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Abstract

RNA Polymerase II contains a disordered C-terminal domain (CTD) whose length enigmatically corre-
lates with genome size. The CTD is crucial to eukaryotic transcription, yet the functional and evolutionary
relevance of this variation remains unclear. Here, we use smFISH, live imaging, and RNA-seq to investigate
how CTD length and disorder influence transcription. We find that length modulates the size and frequency
of transcriptional bursting. Disorder is highly conserved and mediates CTD-CTD interactions, an ability we
show is separable from protein sequence and necessary for efficient transcription. We build a data-driven
quantitative model, simulations of which recapitulate experiments and support CTD length promotes initial
polymerase recruitment to the promoter but slows down its release from it, and that CTD-CTD interactions
enable promoter recruitment of multiple polymerases. Our results reveal how these tunable parameters pro-
vide access to a range of transcriptional activity, offering a new perspective for the mechanistic significance
of CTD length and disorder in transcription across eukaryotes.
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1. Introduction

In eukaryotes, the RNA Polymerase II complex that transcribes protein-coding genes is typically com-
posed of 12 subunits (Hantsche and Cramer, 2017). The largest and catalytic subunit RPB1 contains a repeti-
tive and unstructured C-terminal Domain (CTD) that is a major factor for establishing critical protein-protein
interactions throughout transcription and downstream processes (Harlen and Churchman, 2017).

Each of the heptad amino acid repeats in the CTD, whose number ranges from 5 in Plasmodium yoelii to
60 in Hydra (Chapman et al., 2008; Yang and Stiller, 2014), can be subject to post-translational modifications
that regulate its physical interactions and consequently RNA Pol II function (Eick and Geyer, 2013; Harlen
and Churchman, 2017). The CTD’s repetitive nature most likely arose in the last eukaryotic common ancestor
(Yang and Stiller, 2014), and its length appears to enigmatically correlate with genome size (Chapman et al.,
2008; Yang and Stiller, 2014). What is the role of CTD length variation in transcription?

Truncating the number of CTD repeats impacts cell growth and animal development, with a minimal
number required for viability (Nonet et al., 1987; Bartolomei et al., 1988; West and Corden, 1995; Gibbs
et al., 2017; Lu et al., 2019), and reduces the transcriptional output from enhancer responsive genes (Allison
and Ingles, 1989; Scafe, C; Young, 1990; Gerber et al., 1995; Aristizabal et al., 2013). Enhancers physically
interact with promoters via protein-protein interactions to activate transcription in bursts of activity (Chubb
et al., 2006; Bartman et al., 2016; Chen et al., 2018). Given that mRNA output decays rapidly with increas-
ing separation between enhancers and promoters (Dobi and Winston, 2007; Quintero-Cadena and Sternberg,
2016), an intriguing possibility is that CTD expansion facilitates enhancer function over physical distances to
promoters that scale with genome size (Allen and Taatjes, 2015).

Increasingly relevant for the understanding of biological phenomena, liquid-liquid phase separation is an
emerging signature of proteins with disordered, repetitive domains (Banani et al., 2017; Shin and Brang-
wynne, 2017). Low complexity domains that exhibit this property appear to be abundant in nuclear proteins,
including the CTD and major transcription factors (Cho et al., 2018; Chong et al., 2018; Qiu et al., 2018;
Shin et al., 2018). CTD length has also been implicated in its ability to form (Boehning et al., 2018) and
bind phase-separated droplets, with a minimum threshold that parallels its viability requirement (Kwon et al.,
2013). In addition, the interaction of the CTD with these droplets can be dynamically modulated by phospho-
rylation (Kwon et al., 2013; Chong et al., 2018; Boehning et al., 2018; Cho et al., 2018; Nair et al., 2019), a
major post-translational modification that precedes transcription initiation (Payne et al., 1989; Svejstrup et al.,
1997). In light of these observations, phase separation provides an appealing framework to explain certain
transcriptional phenomena. From this perspective, the CTD could provide a bridge for the RNA polymerase
to dynamically participate in multi-molecular assemblies of transcription factors and DNA loci that facilitate
the function of highly active enhancers (Hnisz et al., 2017).

Extensive investigations have revealed many roles of CTD sequence and post-translational modifications
(Eick and Geyer, 2013; Harlen and Churchman, 2017). On the other hand, the functional and evolutionary
relevance of CTD length and the mechanism by which it influences transcription have not been systematically
investigated.

Here, by quantitatively analyzing snapshots and dynamics of transcription in budding yeast, we show that
CTD length can modulate transcription burst size and frequency. We strengthen the evolutionary relevance
of the CTD’s long disorder, and provide evidence that its role in transcription is separable from amino acid
sequence. Specifically, we demonstrate that the function of the CTD’s long disorder can be supplemented by
similarly unstructured protein domains. These proteins can interact with and recruit others of their kind, an
ability that is necessary for efficient transcription in vivo. We use these features, together with known CTD
protein-protein interactions, to construct an integrative and quantitative model that explains how CTD length
influences the dynamics of eukaryotic transcription.
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2. Results

2.1. CTD is enriched in disordered amino acids and its length inversely correlates with gene density across
eukaryotes

The CTD of representative species has been shown to be a random coil (Portz et al., 2017), suggesting
this structural feature is relevant for its function and could itself be used to identify it. We sought to learn
whether this was a common signature in all known protein sequences. We searched for RPB1 protein sequence
homologs, the CTD-bearing catalytic subunit of RNA Pol II (Figure 1A, top). We recovered 542 unique
sequences from 539 species and 338 genera, whose length varies from 1374 to 3055 amino acids (Figure 1B),
with some evident bias that likely stems from the limited availability of genome sequences.

Figure 1: RPB1, the catalytic subunit of RNA Polymerase II, contains an unstructured C-terminal Do-
main (CTD) whose length correlates with gene density across eukaryotes. (A) Top: Cartoon of 12 subunit
RNA Pol II complex with an unstructured CTD drawn to scale, adapted from 1Y1W.PBD (Kettenberger et al.,
2004; Portz et al., 2017). RPB1 is highlighted in pink and its CTD in orange. Bottom: distribution of disorder
probability along RPB1 sequence homologs sorted by length. Representative species are highlighted. Inset
illustrates residue coloring by disorder probability. (B) Empirical cumulative distribution function (ECDF) of
RPB1 lengths. (C) RPB1 length positively correlates with number of predicted disordered amino acids and
inversely with gene density (D). Pearson correlation coefficient is shown for each pair of variables.

We computed the disorder probability per amino acid along each protein sequence. We found that with
few exceptions, the C-termini of RPB1 sequences is enriched in disordered amino acids (Figure 1A, bottom).
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Protein length is positively correlated with the number of disordered amino acids (Figure 1C). As noted in
previous reports (Chapman et al., 2008; Yang and Stiller, 2014), these C-terminal sequences are enriched
in amino acids from the heptad repeat YSPTSPS (Figure S1A). Like amino acid content, overall charge,
aromaticity and hydrophobicity have a compact distribution (Figure S1B-D).

CTD length has been shown to correlate with genome size for a few representative species that span a
wide range of genome sizes (Chapman et al., 2008; Yang and Stiller, 2014), from 1x107 bp in yeast to 3x109

bp in human. To systematically investigate the generality of this phenomenon, we compiled a list of genome
sizes and their estimated gene number. We then computed the gene density (genes per megabase of DNA)
for each species, in order to account for long stretches of non-coding DNA that are more common in large
genomes. The number of disordered amino acids in RPB1 homologs inversely correlated with gene density
(Figure 1D): sparse genomes tend to have polymerases with longer CTDs.

This systematic characterization of RPB1 sequences builds on previous extensive reports (Chapman et al.,
2008; Yang and Stiller, 2014) and highlights three important features of the CTD. First, protein disorder is a
highly conserved and likely functionally relevant feature of the CTD. Second, RPB1 length variation mostly
originates from the number of disordered amino acids in its C-terminus. Third, CTD length is inversely
correlated with gene density.

2.2. CTD length modulates transcription burst size and frequency
We sought to understand the role of CTD length using Saccharomyces cerevisiae as our model. Wild-type

yeast CTD contains 26 heptad repeats (CTDr). We generated strains in which the genomic copy of RPB1 was
engineered to have 14, 12, 10, 9, and 8 CTDr, the minimum required for viability in yeast (West and Corden,
1995). Consistent with previous reports (Nonet et al., 1987; West and Corden, 1995), the growth rate of these
strains was compromised by CTD truncation. The magnitude of the decrease in growth rate increased with
decreasing CTD length (Figure 2A); while 14 and 12 CTDr strains have only a subtle growth phenotype, the
decrease in growth rate becomes evident with 10 CTDr and progressively larger with 9 and 8 CTDr (Figure
2A, inset).

RNA Pol II is mostly present in the nucleus, imported as a fully assembled complex (Boulon et al., 2010;
Czeko et al., 2011). We hypothesized that nuclear polymerase becoming rate-limiting could explain the ob-
served phenotypes, given that the CTD has been linked to nuclear import (Carre and Shiekhattar, 2011). We
fused the fluorescent protein mScarlet to RPB1, and unexpectedly found that CTD truncation increased its
nuclear levels (Figure 2B). This effect is presumably explained by the requirement of the CTD for ubiquiti-
nation (Huibregtse et al., 1997; Somesh et al., 2005) and the resulting accumulation of the protein complex.
We were unable to fuse mScarlet to shorter CTD strains; however, this trend suggested the polymerase does
not become rate-limiting upon CTD truncation.

We then asked how CTD length influences transcription. We focused on the galactose transcriptional re-
sponse, because like other inducible pathways it has been shown to be sensitive to CTD truncations (Allison
and Ingles, 1989; Scafe, C; Young, 1990) and involves the differential expression of over 2000 transcripts
(Figure 2E), about a third of the yeast’s transcriptome. We measured the transcriptional phenotype of CTD
truncation using RNA-seq, comparing wild-type with the 10CTDr strain with and without galactose (Fig-
ure 2C). We fitted these data to a linear model that allowed us to estimate the individual contributions, for
each measured transcript, of four components in the experiment: batch effects, galactose induction, CTD
truncation, and its interaction with galactose induction (Figure 2C, right).

We identified over 2000 transcripts affected by CTD truncation at a q-value threshold of 0.1, from a dis-
tribution of q-values that indicates a strong transcriptional phenotype (Figure 2D,E). A significant proportion
of the galactose responding transcripts exhibited a statistical interaction with CTD truncation. This effect
revealed a surprisingly specific, globally antagonistic relationship between two components: 1) galactose
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Figure 2: CTD truncation reduces growth rate, increases nuclear Pol II concentration and antagonizes
transcription activation genome-wide. (A) Mean optical density (OD) over time of S. cerevisiae strains with
26 (wild-type), 14, 12, 10, 9, and 8 CTD repeats (CTDr). Shaded area shows the range of measured ODs at
each time point from three biological replicates per line. Inset shows mean doubling times (DT) with standard
error by line. (B) Empirical cumulative distribution function (ECDF) of mScarlet-RPB1 nuclear fluorescence
in strains with 26, 14, and 12 CTDr from three biological replicates. Shaded area is bootstrapped 99%
confidence interval (CI) and top markers show median with 99% CI. (C) Experimental design to measure the
transcriptomic phenotype of CTD truncation and its influence on the transcriptional response after 2 hours
of galactose induction via RNA-seq from three biological replicates. A linear model was used to fit the
RNA-seq data, where each coefficient estimates the influence on each measured transcript of batch effects,
galactose induction, CTD truncation and its interaction with induction. For each coefficient, (D) cumulative
distribution, in number of transcripts, of false discovery rates (q-values) and (E) number of differentially
expressed transcripts detected at a q-value threshold of 0.1. (F) Comparison of the log fold-change of each
transcript resulting from galactose induction and its interaction with CTD truncation. Red points show the
positions on the diagonal x = y. Marker size of each point is inversely proportional to the q-value of the
interaction (ms = −log(qint)); dotted lines reference no change at zero and the Pearson correlation is indicated.
Direct targets of GAL4 listed in Lesurf et al. (2016) are plotted in orange.

induction and 2) the interaction of truncation with galactose induction (Figure 2F). In other words, CTD
truncation reduced the magnitude of change in abundance of most transcripts upon galactose induction.

We sought to understand the source of this antagonism by visualizing transcription dynamics in living
cells. We introduced 14 copies of the bacteriophage sequence PP7 in the 5’ UTR of GAL10, a strongly

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2019. ; https://doi.org/10.1101/825299doi: bioRxiv preprint 

https://doi.org/10.1101/825299
http://creativecommons.org/licenses/by/4.0/


galactose responsive gene. Each of the PP7 repeats forms an RNA hairpin that can be bound by a pair of PP7
coat proteins fused to GFP (Coulon et al. (2014); Lenstra et al. (2015), Figure 3A, top). This system allowed
us to visualize the dynamics of GAL10 transcription upon galactose induction as fluorescence bursts arising
from the transcription site (TS; Figure 3A, bottom). We found that expressing TS intensity as the ratio of spot
to mean nuclear fluorescence could reliably account for the differences in PP7-GFP levels observed between
strains (Figure S2D-H).

Given the burstiness of transcription, we hypothesized that two parameters could play a role in the di-
minished transcriptional output, namely burst size and frequency. We measured transcription fluorescence
traces for 26 (wild-type), 14, and 12 CTDr strains (Figure 3B). CTD truncation decreased the intensity of
fluorescence bursts (Figure 3C), suggesting a decrease in burst size. Also, truncation increased the time in-
terval between bursts (Figure 3D), which is closely related to burst frequency. We could similarly observe
this frequency decay by looking at whether the average cell was active or inactive over time for each strain
(Figure S3A). These average traces also show that burst frequency remained roughly constant after activation,
only declining towards the end likely due to photobleaching and mRNA-bound PP7-GFP nuclear export. The
autocorrelation of normalized intensity traces increased in amplitude with CTD truncation, similarly support-
ing a decrease in burst frequency (Figure S3B-D). Differences in burst duration measured from this analysis
were more subtle. This potential ambiguity could mean that burst duration is independent of size, or that the
observed decay in TS intensity was influenced by the decay in burst frequency. Overall, the live transcription
measurements suggested CTD length can simultaneously modulate burst size and frequency.

The transcriptional activity in strains with shorter CTDs was too weak to be visualized in these movies
without incurring in phototoxic illumination. To circumvent this problem, we took a single snapshot per field
of view with maxium laser intensity during a 20 minute window after 30 minutes of galactose induction. This
approach additionally allowed us to obtain a better estimate of TS fluorescence. The fraction of active cells
per field of view was impacted by CTD truncation (Figure 3E). We observed a transition similar to the growth
phenotype in this assay, where the magnitude of the effect progressively increased with CTD truncation.
We also observed a consistently moderate shift in the distributions of TS fluorescence with CTD truncation
(Figure 3F). The comparatively small magnitude of this decrease suggested the decay in fraction of active
cells is primarily driven by burst frequency. From these measurements, we conclude that CTD length can
modulate both the size and the frequency of transcriptional bursting.

2.3. Fusion to disordered proteins can rescue the function of a CTD-truncated RNA Pol II
Given the conservation of protein disorder (Figure 1A) and recent evidence that the CTD can form and

interact with phase separated droplets (Kwon et al., 2013; Chong et al., 2018; Boehning et al., 2018; Cho et al.,
2018; Nair et al., 2019), we hypothesized that the function of the CTD’s long disorder could be supplied by
other proteins of similar chemical and structural features. We tested this idea by fusing the low complexity
domains (LCD) of the human proteins FUS and TAF15, which are not present in the yeast genome, to the
C-terminus of a 10CTDr truncated RPB1. These LCDs contain neither a known nuclear localization sequence
(Gal et al., 2011; Marko et al., 2012) nor ubiquitination sites (Mertins et al., 2013) that could supplement CTD
function in a predictable manner; they are similar in amino acid composition, particularly in the frequency of
tyrosines, but share little sequence similarity with the CTD (Figure S4A-C).

Astonishingly, strains carrying either protein fusion showed an improved growth rate over the 10CTDr
strain. Fusion to FUS LCD progressively rescued growth rates of strains with 9 and 8 CTDr. Furthermore,
strains with 7 and 6 CTDr remained viable when fused to FUS, surpassing the minimum requirement of
8 CTDr alone (Figure 4A). This supression was particularly striking because the CTD has been extensively
mutated, typically with detrimental effects to transcription or downstream processes. This new minimal length
is also noticeably close to the four heptad repeats that directly contact Mediator in an assembled preinitiation
complex (Robinson et al., 2012, 2016).
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Figure 3: CTD length modulates transcription burst size and frequency. (A) Experimental strategy used
to observe transcription dynamics in live cells. The 5’ end of a single allele of galactose-inducible GAL10
is tagged with RNA hairpins that are bound by nuclear expressed GFP-PP7. This protein fusion results in a
fluorescent spot in the cell nucleus upon transcription activation, whose fluorescence through time is recorded
to investigate transcription dynamics. (B) Transcriptional traces by cell of strains with 26 (wild-type), 14, and
12 CTD repeats (CTDr) from three biological replicates. These are related to burst size and frequency through
(C) the empirical cumulative distribution function (ECDF) of transcription site fluorescence intensities and
the ECDF of inter-burst times, in seconds (D). Shaded area is bootstrapped 99% confidence interval (CI) and
top markers show median with 99% CI. (E) Fraction of active cells per field of view from two biological
replicates measured from high-laser-power snapshots of strains with 26, 14, 12, 10, and 9 CTDr. Middle
points indicate mean with bootstrapped 99% CI. Color indicates time after galactose induction. (F) ECDFs of
normalized fluorescence intensities of transcription bursts from these snapshots. Vertical dotted lines indicate
median and shaded area bootstrapped 99% CI. Number of CTD repeats is indicated in the lower right corner
of each plot.

We next probed whether the improved growth phenotype originated from a transcriptional rescue. We
used RNA-seq to compare the transcriptomes of the FUS and TAF15 rescued strains and their response to
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Figure 4: Fusion of the low-complexity domain (LCD) of FUS or TAF15 to a truncated polymerase
can rescue its function and reduce the CTD length required to support cell growth. (A) Comparison
of doubling times (DT) of strains with wild-type and decreasing number of CTD repeats (CTDr) with and
without fusion to the LCD of FUS or TAF15. Individual points come from independent lines when available
and indicate mean DTs with standard error estimated from three biological replicates per line. (B) Top: Linear
model used to estimate the effect of truncation to 10CTDr, subsequent LCD fusion, and the interaction of
each of these components with galactose induction. Bottom: Resulting cumulative distributions of q-values,
in number of transcripts, for each coefficient, excluding galactose and batch effects from three biological
replicates. (C) Number differentially expressed transcripts detected at a q-value threshold of 0.1. Comparison
of the log fold-change of each transcript induced by galactose and its interaction with 10CTDr fused with
FUS (D) and TAF15 (E) LCDs. Inset shows comparison with 10CTDr interaction alone. (F) Reduced linear
model used to measure galactose induction in each strain individually. Comparisons of log fold-change of
each transcript induced by galactose in wild-type and 10CTDr (G), 10CTDr-FUS (H), and 10CTDr-TAF15
(I). Red points show the positions on the diagonal x = y. Marker size of each point is inversely proportional
to the q-value of the coefficient in the y-axis (ms = −log(qy)); dotted lines reference no change at zero
and the Pearson correlation is indicated. Direct targets of GAL4 listed in Lesurf et al. (2016) are plotted
in orange. (J) Representative images of smFISH with probes for a single allele of PP7-GAL10 and both
alleles of GAL3 after two hours of galactose induction for 26CTDr (wild-type), 10CTDr, 10CTDr-TAF, and
10CTDr-FUS strains as indicated on top of each image. White dotted contours mark cell outlines. Scale bar
is 1 µm. Fraction of active cells per field of view for GAL10 (K) and GAL3 (L) measured from two biological
replicates of smFISH. Mean with 99% bootstrapped confidence interval (CI) is shown on top of each group.
Corresponding empirical cumulative distribution functions (ECDF) with 99% bootrsapped CI of transcription
site intensities of GAL10 (M) and GAL3 (N). Medians with 99% CI are shown on top.

galactose induction with that of the wild-type and 10CTDr strains. Using principal component analysis,
we observed LCD fusion results in transcriptomes in-between that of the wild-type and truncated strains,
under induced and uninduced conditions (Figure S5A). As described in Figure 2B, we fitted the data to a
linear model to identify the contributions to each transcript of galactose induction, CTD truncation, FUS
or TAF15 LCD fusion to a 10CTDr truncated polymerase, and their interaction with galactose (Figure 4B,
top). We found the number of differentially expressed transcripts resulting from CTD truncation decreased
from 2256 to 1037 and 883 transcripts at a q-value threshold of 0.1 upon fusion to FUS or TAF15 LCDs,
respectively (Figure 4C). More generally, the distribution of q-values resulting from CTD truncation shifted
towards less significant values (Figure 4B, middle), a sign of considerable amelioration in the transcriptional
phenotype. These LCD fusions additionally shifted the distribution of q-values of the interaction between
CTD truncation and galactose induction (Figure 4B, bottom), abolishing the measurable effect at a q-value of
less than 0.1 (Figure 4C). Moreover, the global antagonism of this interaction term with galactose induction
nearly vanished (Figure 4D,E).

We interrogated these data further using other linear models, the simplest of which consists of indepen-
dently measuring the galactose induction in each strain (Figure 4F). In this comparison, the galactose response
of most transcripts in the rescued strains closely resembles that of the wild-type (Figure 4G,H), more than
the 10CTDr alone (Figure 4I). The FUS and TAF15 transcriptional phenotypes, as measured using the full
model (Figure 4B, top), were highly correlated (Figure S5B). Based on this observation, we fitted the data to
a model in which we consider the two rescued strains as a single LCD group by pooling their transcriptomes
together (Figure S5C). This model increased the number of transcripts that we can confidently call differen-
tially expressed at a q-value threshold of 0.1 to 1392 (Figure S5D). This effect supports the transcriptional
rescue occurs through a single pathway, and that there is a CTD sequence-dependent signature that remains
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shared among the three 10CTDr strains. This signature was evident from the high similarity between the
truncation and LCD fusion coefficients (Figure S5E). From this experiment, we conclude that the sequence
and long disorder of the CTD have separable roles in transcription, the latter of which can be supplemented
by the similarly disordered LCDs of FUS or TAF15.

For unknown reasons, our live imaging system did not work with the FUS rescued strains. We circum-
vented this issue by using two-color Single-Molecule Fluorescence in situ Hybridization (smFISH). We used
probes against the PP7 repeats, allowing us to detect mRNA from a single allele of GAL10, and against
GAL3, which could detect RNA from both of its alleles (Figure 4J). The fraction of active cells consistently
increased for both the single allele of GAL10 and the two alleles of GAL3 (Figure 4K,L). In addition, we ob-
served an increase in TS fluorescence intensity of both rescued strains over the 10CTDr strain (Figure 4L,M),
suggesting the fraction of active cells increased specifically because of an increased burst size.

Together, these results show the CTD’s long disorder can influence transcription in a way that depends on
its chemical and structural properties rather than its precise amino acid sequence.

2.4. CTD, FUS and TAF15 LCDs can self-interact and this ability is necessary for efficient transcription
The CTD can bind the LCD of FUS and more strongly that of TAF15 (Kwon et al., 2013). TAF15 can

also interact with components of the Mediator complex (Takahashi et al., 2011). However, the avidity of
these interactions does not appear to correlate with the extent of rescue (Figure 4A). Other experiments have
shown these LCDs are able to phase-separate (Kwon et al., 2013). These phases are thought to form as a
result of intermolecular interactions that collectively drive droplet formation (Banani et al., 2017; Shin and
Brangwynne, 2017). We hypothesized that FUS, TAF15, and the CTD could be involved in the recruitment
of RNA Pol II to the TS via these self-interactions.

We first tested whether FUS and TAF15 variants, with tyrosine to serine misense mutations that make
them significantly less able to bind phase-separated droplets in vitro (Kwon et al. (2013); data reproduced in
Figure S4D), would fail to rescue the growth phenotype of a 10CTDr strain.

We observed a correlation between droplet binding rates and the extent of growth rescue upon fusion
of these protein variants to the truncated RNA polymerase (Figure 5A,B). This rescue also correlated with
the compromised ability of these proteins to function as transcription factors when fused to a DNA binding
domain (Kwon et al., 2013).

We investigated these mutants more closely by using an assay designed to measure self-interactions in
vivo, which we define as the ability of a protein to interact with and recruit others of its kind. We speculated
that fusing a self-interacting protein to PP7-GFP would lead to brighter spots in our live transcription assay
(Figure 5C, left). Heterologously expressed FUS and TAF15 can form punctate structures in yeast (Couthouis
et al., 2011; Ju et al., 2011). However, in this assay wild-type FUS and TAF15 LCD fusions distributed
uniformly across the cell nucleus, presumably due to lower protein concentrations. On the other hand, the
spots that formed after galactose induction became brighter with either LCD compared to PP7-GFP alone.
Moreover, more than a single spot became visible soon after transcription activation (Figure 5C, right).

We characterized this phenomenon via smFISH of galactose induced strains carrying PP7-GFP with and
without FUS and TAF15 LCD fusion (Figure 5D). This experiment suggested that the increase in the number
of spots and their brightness could be a result of 1) indirect recruitment of PP7-GFP-LCD to each mRNA
scaffold but mostly 2) LCD-mediated physical interactions between mRNA molecules outside of the TS. We
proceeded to use this assay to determine whether a protein can self-interact at physiological concentrations in
vivo.

We counted the number of bright spots per cell arising 30 minutes after galactose induction in snapshots
taken during a 20 minute window with a maximum intensity laser. This number is almost always 1 for PP7-
GFP alone, corresponding to the TS, except for when a cell had just duplicated the GAL10 locus during cell
division. A 10CTDr-PP7-GFP protein fusion mostly produced a single spot, similar to the non-self-interacting
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Figure 5: CTD and the low complexity domains (LCD) of FUS and TAF15 can self-interact in vivo and
this ability is necessary for the function of RNA Pol II. (A) Doubling times (DT) of 10 CTD repeat (CTDr)
strains with and without fusion to FUS or TAF15 wild-type and mutated LCDs sorted by droplet binding rate
as reported in Kwon et al. (2013) and comparison of FUS mutants with these rates (B). Pearson correlation is
indicated. Color indicates whether fused LCD is present, wild-type or mutant. Individual points come from
independent lines when available and indicate mean DTs with standard error estimated from three biological
replicates per line.
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Figure 5: (C) Diagram of self-interaction assay. An LCD is fused to GFP and PP7 coat proteins; GFP-PP7
fusion with no LCD is used as control (top). Upon induction of transcription, these fusion proteins bind
mRNA scaffolds. If LCDs can self interact, they increase the brightness of spots by recruiting more proteins
to the scaffold, and by bringing more than one mRNA together outside of the active transcription site via LCD-
LCD interactions (bottom). Representative snapshots of cells with increasing number of GFP fluorescent spots
are shown in the right. (D) smFISH after 30 minutes of galactose induction with probes that bind PP7 hairpins
in GAL10 mRNA on strains constitutively expressing PP7-GFP with and without LCD fusion as indicated
in the upper left corner of each image. Cells without an LCD have a single nuclear RNA complex per cell
corresponding to the transcription site (top, yellow arrowheads). Individual mRNA molecules are visible as
dimmer spots. Fusion to FUS (middle) or TAF15 (bottom) LCD leads to the formation of multiple RNA
complexes, visible as spots brighter than a single mRNA, in individual cells as a result of intermolecular
LCD-LCD interactions. White dotted contours mark cell outlines; scale bar is 1µm. (E) Fraction of cells
per field of view that contain each number of GFP spots by strain from three biological replicates. The
horizontal blue dotted lines indicate the number of spots in the 13CTDr GFP-PP7 fusion. Protein fused to
PP7-GFP is indicated by color. (F) Corresponding empirical cumulative distribution functions (ECDF) of
GFP fluorescence intensities from the brightest spot in each cell, typically corresponding to the transcription
site. Protein fused to PP7-GFP is indicated by color and in the lower right of each plot.

control. On the other hand, a 13CTDr and all of the FUS and TAF15 variants resulted in a higher fraction of
cells with more than a single bright spot (Figure 5E).

We also compared the fluorescence intensity of the brightest spot per cell, presumably the TS, to the
control expressing PP7-GFP only. Proteins that formed multiple bright spots also increased the intensity of
the brightest spot (Figure 5F). The 10CTDr construct resembled the negative control more than 13 CTDr.
Generally, these measurements support that 13CTDr, FUS, and TAF LCDs can self-interact, and the extent of
self-interaction qualitatively recapitulates the transitions observed in our growth and transcription assays.

These results suggest that self-interactions are necessary for the transcriptional rescue of CTD truncation,
and support the idea that this ability is a key attribute that the CTD’s long disorder contributes to transcription.

2.5. An integrative transcription model explains the influence of CTD length
In light of our evidence, we sought to devise a quantitative model for transcription that captured the effects

of perturbing CTD length and illuminated the role of disorder-mediated self-interactions. We built upon a
model that includes an active and an inactive state, which enables it to produce transcriptional bursting, and
specifies that an RNA polymerase molecule can only be recruited during the active state, in agreement with
experimental data (Bartman et al., 2019).

The CTD is known to physically interact with Mediator (Thompson et al., 1993; Kim et al., 1994), a
prevalent component of the preinitiation complex (PIC) (Allen and Taatjes, 2015). Given the repetitive nature
of the CTD, we postulated that the number of repeats and hence CTD length could modulate the affinity with
which the polymerase binds a Mediator-bearing PIC. Following this logic, we chose to explicitly refer to the
active state as the assembled PIC, primed for RNA Pol II binding.

Polymerase release from the PIC is preceded by CTD phosphorylation (Payne et al., 1989; Svejstrup et al.,
1997), which disrupts their physical interaction (Jeronimo and Robert, 2014; Wong et al., 2014). Assuming
each of the CTD repeats contributes to this interaction, we reasoned that their number should correlate with
the rate of polymerase release. Our rationale is that given the ratio of unphosphorylated to phosphorylated
repeats determines the physicochemical state of the CTD and its interaction with Mediator (Robinson et al.,
2016), the number of phosphorylation sites, or CTD length, should be proportional to the time it takes for
CTD kinases to reach this threshold.
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To recapitulate, we postulated that CTD length influences transcription by enhancing polymerase recruit-
ment rate to the PIC (β) and by decreasing polymerase release rate (φ) from the PIC (Figure 6A, blue).

An important feature of the current model for transcription is that only a single polymerase molecule can
bind the PIC at a given time (Bartman et al. (2019); Figure 6A, blue). To incorporate the ability of the CTD to
self-interact, we postulated an additional molecular state that allows for the recruitment of more than single
polymerase molecule to the extant PIC-Pol II complex via CTD-CTD self-interactions (Figure 6A, pink).

Finally, we used this model to assess the transcriptional rescue observed upon fusion of FUS or TAF15
LCDs to a CTD-truncated RNA polymerase. We reasoned that these LCDs would contribute the ability to
self-interact, but make it more difficult for the polymerase to be released into the gene because their phospho-
rylation may not be as efficient. Specifically, we postulated that fusing a self-interacting LCD to a truncated
CTD would fix self-recruitment rate ε and release rate φ, while the rate of initial recruitment β would still be
determined by CTD length.

We interrogated the consistency of our models with experimental data using stochastic simulations. For
simplicity, we set CTD length (CT DL) to be a number in the range (0-1), directly proportional to both poly-
merase recruitment rates β and ε, whose complement (1 − CT DL) is proportional to polymerase release rate
φ. We visualized these simulations as transcriptional traces for each model, including states of PIC assembly,
numbers of PIC-bound and phosphorylated polymerases (Figure 6B and Figure S6), akin to our live transcrip-
tion imaging data (Figure 3B). From these simulations we computed the distributions of burst sizes, inter-burst
times and fraction of active cells, and asked how CTD length would affect these parameters. Importantly, to
be consistent with prior literature, we define the start and end of a burst to be concomitant with PIC assembly
and disassembly, respectively, and only consider those that yield at least one mRNA molecule.

We compared the outcomes of the one-polymerase, the many-polymerases and the rescue models. The
identity of the distributions of burst sizes and inter-burst times resembled geometric and exponential, respec-
tively, for all the models (Figure S7). In addition, because the difference between models lies in the states
after the start of a burst and hence does not influence burst frequency, the model choice did not affect the
resulting distributions of inter-burst times (Figure 6C, S7C).

The three models predicted that shortening the CTD would progressively increase the average inter-burst
time (Figure 6C). This in turn translated into a progressive decrease in the fraction of active cells (Figure 6D).
Importantly, the magnitude of change in these numbers increased with decreasing CTD length. This effect
qualitatively reproduced the observed transitions in growth and transcription phenotypes resulting from CTD
truncation (Figure 2A, 3E).

Although dominated by burst frequency in this regime, the fraction of active cells was also influenced by
burst size (Figure S8A). Our simulations predicted that such influence would lead to a modest but consistent
increase in the fraction of active cells across a range of CTD lengths when comparing rescued with truncated
CTD lengths (Figure 6D). In contrast to frequency, burst size was significantly influenced by model choice.
The rescue model predicted a consistently higher mean burst size at almost every CTD length, except at the
extreme of a long CTD (Figure 6E). These results are strikingly consistent with our experiments, in that
rescued strains show a moderate increase in the fraction of active cells compared to truncated CTDs (Figure
4K,L), and TS intensity increased upon LCD fusion (Figure 4M,N). These comparisons of simulations with
experiments support the existence of a state with more than one polymerase and that LCD fusion specifically
rescues burst size via self-interactions.

The one-polymerase and the many-polymerases models produced very similar mean burst sizes with short
CTDs. However, burst sizes resulting from each model deviated significantly with longer CTDs (Figure 6E).
In particular, they increased exponentially when many polymerases were allowed to bind the PIC, but only
linearly with a single polymerase. These predictions suggest the impact of binding more than one polymerase
may become increasingly relevant as the CTD grows longer.

We also sought to elucidate the relationship between burst size, duration, and TS intensity in our exper-

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2019. ; https://doi.org/10.1101/825299doi: bioRxiv preprint 

https://doi.org/10.1101/825299
http://creativecommons.org/licenses/by/4.0/


Figure 6: An integrative model for transcription activation explains the role of CTD length. (A) CTD-
centric model for transcription activation. Transcription factors (TFs) assemble to form a preinitiation com-
plex (PIC) to which an RNA polymerase binds. In the one-polymerase model (blue), only a single polymerase
is allowed to bind the complex at a time. In the many-polymerases model (pink), more than one polymerase
can bind the complex via CTD-CTD interactions. Fusion of a truncated CTD to a self-interacting protein is
simulated using the many-polymerases model with fixed ε and φ. The positive or negative influence of CTD
length (CT DL) on each rate is indicated in green and orange, respectively. (B) Representative traces from
stochastic simulations by model, indicated to the right, as a function of CT DL, indicated in the left side of
each plot. Background shows PIC assembly state; number of PIC bound and phosphorylated (transcribing)
polymerases are shown in color as indicated in the legend on top. Corresponding mean inter-burst durations
(C), mean fractions of active cells (D) and mean burst sizes (E) with 99% bootstrapped confidence interval.
(F) Effect of varying φ (top) and ε (bottom) on the log burst size.
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iments by comparing these three values in our simulations. Because CTD length inhibits release rate in the
one-polymerase and the many-polymerases models, burst duration increased faster than burst size (Figure
S8B); these parameters were linearly proportional only when release rate was fixed in the case of the res-
cue model. These results potentially explain why burst duration decays more subtly (Figure S3B-D) than TS
intensity (Figure 3D,F). A potential source of uncertainty in measuring burst size is that the decay in TS inten-
sity could be a result of decreased burst frequency, given that GAL10 is transcribed in highly frequent bursts
that could overlap in time and inflate the measured intensity of a burst. We simulated how this intensity signal
would vary across CTD lengths and under different elongation rates δ, which determines how long a given
mRNA stays and contributes to the TS signal. We compared the fraction of active cells with the difference
between this observed TS intensity, influenced by δ and measured as the distributions of peak intensities in
the final simulated traces, and the true burst size, which we kept track of as we generated the traces and is
independent of δ (Figure S8C). The trend in this analysis is that if δ is low, the fraction of active cells would
remain high across CTD lengths and TS intensity would overestimate the true burst size because sequential
bursts would overlap; if δ is large, the fraction of active cells would remain low, and TS intensity would under-
estimate the true burst size because intensity would decrease before the end of a burst. Both of these effects
were enhanced with longer CTDs. The experimental range of active cells fractions (Figure 3E) suggests a
scenario where the estimate from TS intensity lies between a slight overestimation to an underestimation of
the true burst size; in the latter situation, inferring burst size from these data would be a conservative estimate.
In the context of the canonical transcription model (Figure 6A), the polymerase binding rate β intrinsically
links burst size and frequency. We thus conclude that the simplest explanation consistent with simulations,
experiments and previous literature is that burst size and frequency both decrease with CTD truncation.

Varying each of the model parameters individually (Figure S8E,F) offered an additional insight. By mod-
ulating the rate of polymerase phosphorylation φ –conceivably in local nuclear environments that limit CTD
kinase activity– or by increasing the rate of self-interaction ε, it is possible to dramatically increase burst
size under the many-polymerases model (Figure 6F). This effect would be a direct consequence of increased
concentrations of unphosphorylated Pol II, akin to recently reported droplets in cells (Chong et al., 2018;
Boehning et al., 2018; Cho et al., 2018; Nair et al., 2019). Although not specified in our model, liquid-liquid
phase separation may thus naturally emerge from this transcription logic.

Our CTD-centric models helped us understand our experimental observations and integrate them with
prior knowledge. By simulating them, we were able to capture the behavior of transcription upon CTD
truncation and subsequent fusion to LCDs, illuminating the role of CTD length and providing support for a
novel molecular state where more than a single polymerase can bind the PIC.

3. Discussion

3.1. A CTD-centric model offers mechanistic insights into transcriptional bursting
RNA Polymerase II is essential and extremely conserved across eukaryotes, yet the amino acid length of

its catalytic subunit varies dramatically (Figure 1A,B). As discussed above, the number of disordered amino
acids in the CTD closely follows this length variation, increasing with genome size as coding sequences
become more scattered (Figure 1C,D).

The influence of CTD length on transcription is consistent with a simple quantitative model based on
known protein-protein interactions with Mediator, CTD phosphorylation and disorder-mediated self-interactions
(Figure 6A). We explicitly assume that at this level of abstraction, the major, Poissonian source of stochasticity
in transcription comes from the multimolecular assembly of the preinitiation complex (PIC) at the enhancer
and the promoter, ocurring at the start of each burst and preceding Pol II recruitment. This assumption is
motivated by the CTD’s influence on both burst size and frequency (Figure 3C-F) and by extensive previ-
ous experimental evidence. PIC formation is a rate-limiting step in transcription (Kuras and Struhl, 1999;
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Li et al., 1999) and transcription bursts are concomitant with enhancer-promoter interactions (Bartman et al.,
2016; Chen et al., 2018). Roughly, the likely order of protein recruitment events upon activation is enhancer
specific transcription factors, a single Mediator complex (Petrenko et al., 2016) and general transcription fac-
tors, and finally RNA polymerase followed by CTD kinases (Bryant and Ptashne, 2003; Krishnamurthy and
Hampsey, 2009). In specifying our model, we put forward a view in which bursts are a result of recurrent Pol
II binding to the assembled PIC, and inactivity periods a consequence of PIC disassembly (Figure 6A). This
reductionist framework thus offers an intelligible perspective of the mechanism of eukaryotic transcriptional
bursting.

3.2. CTD length cooperatively scales transcription
The probability of interaction between two genomic loci is highly dependent on the physical distance

between them (Lieberman-Aiden et al., 2009). As a result, order-of-magnitude variation in genome sizes and
in the physical spacing between enhancers and promoters represents a challenge: how does the transcrip-
tion machinery overcome an increasingly infrequent event? Our simulations suggest increasing CTD length
can reduce the number of times an assembled PIC fails to recruit RNA Pol II and produce mRNA before
disassembly (Figure S8E), and that self-interactions can considerably increase burst size (Figure 6E,F). By
exploiting each rare assembly event, CTD length-enhanced recruitment and self-interactions could contribute
to resolve the transcription scaling paradox. This compensatory mechanism would complement changes in
genome organization (Szabo et al., 2019), without which enhancer-promoter interactions may never occur in
the first place.

In this context, CTD length bears an important distinction with the strength of self-interaction and poly-
merase recruitment rate, determined by interactions with the PIC. While the naive expectation is that these
parameters should be correlated, devations from the consensus repeat YSPTSPS may provide a way to mod-
ulate them independently. This hypothesis could explain why fruit flies with a CTD of wild-type length
that is made up entirely of consensus repeats do not survive, but animals with a yeast CTD remain viable
(Lu et al., 2019). Based on this rationale, we speculate CTD length and sequence in eukaryotes coevolves
with the physical spacing between enhancers and promoters, primarily determined by genome organization
(Lieberman-Aiden et al., 2009; Szabo et al., 2019) and genome size.

3.3. CTD-CTD self-interactions link transcription activation to phase-separation
It is possible that FUS and TAF15 LCDs rescue CTD truncation through an alternative recruitment mech-

anism that does not involve self-interactions, given they can also function as transcription factors when fused
to a DNA binding domain (Kwon et al., 2013). This hypothesis would nonetheless be consistent with our
inference that CTD length modulates polymerase binding rate to the PIC, but it would not support a many-
polymerases state. On the other hand, our data do not suggest rescue is driven by enhanced direct recruitment
to the PIC, given the increase in fraction of active cells seems to be predominantly driven by burst size and
not frequency (Figure 4K-N), while direct recruitment would enhance both parameters. Additionally, we find
a correlation between LCD ability to bind liquid droplets (Figure S4D) and self-interact with the extent of
phenotypic rescue upon fusing them to a truncated RNA Pol II (Figure 5A,C,D).

Self-interactions additionally offer a logical connection between the mechanism of transcription activation
and liquid-liquid phase separation (LLPS). Our model predicts that when self-interaction strength is large or
the rate of polymerase release is small, large transcription bursts could emerge (Figure 6F), implying a high
local concentration of unphosphorylated polymerases. This environment has been observed in LLPS droplets
at super-enhancers of live cells (Chong et al., 2018; Boehning et al., 2018; Cho et al., 2018; Nair et al., 2019).
A corollary of this idea is that the average gene and the super-enhancer gene can both be transcribed using
the same mechanisms, but only the latter would manifest LLPS droplets as an epiphenomenon of enhanced
polymerase recruitment or kinase exclusion. Super-enhancers would then be at the extreme of the distribution
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of burst sizes, which is consistent with the observation of only a few droplets per cell whose number does not
nearly match the total number of transcribed genes. In this scenario, LLPS could result in emergent behaviors
whose understanding would require a different quantitave framework; our model may not apply to these CTD-
lengths but could provide a useful expectation to compare them with. In other words, CTD length variation
may result in regimes of transcription activation governed by different dynamics.

3.4. Self-interactions support a multi-polymerase complex
The key proposition of our model that allows the incorporation of self-interactions is the existence of a

molecular complex that can bind more than one RNA Polymerase molecule (Figure 6A, pink). Short-lived
Pol II clusters observed in mammalian cells that overlap with active transcription sites and whose duration
correlates with mRNA output (Cisse et al., 2013; Cho et al., 2016) could be a direct observation of this
event. On the other hand, Pol II pausing appears to negatively correlate with transcription initiation (Shao
and Zeitlinger, 2017; Gressel et al., 2017), which could suggest that new polymerases may not be able to bind
an occupied promoter. Distinguishing the perhaps differential ability of PIC-bound and paused Pol II’s CTD
to self-interact would be helpful to understand the relationship of this observation with a many-polymerases
state.

Pol II is released from the promoter upon CTD phosphorylation (Jeronimo and Robert, 2014; Wong et al.,
2014), based on which we argue that CTD length influences release rate. Along this line, depletion of yeast
CTD-kinase Kin28 causes an upstream shift in Pol II occupancy along genes (Wong et al., 2014), with a pat-
tern that resembles proximal-promoter accumulation in metazoans (Adelman and Lis, 2012) and is consistent
with a defective promoter escape. A conspicuously similar shift was observed upon mutating CTD’s serine
5 (Collin et al., 2019), the specific CTD residue phosphorylated for transcription initiation (Eick and Geyer,
2013; Harlen and Churchman, 2017). We find self-interactions correlate with the efficiency of transcription
(Figure 5). A sensible interpretation of these experiments is that decreasing CTD-kinases or their activity on
the CTD lead to increased RNA Pol II at the promoter by extending the time window for self-interaction me-
diated recruitment. These observations raise the hypothesis that promoter accumulation of Pol II in metazoans
(Adelman and Lis, 2012), congruently not observed in yeast (Steinmetz et al., 2006), could be contingent on
a higher phosphorylation release-threshold linked to a long CTD and a multi-polymerase complex. Experi-
ments that directly measure the number of polymerases that can bind the PIC, and how CTD length influences
RNA Pol II occupancy profile would be highly informative in this regard.

In summary, our study integrates experimental results and simulations to explain how CTD length in-
fluences transcription activation. We revise the current model of transcription by providing evidence that
self-interactions are a key feature in this process, intrinsically linked to a state in which multiple polymerases
can bind the PIC. This line of reasoning offers a sound connection between a reductionist, concrete transcrip-
tional logic and the emerging perspective of phase-separation, generating testable hypotheses that will further
clarify the functional and evolutionary relevance of CTD length variation.
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7. Methods

7.1. Data analysis
Except when indicated, all programming, data extraction, wrangling, calculations and plotting were done

using Python 3.7 with standard scientific libraries (Oliphant, 2007; Jones et al.; Millman and Aivazis, 2011).
All scripts used in this paper are available in the following github repository: https://github.com/WormLabCaltech

7.2. Image analysis
Maximum-intensity projections were used for all z-stack images, sometimes generated and often visual-

ized using Fiji (Schindelin et al., 2012).
Cells were segmented using local thresholds and the Watershed algorithm. Candidate 2D fluorescent

peaks were detected and tracked using Trackpy (Allan et al., 2018) with minor adaptations.
For PP7 transcription dynamics imaged with low laser intensity, only the brightest peak per cell per frame

was kept. A Gaussian-Process Classifier (GPC) trained with a set of manually classified images was then
used to distinguish transcription sites from spurious peaks, only keeping those with a GPC probability of
at least 0.5 (Figure S2A-C). Transcription intensity was expressed as the fold-change of peak over mean
nuclear fluorescence. This metric yielded overlapping intensity distributions of the same strain imaged with
different settings (Figure S2D-H). Autocorrelation analysis was carried out as previously described (Lenstra
and Larson, 2016). Missing timepoints where no peak was detected were imputed using the intensity at the
position of the previous spot. For snapshots and smFISH images taken with maximum laser intensity, in
which signal-to-noise ratio was greater, manually determined intensity thresholds were used.

7.3. RPB1 bioinformatic analysis
RPB1 homologs were retrieved by searching Ensembl database (Zerbino et al., 2018) using the HMMER

online tool (Finn et al., 2011) with default settings, starting with the yeast RPB1 protein sequence. Amino
acid sequences were analyzed for disorder locally using MobiDB-lite (Necci et al., 2017), which provides a
consensus score derived from eight disorder predictors, in a machine running Unix Debian 4.9 and Python
2.7. Genome sizes and gene numbers were scraped from Ensembl websites using a custom script.

7.4. Genetic constructs
All constructs used in this paper were built using PCR amplification, Gibson (Gibson et al., 2009) or

golden gate (Engler et al., 2008) assembly methods and verified by Sanger sequencing. Plasmids are listed in
Table S1.

Wild-type LCDs of FUS (residues 1-214) and TAF15 (residues 1-208) were as previously defined (Kwon
et al., 2013) and obtained by PCR amplification from human cell line 293T cDNA. Plasmids with coding
sequences of previously reported FUS and TAF15 LCD tyrosine-to-serine mutants (Kwon et al., 2013) were
a gift from Steven Mcknight.
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The DNA sequence for CTD truncation repair templates was redesigned to facilitate PCR amplification,
and together with yeast codon-optimized mScarlet coding sequence, synthesized as an Integrated DNA Tech-
nologies (IDT) gBlock and cloned into their respective vectors. sgRNAs were purchased as individual oligos,
hybridized and cloned into pWS082 using golden gate assembly.

7.5. Strain Engineering
All transformations were carried out using the LiAc/SS Carrier DNA/PEG method (Daniel Gietz and

Woods, 2002). Strains are listed in Table S2.
Strain YTL047A (Donovan et al., 2019) was generated by transforming diploid S. cerevisiae BY4743 with

a PCR product containing the PP7 loop cassette and a loxP-kanMX-loxP marker, which was subsequently
removed with Cre recombinase. A single allele of GAL10 was tagged. All strains used in this study are
derivatives of YTL047A.

RPB1 modifications were engineered in both alleles using CRISPR-Cas9 with gRNAs of improved sta-
bility (Ryan et al., 2014), antibiotic-mediated selection of cells proficient in gap repair (Horwitz et al., 2015),
and plamids from the Yeast MoClo Toolkit (Lee et al., 2015) modified by Tom Ellis’s lab. sgRNA sequences
are listed in Table S3.

CTD truncations, mScarlet and LCD RPB1 strains were generated by transforming YTL047A with 100
ng of BsmBI linearized and gel-purified Cas9-kanR plasmid (pWS173), 200 ng of each EcoRV linearized
sgRNA vector (pWS082 derivatives), and 2-5 ug linearized repair template, selected for with G418. Cor-
rectly modified strains were identified using PCR of zymolyase digested colony scrapes followed by Sanger
sequencing.

Strains for live transcription imaging were generated by integrating a single copy of GFP-Envy (Slubowski
et al., 2015) fused to PP7 coat protein under an rpl15A promoter and a functional ura3 gene into the ura3∆0
locus by transforming PacI linearized pTL174 and selected for with plates lacking uracil. Strains for self-
recruitment assays (Figure 5) were constructed in the same way, except integrating PP7-LCD-GFP fusions.
smFISH of self-recruitment assays was done on YTL047A transformed with plasmids pTL092, pQC075 or
pQC076 (Figure 5D).

7.6. Cell growth measurements
Optical density (OD) was measured at an absorbance wavelength of 600 nm for 16 to 24 hours every 15

minutes using 1:100 dilutions of overnight cultures in 150 uL of YPD in a Falcon flat-bottom 96-Well Clear
Assay Plate with lid on a Biotek Cytation 3 microplate reader with 1000 rpm shaking at 30C.

Doubling times were estimated non-parametrically from time derivatives of OD measurements with Gaus-
sian processes using previously described software (Swain et al., 2016).

7.7. Live fluorescence microscopy
All microscopy experiments were done using early to mid-log cultures (typically 5e6 to 1e7 cells/mL)

growing at 30C with 250 RPM shaking.
mScarlet-RPB1 strains were imaged on 2% agarose pads on coverslips at room temperature immediatly

after spinning down at 3600 RCF cultures growing in Synthetic Complete (SC) 2% Glucose media on a Zeiss
Imager Z2 microscope with an Axiocam 506 Mono camera, 63x oil objective, 150ms exposure time and 25%
laser intensity.

Live transcription and self-interaction imaging was done on concanavalin-A-coated MatTek dishes at
30C as previously described (Lenstra and Larson, 2016) using an Leica DMI 6000 wide-field fluorescence
microscope with an Andor Zyla 5.5 or a Hamamatsu Flash 4.0 v3 camera with a 100x oil objective. Cells
were induced by adding galactose dissolved in 2 mL SC to 1 mL SC 2% raffinose for a final 3 mL SC 2%
galactose and imaged immediately every 20 sec for around 1 hour (live transcription) or after 30 min for 20
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min (self-interaction). Live movies were taken with 150 ms exposure, 9 z-stacks every 0.5 µm, and minimal
laser intensity to avoid photo-toxicity. Snapshots were imaged once per field-of-view with maximum laser
power, 150 ms exposure, and 9-15 manually set z-stacks every 0.5 µm.

7.8. RNA-seq
RNA was extracted from mid-log cultures growing in SC 2% raffinose after 2h of 2% galactose or blank in-

duction using Zymo Quick-RNA Fungal/Bacterial Microprep Kit (Catalog # R2010) lysed in an MP Biomed-
icals FastPrep-24 machine.

RNA integrity was assessed using RNA 6000 Pico Kit for Bioanalyzer (Agilent Technologies #5067-1513)
and mRNA was isolated using NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB #E7490). RNA-
seq libraries were constructed using NEBNext Ultra II RNA Library Prep Kit for Illumina (NEB #E7770)
following manufacturer’s instructions. Briefly, mRNA isolated from 1 µg of total RNA was fragmented to
the average size of 200 nt by incubating at 94C for 15 min in first strand buffer, cDNA was synthesized
using random primers and ProtoScript II Reverse Transcriptase followed by second strand synthesis using
NEB Second Strand Synthesis Enzyme Mix. Resulting DNA fragments were end-repaired, dA tailed and
ligated to NEBNext hairpin adaptors (NEB #E7335). After ligation, adaptors were converted to the ‘Y’ shape
by treating with USER enzyme and DNA fragments were size selected using Agencourt AMPure XP beads
(Beckman Coulter #A63880) to generate fragment sizes between 250 and 350 bp. Adaptor-ligated DNA was
PCR amplified followed by AMPure XP bead clean up. Libraries were quantified with Qubit dsDNA HS
Kit (ThermoFisher Scientific #Q32854) and the size distribution was confirmed with High Sensitivity DNA
Kit for Bioanalyzer (Agilent Technologies #5067- 4626). Libraries were sequenced on Illumina HiSeq2500
in single read mode with the read length of 50 nt following manufacturer’s instructions. Base calls were
performed with RTA 1.13.48.0 followed by conversion to FASTQ with bcl2fastq 1.8.4.

RNA-seq quantification was performed using Kallisto (Bray et al., 2016) with 200 bootstraps in sigle-end
mode with average length of 300 bp and standard deviation of 20 bp. Differential expression analysis was
done with Sleuth (Pimentel et al., 2017) using the linear models described in the results and supplementary
sections.

7.9. smFISH
smFISH experiments were carried out as described previously (Trcek et al., 2012; Lenstra et al., 2015).

TYE665 labeled PP7 probes were purchased from IDT. A set of 48 Quasar 570 labeled probes were designed
to target the coding sequence of Gal3 and purchased from Biosearch Technologies. Probe sequences are listed
in Table S3.

Mid-log yeast cultures were fixed with paraformaldehyde and permeabilized with lyticase. Hybridization
solution with 0.1 uM probes, 10% dextran sulfate, 10% formamide, and 2x Sodium Saline Citrate (SSC) was
used to hybridize probes in fixed cells for 4 hours at 37 C. Coverslips were washed twice for 30 min with
10% formamide, 2x SSC at 37C, followed by rinses with 2x SSC, and 1x PBS for 5 minutes. PLL-coated 18
mm diameter #1.5 thickness coverslips were purchased from Neuvitro, mounted on microscope slides using
ProLong Gold or Glass Antifade Mountant with DAPI (Life Technologies).

smFISH samples were imaged at room temperature with maximum laser power, 300 ms exposure and
9-15 manually set z-stacks every 0.2 µm on the Leica microscope with 100x objective described above.

7.10. Stochastic simulations
Stochastic simulations were performed using software described in Bois and Elowitz (2019) with minor

modifications to extract burst start, end and size while generating Gillespie samples. Rates were chosen
according to Bartman et al. (2019), with α = 1, γ = 3, β = 30, ε = 10 and φ = 100. For trace visualization
purposes, a rate of phosphorylated Pol II removal (elongation rate) δ = 1 was used.
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Figure S1: CTDs share amino acid composition. Related to Figure 1. CTDs were identified as the longest
contiguous disordered region in RPB1 sequences. Only the longest protein per genus was considered. (A)
Amino acid frequency sorted by mean abundance. Red dotted horizontal line indicates a uniform amino
acid frequency of 1/20. Empirical cumulative distributions (ECDF) of net charges (B), aromaticity (C) and
hydrophobicities (D) based on the grand average of hydropathy score (Kyte and Doolittle, 1982). Shaded area
is bootstrapped 99% confidence interval (CI) and top markers show median with 99% CI.
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Figure S2: Classification and normalization of PP7-GFP spots enables quantification of transcription
dynamics and cross-strain comparisons. Related to figure 3. Candidate spot images were obtained au-
tomatically using Trackpy’s (Allan et al., 2018) peak detection algorithm. A sample of this image set was
manually classified as True or False. For classification, spot images were represented using two features:
correlation with an ideal spot (a single light point source blurred with a 2D Gaussian function) and intensity.
(A) Histograms show the distribution of correlations (top) and intensities (right) of manually labeled spots.
Left corner plot shows the joint distributions. This 2D data set was used to train a Gaussian-Process Classifier
(GPC), resulting in the decision surface shown underneath, whose color indicates the probability of being a
true spot. Candidate spots with a GPC probability above 0.5 were classified as True (B). This threshold was
determined based on the change in the accuracy of classification (C), measured using the F1 score on a test set.
The vertical dotted line indicates this probability threshold. Mutant strains show different PP7-GFP expres-
sion levels, as seen in the empirical cumulative distribution functions (ECDF) of mean nuclear fluorescence
by strain (D). These differences result in a correlation observed in the hexagonal bin plot comparing mean
nuclear fluorescence with raw spot fluorescence (E), which is removed after normalization (F). Normalized
fluorescence is the ratio of spot fluorescence over mean nuclear fluorescence.
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Figure S2: The efficacy of normalization can also be seen in the ECDFs of raw burst fluorescence by strain
imaged with two laser intensities that artificially shift the intensity distributions of the same strains (G), which
overlap after normalization (H). Transparency is used to indicate a different laser intensity. Shaded area is
bootstrapped 99% confidence interval (CI) and top markers show median with 99% CI.

Figure S3: Transcription burst frequency remains constant after activation and decreases with CTD
truncation. Related to Figure 3. (A) Mean aligned GAL10-PP7 boolean transcription traces. Boolean traces
were obtained by marking with 1 and 0 the presence or absence of a transcription spot (TS), respectively.
These traces were aligned and trimmed to begin with the first appearance of a TS and averaged over time,
only considering cells that were active during the movie. These traces show the average frequency remains
mostly constant over time and decreases with CTD length. Shaded area is bootstrapped 95% mean confidence
interval. Frequency decay is also evident from an increase in amplitude, inversely related to frequency, in the
autocorrelation of intensity traces corrected for non-steady-state effects in wild-type (B), 14 (C) and 12 (D)
CTDr strains. Shaded area indicates standard error of the mean.
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Figure S4: FUS and TAF15 low complexity domains (LCD) are different in sequence but similar in
amino acid composition to the CTD. Related to figures 4 and 5. Protein alignments of FUS (A) and
TAF15 (B) LCDs with yeast CTD. (C) Amino acid frequency in each of these proteins, sorted by CTD
frequency. Only amino acids present in at least one protein are shown. (D) In vitro droplet binding rates of
FUS variants used in this study. These numbers are the slopes obtained from a linear regression of LCD-GFP
binding to wild-type FUS LCD droplets, measured as droplet fluorescence intensity over time. Each point is
an experimental replicate; data are from Kwon et al. (2013).
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Figure S5: Fusion of a CTD-truncated polymerase to FUS or TAF15 low complexity domains (LCD)
results in convergent transcriptomes. Related to figures 2 and 4. (A) Principal compoment analysis (PCA)
with the first two PCs scaled to the range [0,1], which together explain 87% of the variance. Each strain has
three biological replicates and two conditions. Marker edge color indicates the presence (pink) or absence
(black) of galactose in the media; these groups are also divided by the dotted diagonal line. (B) Comparison
of the log fold-change of each transcript resulting from FUS and TAF LCD fusion to 10CTDr truncated
RNA Pol II under the full linear model shown in Figure 4B. Red points show the positions on the diagonal
x = y. Marker size of each point is inversely proportional to the q-value of the interaction (ms = −log(qint));
dotted lines reference no change at zero and the Pearson correlation is indicated. (C) Alternative linear model
where FUS and TAF rescued strains are grouped together. This grouping results in a higher number of genes
identified for LCD fusion under a q-value threshold of 0.1 than for individual coefficients (D). Using this
model, (E) comparison of the log fold-change of each transcript resulting from truncation with and without
LCD fusion.
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Figure S6: Gillespie simulations yield traces akin to live transcription imaging. Related to figure 6.
Traces from stochastic simulations of PIC assembly states, number of PIC bound and phosphorylated (tran-
scribing) polymerases for each model as a function of CT DL, indicated with a colorbar to the left of each
panel.
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Figure S7:
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Figure S7: Transcription models produce geometric and exponential distributions of burst sizes and
inter-burst durations, respectively. Related to figure 6. (A) Empirical cumulative distribution functions
(ECDF) of burst sizes by CTD length for each model. (B) Q-Q plots comparing quantiles from simulated
distributions and a geometric distribution. Similarly, (C) ECDFs of inter-burst durations and (D) Q-Q plots
comparing their quantiles with an exponential distribution. Each column comes from the model indicated by
the color on top and the lower right corner in each plot. The mean of the square root of the coefficient of
determination (R) by model is indicated in each quantile comparison. CTD length is indicated by the color
shown to the right of each row.
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Figure S8: Parameter exploration with stochastic simulations provides insights into experimental ob-
servations. Related to figure 6. (A) Comparison of the mean active cells fraction with means of inter-burst
duration (left), burst size (middle) and both of these numbers (right) with increasing CTD length (CT DL)
by model, indicated with color. Direction of CTD increase is indicated with an arrow on top of each plot.
(B) Comparison of mean burst duration with mean burst size with increasing CTD length by model. (C)
Comparison of the error in burst size estimate, computed as the difference between the means of the observed
transcription site intensity and the true burst size, with the fraction of active cells as a function of CT DL

under the many-polymerases model. The elongation rate (δ) determines the time that a given mRNA spends
bound to the transcription site and contributes to the observed intensity, thus influencing the fraction of active
cells at a given time. (D) Comparison of fraction of failed bursts, where an assembled preinitiation com-
plex produced zero mRNAs before disassembly, as a function of CT DL by model. Error bars indicate 99%
bootstrapped confidence interval. Mean inter-burst duration (E) and burst size (F) as a function of CT DL and
individually varying parameter values, while the others are held constant, as indicated in the first left col-
umn of each heatmap. Colormap is artificially fixed to the range [0-20] for visualization purposes and actual
numbers are shown in each cell. Model is indicated in the top left corner.
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