological signalling that modulate the inflammatory response. Previous studies have reported 

241 on an association between obesity and global DNA hypermethylation in lymphocyte 

242 subpopulations, including T cells, T cytotoxic cells, and B cells (Jacobsen et al., 2016). Taken 

243 together this may suggest that patients with metabolic diseases like T2DM may present with 

244 a perturbed epigenetic profile in the subpopulations of circulating lymphocytes. A strong link 
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245 between inflammation, insulin resistance, and epigenetic modifications has been reported 

246 (Zhao et al., 2012; Van Otterdijk et al., 2017). T cells play a crucial role in the initiation as well 

247 as maintenance of inflammation in adipose tissue, through persistent macrophage recruitment 

248 which may as a consequence promote the development of insulin resistance (Winer et al., 

249 2011; Winer et al., 2012; Nishimura et al., 2009; DeFuria, A. C. Belkina, et al., 2013). 

250 Epigenetic modification, precisely DNA methylation, may affect clopidogrel response (Zhang 

251 et al., 2017). Age and body mass index (BMI), which are some of the risk factors for type 2 

252 diabetes and metabolic syndrome, have also been reported to be significantly associated with 

253 clopidogrel response (Cuisset et al., 2009; Khalil et al., 2016). It has also been reported that 

254 diabetic patients exhibit a poor antiplatelet effect upon treatment with clopidogrel when 

255 compared to non-diabetics (Angiolillo et al., 2005; Serebruany et al., 2008), a phenomenon 

256 that is yet to be elucidated. 

257 Although low-dose aspirin and clopidogrel have been used as dual therapy in the primary 

258 prevention of cardiovascular events in patients with T2DM. A substantial incidence of major 

259 adverse cardiac events (MACE) has been reported. Exploration of the role and association of 

260 T cell-specific DNA methylation with clopidogrel action could help in the elucidation of the 

261 possible factors associated with the varied patient responses (Khalil et al., 2016).In fact, 

262 Garcia-Calzon et al., reported that DNA methylation on metformin transporter genes in the 

263 human liver, which differed according to anti-diabetic drug that was administered (Garcia-

264 Calzon et al., 2017). In our study, LDA significantly decreased the levels of T cell specific 

265 global DNA methylation in a prediabetic state. Surprisingly, no synergetic modulation of T cell 

266 global DNA methylation was observed in our study. These novel findings could suggest 

267 potential insight in the variable responses to anti-inflammatory drugs amongst patients living 

268 with T2DM. Persistent T cell activation that is initiated at the prediabetic phase may persist 

269 during treatment and lead to increased thrombotic risk. 
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270 The current study was limited to the major cell lymphocyte lineages and no T cell subtyping 

271 was performed to delineate whether differences in the T cell subsets exist. Activated T cells 

272 have been implicated in coronary artery disease remain one of the macrovascular 

273 complications associated with type 2 diabetes mellitus. In addition, an epigenome-wide study 

274 revealed that hypomethylation within the tumour necrosis factor receptor-associated factor 3 

275 (TRAF3) gene was associated with increased platelet aggregation and vascular recurrence in 

276 ischemic stroke patients who were under clopidogrel treatment (Gallego-Fabrega et al., 2016). 

277 Moreover higher TRAF3 expression due to decreased methylation may lead to an increase in 

278 the CD40 signal pathway (Song et al., 2011; Kuijpers et al., 2015). CD40 is involved in the co-

279 stimulation and activation of T cells (Song et al., 2011). It remains unclear whether 

280 hypermythylated T cells retain the functional capacity and whether in this may affect 

281 immunological responses in patients living with T2DM. 

282

283 Conclusion

284 T cells are involved in the initial perturbation of DNA methylation profiles in the pathogenesis 

285 of inflammation, insulin resistance and subsequently type 2 diabetes. Low-dose aspirin is 

286 effective in modulating T cell-specific global methylation, whereas clopidogrel showed no 

287 modulatory effect on the DNA methylation profile following a short term high fat diet feeding. 

288 This may suggest that the early changes in T cell DNA methylation profiles are mediated by 

289 inflammation and may be reversed by using low-dose aspirin.

290
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