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ABSTRACT 

Despite the increasing use of high-throughput sequencing in phylogenetics, many phylogenetic 
relationships remain difficult to resolve because of conflict between gene trees and species trees. 
Selection of different types of markers (i.e. protein-coding exons, non-coding introns, ultra-
conserved elements) is becoming important to alleviate these phylogenomic challenges. For 
evolutionary studies in frogs, we introduce the new publicly available FrogCap suite of genomic 
resources, which is a large and flexible collection of probes corresponding to ~15,000 markers 
that unifies previous frog sequencing work. FrogCap is designed to be modular, such that subsets 
of markers can be selected based on the phylogenetic scale of the intended study. FrogCap uses a 
variety of molecular marker types that include newly obtained exons and introns, previously 
sequenced UCEs, and Sanger-sequencing markers, which span a range of alignment lengths 
(100–12,000 base pairs). We tested three probe sets from FrogCap using 105 samples across five 
phylogenetic scales, comparing probes designed using a consensus- or genome-based approach. 
We also tested the effects of using different bait kit sizes on depth of coverage and missing data. 
We found that larger bait kits did not result in lowered depth of coverage or increased missing 
data. We also found that sensitivity, specificity, and missing data are not related to genetic 
distance in the consensus-based probe design, suggesting that this approach has greater success 
and overcomes a major hurdle in probe design. We observed sequence capture success (in terms 
of missing data, quantity of sequence data, recovered marker length, and number of informative 
sites) and compared them at all phylogenetic scales. The incorporation of different molecular 
marker types allowed recovery of the variation required for resolving difficult phylogenetic 
relationships and for performing population genetic studies. Altogether, FrogCap is a valuable 
and adaptable resource for performing high-throughput sequencing projects across variable 
timescales. 
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INTRODUCTION  

The widespread adoption of high-throughput DNA sequencing technologies to address 

questions in evolutionary biology has revealed new challenges for analyzing these expansive 

genomic datasets (Shendure & Ji 2008; Kircher & Kelso 2010; Jones & Good 2016). Despite the 

increased ability to collect large phylogenomic datasets, many phylogenetic relationships remain 

ambiguous because of both biological and non-biological processes that can lead to gene trees 

that are discordant with the species tree (Knowles 2009; Liu et al. 2009; Hobolth et al. 2011; 

Blom et al. 2017; Hahn & Nakhleh 2016; Reddy et al. 2017; Knowles et al. 2018; Richards et al. 

2018). Further exacerbating this challenge, data from different genomic regions can demonstrate 

conflicting phylogenomic results (Liu et al. 2009; Lemmon & Lemmon 2013; Chen et al. 2017; 

Reddy et al. 2017). Despite the decreasing costs of obtaining sequence data, selecting the best 

sequencing methods and molecular markers for particular projects remains challenging.  

Although genome sequencing for non-model organisms remains costly, high-throughput 

sequencing of targeted genomic regions has resulted in numerous approaches for creating 

expansive phylogenomic and population genetic datasets at reduced financial costs (Kircher & 

Kelso 2010; Glenn 2011; Rohland & Reich 2012). These approaches aim to affordably sequence 

reduced portions of the genome and also allow more individuals and/or species to be sampled 

simultaneously (Rohland & Reich 2012). An important consideration for systematics and 

population genetics is balancing the trade-off between obtaining orthologous markers across 

moderate to deep timescales, while obtaining markers that are variable enough to resolve 

ambiguous phylogenetic relationships and provide high-quality variants for population genetics 

(Sulonen et al. 2011; Jones & Good 2016).  
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 There are now many approaches for sequencing subsets of an organism’s genome, and 

the choice of method largely depends on the phylogenetic breadth required and the number of 

samples to include. The most common methods for obtaining subsets of genome-wide sequence 

data include: (1) restriction-associated digestion methods (RADseq) that target markers adjacent 

to restriction enzyme sites (Miller et al. 2007); (2) targeted sequence capture (HybSeq) methods 

that target genomic regions through hybridization-based sequence capture (Hancock-Hanser et 

al. 2013; Jones & Good 2016), including exon capture; and (3) transcriptome sequencing 

(RNASeq) that target the expressed exome of a sampled tissue type (Wang et al. 2009). Exome 

capture is another approach similar to HybSeq except it is highly specialized for a reduced 

taxonomic scale, because probes are designed from transcriptomes/genomes within a particular 

focal group (Choi et al. 2009; Sulonen et al. 2011). Each of these three methods have been used 

to address a variety of phylogenetic and population genetic questions and have method-specific 

advantages and disadvantages (reviews in Lemmon & Lemmon 2013 and McCormack et al. 

2013), including tradeoffs regarding costs, phylogenetic scale, and availability of initial genomic 

resources necessary for study design and development.  

Phylogenomic data obtained from each of these methods has the potential to resolve 

difficult phylogenetic relationships, yet many relationships remain ambiguous. Numerous studies 

suggest that natural processes such as incomplete lineage sorting, horizontal gene transfer, gene 

loss or duplication, and hybridization can lead to gene trees that are discordant with the species 

tree (Maddison 1997; Liu et al. 2009; Knowles 2009; Knowles et al. 2018). Additionally, natural 

selection of protein coding and other selected regions can be problematic for phylogenetic 

inference if phylogenetic signal is reduced as a result of selection (Castoe et al. 2009; Edwards 

2009; Liu et al. 2009; Hobolth et al. 2011). Discordant relationships can also be caused by non-
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biological mechanisms, such as gene tree estimation error resulting from model inadequacy, 

short alignment lengths, low levels of phylogenetic informativeness, anomaly zones, or errors in 

sequence assembly or alignment (Xi et al. 2015; Hahn & Nakhleh 2016; Blom et al. 2017; Reddy 

et al. 2017; Richards et al. 2018). As a result, selecting the best method and types of molecular 

markers to address these issues remains challenging.  

Selection of different types of molecular markers (e.g. protein-coding exons, non-coding 

regions, ultra-conserved elements [UCEs], or single nucleotide polymorphisms [SNPS]) is an 

increasingly important issue when dealing with the challenges of analyzing large phylogenomic 

datasets. Each phylogenomic marker type may be useful at various timescales and may present 

different biases for analyses (Lemmon & Lemmon 2013; McCormack et al. 2013; Hosner et al. 

2016). For example, there is debate over whether protein-coding or non-coding markers are more 

appropriate for phylogenetic analyses, because selection on protein-coding exons may mask 

homology and bias phylogenetic signal (Liu et al. 2009; Chen et al. 2017; Reddy et al. 2017). 

One well-studied case in birds exemplifies this debate, where conflicting relationships inferred 

from different phylogenomic studies have produced non-trivial differences in phylogeny from 

the usage of different marker types (McCormack et al. 2013; Prum et al. 2016; Reddy et al. 

2017). In addition, other marker features such as locus length (Edwards et al. 2016; Springer & 

Gatesy 2016) or character type (e.g. SNPs: Leaché & Oaks 2017; insertions or deletions: 

Simmons & Ochoterena 2000; transposable elements: Han et al. 2011) have been explored to 

find optimal data types for phylogenomic and population genetic analyses.  

These debates have made it clear no consensus exists regarding a perfect, universal 

molecular marker type, capable of simultaneously alleviating all of these problems. As such, 

choice of marker type remains a substantial challenge, which presents numerous obstacles for 
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both existing and future phylogenomic datasets. One solution is to use a diverse assortment of 

markers sampled from across the genome with different properties (Dool et al. 2016; Chen et al. 

2017). The inclusion of a diversity of marker types allows downstream filtering of markers by 

desirable properties, such as length or informativeness, which can improve phylogenetic 

estimates (Mirarab et al. 2014; Springer & Gatesy 2016; Chakrabarty et al. 2017; Streicher et al. 

2018; Karin et al. 2019). When considering these factors, using a HybSeq approach that targets a 

variety of marker types may represent an optimal solution; however, substantial genomic 

resources are required for the initial probe design for the target markers.  

Targeted capture using HybSeq is widely used by the phylogenetics community and has 

been dominated by targeting and sequencing conserved elements through two main approaches: 

anchored hybrid enrichment using conserved exons (AHE, Lemmon et al. 2012) and ultra-

conserved elements (UCEs, Faircloth et al. 2012). These approaches identify regions of the 

genome that are conserved across distantly related taxa and use probes designed from these 

conserved regions, which are used in hybridization-based target capture (Gnirke et al. 2009). The 

two methods differ in that AHE targets ~400 medium length exons (>500bp) that are moderately 

divergent but sufficiently conserved to capture regions across hundreds of millions of years 

(Lemmon et al. 2012). In contrast, the UCE approach targets ultra-conserved regions (~120 bp 

long) with the goal of obtaining highly variable flanking regions adjacent to the conserved 

regions (Bejerano et al. 2004; Faircloth et al. 2012). Both types of markers have been criticized, 

where AHE markers have the potential to bias phylogenetic results due to natural selection (AHE 

targets only exons, Castoe et al. 2009; Bragg et al. 2016; Singhal et al. 2017). In addition, UCE 

markers have been criticized for their unknown function (Alexander et al. 2010), low variation in 

many UCEs (McCormack et al. 2012), and difficulties related to aligning highly variable 
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flanking regions among distantly related taxa (Singhal et al. 2017; Streicher et al. 2018). Both 

AHE and UCEs are now widely used in inferring phylogenies across broad and shallow 

phylogenetic scales (Crawford et al. 2012; Smith et al. 2014; Brandley et al. 2015; Prum et al. 

2015; Streicher et al. 2018). For population genetics, UCEs have been used with some success 

(Hosner et al. 2016; Zarza et al. 2016; Andermann et al. 2019). In contrast, AHE produces a 

smaller number of markers (less than 400 exons) and generally results in fewer independent 

variants as required by many types of analyses in comparison to these other sets of markers 

(Lanier & Knowles 2012; Hedge & Wilson 2014; Springer & Gatesy 2018). Despite the 

widespread usage of phylogenomic data, no single probe set composed of multiple marker types 

exists that can be employed across a wide range of organisms.  

 Amphibians represent one of the most diverse terrestrial vertebrate groups, and much of 

this diversity is concentrated within a single lineage – frogs (Anura). Frogs have been 

diversifying for over 200 million years and now include over 7000 species (88% of amphibians; 

AmphibiaWeb 2019). Because of this deep time scale and numerous rapid radiations across the 

diversity of frog clades, this exceptional diversity has presented a major challenge for research 

into amphibian evolution and the performance of custom targeted sequence capture remains 

largely unexplored (but see Hedtke et al. 2013; Portik et al. 2016; Salamanders: McCartney-

Melstad 2016). Several studies have used UCEs (Alexander et al. 2017; Pie et al. 2018; Streicher 

et al. 2018; Zarza et al. 2018; Guillory et al. 2019) and others have used AHE markers (Peloso et 

al. 2016; Heinicke et al. 2018; Yuan et al. 2018), whereas two additional studies created 

customized probe sets for an African frog clade (Afrobatrachia) and the Asian genus 

Limnonectes (Portik et al. 2016; Reilly et al. 2019). Although UCEs have been used in frogs, 

they are not ideal because they were designed for amniotes, a group which does not contain 
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frogs; therefore, about half the target UCEs are typically captured (~2500/5600 UCEs; Streicher 

et al. 2018; Guillory et al. 2019). The AHE probe set is advantageous because it produces long 

exons that can be more predictably modelled. However, longer exons require more probes for 

suitable capture efficiency, and this reduces the number of exons that can be included (Bragg et 

al. 2016; Singhal et al. 2017). In summary, despite the widespread use of high-throughput 

sequencing in non-model organisms and the increasing number of studies in frogs, a probe set 

incorporating different molecular marker types for the substantial diversity across the global frog 

radiation has not yet been made available.  

 We introduce FrogCap, a publicly available collection of molecular markers for all frogs 

that can be adapted into sequence capture probe sets that includes markers from a variety of data 

types (exons, introns, UCEs, markers sequenced previously using traditional/Sanger methods, 

independent markers to extract variants). We provide a modular, large, and flexible collection of 

tested markers and probes corresponding to ~15,000 markers, which unifies previous sequencing 

via the inclusion of “legacy” Sanger sequencing markers traditionally used in phylogenetic 

studies (Figure 1; Frost et al. 2006; Pyron & Wiens 2011; Feng et al. 2017) and UCEs that have 

been successfully captured in anurans (Alexander et al. 2016; Streicher et al. 2018). The 

FrogCap marker set is designed to be modular, such that subsets of the markers can be selected 

based on the probe set size, type of research question, and the taxonomic scale being addressed. 

We describe a novel approach for selecting sets of orthologous markers that functions well 

across divergent taxa within and across the two main superfamilies of frogs (Hyloidea + 

Archaeobatrachia and Ranoidea), by creating two complementary probe sets (referred to as the 

Hyloidea and Ranoidea probe sets), which allow markers to be combined across these two 

superfamilies (Feng et al. 2017). We also test the modularity of FrogCap by creating a third 
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probe set, which is a reduced version of the Ranoidea set that uses half the number of probes 

(termed Reduced-Ranoidea hereafter), to evaluate whether the reduction in probes leads to 

increased depth of coverage and higher quality variant data.	Finally, we provide a new 

bioinformatics pipeline to analyze sequence capture data, which begins with raw demultiplexed 

sequence data and produces cleaned alignments and variant datasets.  

Using new sequence data, we test the utility of these three probe sets using 105 samples 

and evaluate the sensitivity and specificity of the probe design, the number of markers captured, 

and depth of coverage across the different probe sets. We use the resulting alignments from each 

phylogenetic scale to assess the number of markers and alignment lengths recovered, the 

proportion of informative sites, and levels of missing data. Finally, we examined the effects of 

phylogenetic relatedness on our capture success, assessing how genetic distance relates to 

missing data, sensitivity, and specificity of the sequence capture. Lastly, we test whether using 

fewer probes in the Reduced-Ranoidea set leads to greater capture success, increased depth of 

coverage, and higher quality variant data.  

 

MATERIALS AND METHODS 

FrogCap website. We have developed a website (https://www.frogcap.com) that can be used to 

configure and select different probe sets using the FrogCap marker database. The webpage and 

Github page (https://github.com/chutter/FrogCap-Sequence-Capture) provide the pre-configured 

probe sets developed and tested in this study. In addition, the configuration website will allow 

the selection of different clades of interest for differently sized bait sets, as well as well selection 

of different marker types (exons, introns, UCEs, legacy) and different size classes (under 

development).  
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Figure 1. The modularity of the FrogCap probe set permits the selection of different types of markers. The data 
category in A) shows the quantity of different marker types (Legacy, UCE, Exon, Gene) used in the design of each 
probe set (40K bait set used for Ranoidea and Hyloidea; 20K bait set used for Reduced-Ranoidea). The marker size 
distribution in B) shows the general size classes of markers used for each of the probe sets. The “Combined” probe 
set refers to the number of unique markers across all probe sets to represent the total available markers for FrogCap. 
Different configurations can be created based on bait kit size, modules, marker size or phylogenetic group. 
 

Sequence Capture Probe Design 

Transcriptome assembly. Thirty anuran transcriptomes were obtained from previously published 

studies (Supplementary Table S1). Raw reads were downloaded from the NCBI sequence read 

archive using the SRA Toolkit for 26 transcriptomes (Leinonen et al. 2010). Adapter sequences 

were trimmed with PEAT (Li et al. 2015) and reads were quality trimmed and filtered with 

AfterQC (Chen et al. 2017). Trimmed and filtered reads were assembled with Bridger under 

default settings (Chang et al. 2015). We also included four additional transcriptomes of Portik et 

al. (2016), using sequencing and assembly methods described therein. After assembly, isoforms, 
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alternatively spliced sequences, and other redundancies were removed using CD-HIT-EST (Li & 

Godzik 2006) at a similarity threshold of 95%, keeping the longest open reading frame. These 

reduced-redundancy transcriptomes were used for subsequent probe design. 

 

Ranoidea genome-based probe design. To target new exons for sequence capture, we designed a 

probe set by locating orthologous, protein-coding exons that were well represented across frogs 

of the superfamily Ranoidea. We used the Nanorana parkeri genome (Sun et al. 2015) and that 

study’s original genomic annotations, to determine the genomic coordinates of predicted exons 

in the genome (genome and annotations available at GigaScience: dx.doi.org/10.5524/100132). 

We conducted all data processing and other analyses in R (RDCT 2018), using customized 

scripts with the following R packages: GENOMICRANGES (Lawrence et al. 2013), SEQINR 

(Charif & Lobry 2008), and APE (v5.0; Paradis & Schliep 2019). 

First, we used the program BLAT (Kent 2002) to match each assembled frog 

transcriptome to the Nanorana genome using a 75% similarity threshold. Second, we combined 

the match dataset for each species into a single dataset, such that orthologous matches could be 

conveniently clustered together (this resulted in 2.7 million match records). Third, we filtered out 

matches that were less than 50 bp and matched to multiple locations in the genome, to remove 

potential paralogs (removed ~2 million of the aggregated matches; 749,821 matches remained). 

Fourth, matches were clustered together when they overlapped within a predicted exon from the 

Nanorana genome (removed ~500,000 matches; 228,960 matches remained). After these initial 

filtration steps of the matches, a final candidate marker set of 94,293 exons remained. 

The sequence data for each candidate exon match above were collected from each 

transcriptome and aligned together with the Nanorana genome exon sequence using MAFFT 
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v7.312 (auto and default parameters; Katoh & Stanley 2013). To assist in exon selection, each 

multiple species alignment was assessed and filtered through the following criteria: (1) kept 

alignments with >5% parsimony informative sites to ensure some variability was present; (2) 

kept alignments with GC content between 30–50%, because such sequences are efficient for 

sequence capture (Gnirke et al. 2009); (3) exons <100bp and >5000bp were removed to include 

more exons from across the genome; (4) exons were kept only if they were found in at least 50% 

of the species transcriptomes; and (5) potential paralogs were removed by using BLAT to detect 

multiple hits across both Nanorana and Xenopus tropicalis (Hellsten et al. 2010) genomes. After 

exon assessment and removal filtration steps, 18,502 exons remained in the final candidate exon 

dataset, with a mean length of 152 bp and a mean pairwise divergence of 13.6 percent. 

The Nanorana genome sequence was extracted for each candidate exon, and the genome 

sequence was used to design a MYbaits-2 (40,040 baits) custom bait library (MYcroarray, now 

Arbor Biosciences), using 120mer baits to best capture sequences with greater than 5% 

divergence from the probes. For the UCE markers, we used a subset of the 120mer UCE 

Amniote probes from Faircloth et al. 2012 (https://www.ultraconserved.org). To design 

remaining probes from the Nanorana genome sequences, the finalized set of markers were 

separated into probe sequences following a 2x tiling scheme, starting 20bp behind the start codon 

of the exon and tiling 120bp probes every 60bp until 20bp past stop codons (total: 61,939 baits). 

Individual probes were filtered using these criteria: (1) excluded probes that matched to multiple 

locations in both Nanorana and Xenopus genomes with BLAT with a 70% similarity; (2) kept 

probes with a GC content between 30–50%; (3) kept if there were no repetitive sequences based 

on the Nanorana RepeatMasker annotations (Sun et al. 2015); and (4) kept if there were no 

matches with BLAT to other probes (using a 70% similarity criterion). After filtration 51,344 
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baits remained; markers and their baits were randomly selected to drop 11,304 baits from the 

dataset to fit into the 40,040 bait limit. This resulted in a final set of 12,834 exons, which we 

combined with 32 legacy markers and 651 UCEs (selection described below). The final 

Ranoidea V1 probe set included 13,517 markers covering a total of 3,454,114 bp (Table 1; 

Figure 1). After testing the Ranoidea V1 probe set in this study, we make available a revised 

Ranoidea V2 probe set that was created that excluded unsuccessful markers and included the 64 

additional legacy Sanger markers from Feng et al. 2017 (including the 32 above; see below) and 

longer exons (see Reduced-Ranoidea design; Table 1). All testing results in this study are 

derived from the Ranoidea V1 probe set (referred to as Ranoidea onward).  

 

Hyloidea transcriptome-based probe design. To design probes from orthologous markers for 

frogs from the Hyloidea superfamily, there was no available genome for this group, so a different 

approach was required. We began with the Ranoidea exons designed above and attempted to 

match exons to six hyloid transcriptomes using BLAT (Supplementary Table S1). We clustered 

together matches, created multiple sequence alignments, and filtered as described above for the 

genome-based probe design. After these steps, the candidate dataset included 6,130 markers. For 

these matching exons, we generated consensus sequences using the transcriptomes, and 

ambiguous sites were replaced with a base that would maintain an optimal GC content.  

 To add additional exons to this dataset, we used VSEARCH (Rognes et al. 2016) to 

cluster together transcripts from the Hyloidea transcriptomes via the identification of orthologous 

clusters (18,949 cluster were found). We obtained the consensus sequence for each cluster and 

matched it back to each transcriptome (resulting in 101,863 matches). Next, we generated 18,949 

sequence alignments for each cluster and filtered the alignments as described for the Ranoidea 
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V1 set. We removed any alignments with two or less samples, which resulted in 16,511 

transcript alignments with 3–6 samples per alignment. We randomly selected 926 transcripts 

(mean length: 677.8 bp; range: 153–11,188 bp) to compliment the 6,130 shared redesigned 

Ranoidea markers (described above), and the 2,166 UCEs and 86 Feng et al. (2017) legacy 

Sanger markers described below. We created the final set of markers to be used in probe design 

by generating consensus sequences from each filtered transcript alignment. Finally, we designed 

and filtered probes as described above for the Ranoidea V1 set using the MyBaits-2 kit of 40,040 

baits. The final Hyloidea probe set targeted 9,229 markers covering a total of 2,929,956 bp 

(Table 1; Figure 1).  

 

Reduced-Ranoidea marker selection. To test the modularity and customization potential of 

FrogCap, we selected a reduced set of markers from the 40,040-bait kit, for use in our smaller, 

20,020-bait kit. For this probe set, we also tested additional markers that could be incorporated 

into future customized kits. We included the 86 Feng et al. (2017) markers described in the next 

section, which were included in the Hyloidea and Ranoidea V2 (but not the Ranoidea V1) set. 

We also included 47 ultra-long exons (>5000bp) previously not included in the Ranoidea V1 set. 

These ultra-long exons also have been included in the Ranoidea V2 set (Table 1).  

The Reduced-Ranoidea set was designed after the 40K Ranoidea V1 set had been tested, 

which enabled the selection of markers that were captured successfully across the entire 

superfamily. To select markers that had already been tested, we began with alignments from the 

24 sample Ranoidea set evaluated below, and reduced the probe set to markers successfully 

captured across 75% or greater of the samples, which was 10,274 markers. Next, we filtered the 

markers as follows: (1) UCEs were excluded; (2) the largest exon within 100,000 bp of another 
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exon on the Nanorana genome was kept reducing potential genetic linkage due to 

recombination; and (3) all exons greater than 500 bp were included. This final candidate set 

included ~4,312 exons. To accommodate the probe limit, exons were randomly deleted until the 

20,020 bait limit was reached, resulting in 3,161 exons retained. After combining the 86 legacy 

markers, our final Reduced-Ranoidea marker set included 3,247 markers targeting 1,519,233 bp 

of data (Table 1; Figure 1).  

 

Previously published legacy markers. To maintain compatibility with previously published 

datasets, we assessed 40 commonly used nuclear markers for phylogenetic studies in frogs (e.g. 

Frost et al. 2006; Pyron & Wiens 2011). The selected legacy markers were mapped to the 

Xenopus and Nanorana genomes, ensuring that none were paralogs or had portions matching to 

multiple genomic regions. We selected 36 markers from this assessment; this set of legacy 

markers were incorporated in the Ranoidea V1 probe set by extracting these markers from the 

Nanorana genome sequence (Figure 1). To include markers from a more recent study in the 

Hyloidea and Reduced-Ranoidea probe sets (that were not published prior to the development 

Ranoidea V1), we assessed the 95 markers from Feng et al. (2017). We removed any duplicates 

overlapping with the legacy marker set (36 markers) and again mapped all markers to the two 

reference genomes. Our combining and condensing of these two sets of legacy markers resulted 

in a final set of 86 legacy markers. Final marker sequences were designed from the consensus 

sequences across the multiple sequence alignments from Feng et al. (2017) and were then used 

for our probe design. Although the Feng et al. (2017) markers were not available for the 

Ranoidea V1 probe set, they are included in the revised Ranoidea V2 probe set (Table 1).  
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Ultra-conserved elements have been previously used in frogs, with ~50% success capture 

rate (e.g. Alexander et al. 2016; Pie et al. 2018; Streicher et al. 2018). For this study, we selected 

a subset of the orthologous UCEs previously sequenced from Kaloula (Microhylidae: Alexander 

et al. 2016). We selected a subset of UCEs that had greater than 10% parsimony informative 

sites, for a total of 651 UCEs included in Ranoidea V1 using stock UCE probe sequences. 

Improving upon this for the Hyloidea set, we included the 2,166 successfully captured UCEs 

from Streicher et al. (2018), which contains the 651 UCEs selected above. For these UCEs, we 

redesigned our probe sequences by creating consensus sequences across the multiple sequence 

alignments for each UCE from Streicher et al. (2018).  

 

Marker overlap. An important design component of these complimentary probe sets is that they 

contain markers that overlap with each other (Table 1). In the Hyloidea and Ranoidea probe sets, 

markers that overlap were designed specifically for those superfamilies: in Ranoidea, the probes 

were designed from the Nanorana genome sequences while in Hyloidea the overlapping markers 

were designed from consensus sequences of the transcriptomes from that superfamily. Hyloidea 

and Ranoidea V1 overlap with 6,140 markers and Ranoidea V2 overlaps with 6,931 markers 

from Hyloidea, with the increase coming from a shared 2,068 UCEs (Ranoidea V1 contains 651 

UCEs).  
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Table 1. Marker contents targeted for three probe sets designed in this study. The Reduced probe set uses the same 
markers and probes from the Ranoidea set but was designed with half the number of baits for a specific taxonomic 
group. Ranoidea V2 was not explicitly used in this paper; however, it represents a revision of Ranoidea V1 where 
failed markers were discarded in favor of additional UCEs and Legacy markers.  
 

 Hyloidea Ranoidea V1 Ranoidea V2 Reduced 
N probes 40,040 40,040 40,040 20,020 

N base pairs targeted 2,929,956 3,454,114 3,313,548 1,519,233 
N markers targeted 9,229 13,517 12,909 3,247 

Hyloidea overlap - 6,130 6,931 1,652 
Ranoidea V1 overlap 6,130 - 10,476 3,136 
Ranoidea V2 overlap 6,931 10,476 - 2,953 

Reduced overlap 1,652 3,136 2,953 - 
N exons 6,977 12,834 10,743 3,161 
N UCEs 2,166 651 2,080 0 

N Legacy 86 32 86 86 
Mean marker length 317.2 255.5 256.7 467.8 

Maximum marker length 11,549 11,429 11,429 11,429 
Markers < 500 bp 8,382 12,733 12,222 2,554 

Markers 500-1000 bp 2,562 616 441 447 
Markers > 1000 bp 390 168 246 246 

 

Sequencing 

Taxonomic sampling strategy. To test these new sequence capture probe sets, we aimed to 

explore their performance across seven different taxon sampling strategies which spanned five 

phylogenetic scales. We selected 105 samples for this study and we assessed the following 

phylogenetic scales: (1) Order, we included 48 samples including samples using the Ranoidea 

and Hyloidea sets, representing Anura; (2) Superfamily, we assess the Ranoidea and Hyloidea 

superfamilies independently, including 24 samples from each superfamily (the same samples 

used in the Order assessment; Hyloidea also tests out one Salamander and two 

Archaeobatrachrian frogs that are not included in the Hyloidea superfamily); (3) Family, we 

included eight samples from the family Mantellidae, which include a single representative for 

each genus except two monotypic genera (Glaw & Vences 2006); (4) Genus, we included 

samples of 24 species from the genus Cornufer (Ceratobatrachidae), which includes 
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representatives from each of the recognized subgenera within this genus (Brown et al. 2015); and 

(5) Species, we include 16 samples from within a single species, Cornufer vertebralis, from four 

different Solomon Islands insular populations. We also evaluated the Reduced-Ranoidea set 

using 30 Philippine samples from the genus Occidozyga (Dicroglossidae; sampled from most 

major landmasses throughout the archipelago), to represent a dataset comparable to our Genus 

dataset. See Supplementary Table S2 for detailed sampling information.  

 

Library preparation and sequencing. Genomic DNA was extracted from the 105 tissue samples 

using either a standard phenol-chloroform extraction or through the use of a PromegaTM Maxwell 

bead extraction robot. The resultant DNA was quantified using a Promega QuantusTM 

fluorometer. Approximately 500 ng total DNA was acquired and set to a volume of 50 ul through 

dilution (with H20) or concentration (using a vacuum centrifuge) of the extraction when 

necessary.  

The genomic libraries for the samples were prepared by MYcroarray library preparation 

service. Prior to library preparation, the genomic DNA samples were quantified with 

fluorescence and up to 4 µg was then taken to sonication with a QSonica Q800R instrument. 

After sonication and SPRI bead-based size-selection to modal lengths of roughly 300 bp, up to 

500 ng of each sheared DNA sample were taken to Illumina Truseq-style sticky-end library 

preparation. Following adapter ligation and fill-in, each library was amplified for 6 cycles using 

unique combinations of i7 and i5 indexing primers, and then quantified with fluorescence. For 

each capture reaction, 125 ng of 8 libraries were pooled, and subsequently enriched for targets 

using the MYbaits v 3.1 protocol. Enrichment incubation times ranged 18–21 hours. Following 

enrichment, library pools were amplified for 10 cycles using universal primers and subsequently 
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pooled in equimolar amounts for sequencing. Samples were sequenced on an Illumina HiSeq 

3000 with 150 bp paired-end reads with 96 samples sequenced per lane of sequencing.  

 

Data processing and alignment 

Data processing pipeline. A bioinformatics pipeline for filtering adapter contamination, 

assembling contigs, and exporting alignments is scripted in R and available at 

(https://github.com/chutter/FrogCap-Sequence-Capture). Prior to processing raw reads, Illumina 

sequence data were de-multiplexed using the Illumina software bcl2fastq. Next, raw reads were 

cleaned of adapter contamination, low complexity sequences, and other sequencing artifacts 

using the program FASTP (default settings; Chen et al. 2018). Adapter-cleaned reads were then 

matched to a database of bacterial (human skin, ultra-pure water contamination, and other 

common bacteria; Laurence et al. 2014) and other genomes (C. elegans, Drosophilia) to ensure 

that no contamination persisted in our final dataset (see Supplementary Table S3 for GenBank 

Accession Numbers of reference genomes). We decontaminated the adapter-cleaned reads with 

the program BBMAP from BBTools (https://jgi.doe.gov/data-and-tools/bbtools/), by matching 

cleaned reads to each reference contaminant genome (reads removed if they matched >95 

percent similarity). After this step, final reads were saved separated as “cleaned-reads,” which 

were processed for subsequent variant calling (described below).  

Prior to assembly, the “cleaned-reads” were further processed to decrease computational 

load and increase accuracy. We merged paired-end reads using BBMerge (Bushnell et al. 2017) 

from BBTools. BBMerge also fills in missing gaps between non-overlapping paired-end reads by 

assembling missing data from the other paired-end reads using the “Tadpole” program. Next, 

exact duplicates were removed if both read pairs were duplicated, using “dedupe” from 
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BBTools. Additionally, duplicates from the set of merged paired-end contigs were removed if 

they were exact duplicates or were contained within another merged contig.  

Merged singletons and paired-end reads were assembled de novo using the program 

SPADES v.3.12 (Bankevich et al. 2012), which runs BAYESHAMMER (Nikolenko et al. 2013) 

error correction on the reads internally. Data were assembled using several different k-mer 

values (21, 33, 55, 77, 99, 127), in which orthologous contigs resulting from the different k-mer 

assemblies were merged. We used the DIPSPADES (Sofanova et al. 2015) function to assemble 

contigs that were polymorphic by generating a consensus sequence from both haplotypes from 

orthologous regions such that polymorphic sites were resolved randomly.  

Consensus haplotype contigs were then matched against reference marker sequences used 

to design the probes separately for our three probe sets with BLAST (dc-megablast). Contigs 

were discarded if they failed to match ≥ 30% of the reference marker, and contig matches fewer 

than 50 bp were removed. Contig matches to a given reference marker were discarded if more 

than one contig matched to the marker and were overlapping. For non-overlapping matches to 

the same reference marker, we merged these contigs by joining them together (Ns inserted in 

matching positions). The final set of matching contigs were labelled with the name of each 

marker, followed by each sample’s unique institutional identifier (i.e., the corresponding 

museum voucher catalog number, field collector number, etc.), and assembled in a single file to 

be parsed out separately for multiple sequence alignment in the next step.  

 

Alignment and trimming. Next, our final set of matching markers was aligned on a marker-by-

marker basis using MAFFT local pair alignment (settings: max iterations = 1000; ep = 0.123; op 

= 3; --adjust-direction). We screened each alignment for samples ≥40% divergent from 
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consensus sequences, which were almost always incorrectly assigned contigs. Alignments were 

retained if they included four or more taxa, had ≥100 bp length, and mean sample specificities 

(i.e., the “breadth of coverage” of the sample; see below) ≥50% across the alignment (to prevent 

non-overlapping segments of the alignment). We then separated alignments into two initial 

datasets: (1) “Exons-Only,” which included only exon contigs with intronic region trimmed from 

each alignment using the Nanorana genome sequence reference exon as a guide; and (2) “All-

Markers,” which included the entire matching contig to the reference marker, including UCE 

markers. These two sets of alignments were only externally trimmed, using a custom R script, 

resulting in alignments in which at least 50% of the samples have sequence data at the both 

alignment ends. These alignments were not internally trimmed and should not be used until 

further processing (see below).  

 

Final Sequence Alignments. The Exons-Only and All-Markers alignment sets were further 

trimmed into usable phylogenetic analyses datasets, and data type comparisons, resulting in: (1) 

“Exons,” each exons-only alignment was adjusted to be in an open-reading frame in multiples of 

three bases and trimmed to the largest reading frame that accommodated >90% of the sequences; 

(2) “Introns,” a consensus sequence of the exon previously delimited was aligned to the All-

Markers dataset and the aligning region was removed leaving only the two intron ends, which 

were concatenated; (3) “UCEs,” were separately saved and not modified; (4) “Legacy,” markers 

from prior studies (excluding UCEs) were saved separately for ease of access and comparison; 

(5) “Gene,” exons from the dataset above were concatenated and grouped together if they were 

found from the same predicted gene from both the Nanorana and Xenopus genomes because 

these exons are likely to be strongly linked genetically (the exons could also be unlinked because 
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of long introns so all datasets should be considered). Finally, the Introns and UCE datasets were 

internally trimmed using trimAl (automatic1 function; Capella-Gutiérrez et al. 2009). Our five 

trimmed final datasets were formatted as Phylip files and are suitable for phylogenetic analyses.  

 

Sequence capture evaluation  

Sequence capture sensitivity. We evaluated the “sensitivity” of the sequence capture results, 

where sensitivity (also termed “breadth of coverage”) is defined as the percent of bases of a 

target marker covered by a post-assembly contig. To calculate sensitivity, we used the collection 

of target markers from probe design within the Hyloidea (n=24 samples), Ranoidea (24), and 

Reduced-Ranoidea (30) probe set samples and compared them to the matching contig for each of 

the sequenced samples using BLAST (dc-megablast). We did not evaluate introns, because they 

were not specifically targeted, but assessed their length separately. After matching with BLAST, 

we calculated the percent sensitivity per target marker and each sample by dividing the total 

base-pair length of the target marker sequence by the length of the matching portions of the 

sample contig.  

 

Sequence capture specificity. “Specificity” refers to the percentage of cleaned reads (from the 

“cleaned-reads” set) that can be mapped back to the target markers. We assessed specificity 

within the Hyloidea (n=24 samples), Ranoidea (24), and Reduced-Ranoidea (30) probe set 

samples. First, we created a reference from the markers targeted with the probe set and mapped 

cleaned reads from each sample to the target markers using the program BWA v0.712 (Li and 

Durbin 2009). Each reference was indexed (function: bwa index) and reads from each sample 

were mapped to a reference (function: bwa mem), using SAMTOOLS (Li et al. 2009) to convert 
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between file-types (functions: view and fastq). Finally, we counted the number of cleaned reads 

mapping back to the reference markers, to calculate the specificity (number mapped reads / total 

cleaned reads).  

 

Sequence capture missing data. To assess levels of missing data from the different probe sets, we 

characterized variation in two ways: (1) missing data at the base pair level refers to targeted base 

pairs that are missing from a sample in an alignment (called “missing base pair data” throughout; 

also the inverse of sensitivity from above); and (2) missing data at the marker level (called 

“missing marker data” throughout) refers to targeted markers that were not adequately captured 

for a sample after applying the standard alignment filtering from above. To calculate missing 

base pair data, we counted the number of base pairs for each sample for each alignment and 

divided by the total length of the alignment. To calculate missing marker data, we used the final 

All-Markers alignments after the post-processing filtration and trimming steps described above 

and calculated missing marker data as the percent of markers not included in the final set of 

alignments for each sample.  

 

Effect of genetic distance. To predict whether phylogenetic distance impacts sensitivity, 

specificity, and missing marker data, rather than stochastic factors or sequencing effort, we test 

for a linear relationship between these calculated variables and pairwise genetic distance from 

the design markers. We compared the genome-designed Ranoidea probe set and consensus-based 

sequence design from the Hyloidea probe set. Genetic distance was calculated using an 

uncorrected pairwise distance and the mean was computed across markers for each sample; for 

Ranoidea, this distance was calculated from the Nanorana genome sequence used in creating 
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probe sequences, whereas in Hyloidea, distance was calculated from the consensus sequences 

created for the target markers using available sequence from the Hyloidea transcriptomes. For 

these analyses, we only included markers shared between by both probe sets (totaling 6,130 

markers). A significant negative relationship would suggest that lower sensitivity and specificity 

is driven by higher sample genetic distance from the design markers. A significant positive 

relationship between genetic distance and missing marker data would suggest that sample 

dissimilarity from the design markers leads to missing marker data.  

 

Marker depth of coverage. The “depth of coverage” or “depth” for targeted sequence capture 

data was calculated, where depth refers to the number of bases from the cleaned reads that 

overlap a given assembled base or bin of bases from each of the target markers (often denoted as 

“X”). We first created a reference for each samples’ set of post-assembly contigs that were 

targeted with the probe set and next mapped cleaned reads to these contigs using BWA (“bwa-

mem” function). Next we removed exact duplicate reads using PICARD TOOLS 

(http://broadinstitute.github.io/picard/). To calculate a per-base overlap of cleaned reads to contig 

base pairs, the ‘depth’ function was used from SAMTOOLS. Depth was calculated across all 

targeted markers and samples for every base pair and was binned into 1% sized bins.  

To describe the variation in depth among samples and markers separately, we calculated 

two metrics: (1) sample depth, median depth of markers calculated for each sample; and (2) 

marker depth, for each marker, median depth of samples calculated for that marker. We used 

median values, because individual depth measurements are not centered on zero and have a 

positive skew, such that few samples / markers have extremely high depth values, biasing 

towards much higher mean values. We calculated the marker depth separately for exons and 
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introns, across markers. We used a Student’s two-sample t-test to test for a significant difference 

between depth of coverage from our Reduced-Ranoidea 20K set and Ranoidea 40K sets. We 

transformed values to fit a normal distribution and, if that assumption could not be met, we used 

a Mann-Whitney U test, which does not assume a normal distribution. Statistical tests were 

performed in R.  

 

Phylogenetic scale. We evaluated each of our All-Marker, Exon, Intron, UCE and Gene datasets 

for criteria typically considered informative in modern, model-based phylogenetic inference (e.g. 

Townsend 2007). We calculated statistics for each marker, including: number of taxa, alignment 

length (total bp), percentage of missing base pair data (percent of missing bases across 

alignments), percentage of missing marker data (number of missing taxa from alignments), 

number of informative sites, and percent of informative sites. Additionally, we addressed 

whether Exon alignment length is related to the number of informative sites, by testing for a 

positive relationship between these two variables using trimmed datasets for each phylogenetic 

scale. These metrics were calculated using the Alignment Assessment tool from Portik et al. 

(2016). 

 

Population genetics. To test whether these data could be used for population genetics, we aimed 

to locate variants and SNPs that are high quality and have sufficient depth of coverage. We note 

that these statistics depend entirely on the output from the sequencing platform being used, 

number of samples multiplexed per lane, and number of markers from the probe set included 

during hybridization enrichment; therefore it would be difficult to compare results across 

different study designs and we demonstrate possible results if researchers follow our design. We 
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used GATK v4.1 (McKenna et al. 2010), following developer best practices recommendations 

for discovering and calling variants (Van der Auwera et al. 2011).  

 To discover potential variant data (e.g. SNPs, indels), we used a consensus sequence 

from each alignment from the target group as a reference and mapped cleaned reads back to 

reference markers from each sample. We used BWA (“bwa mem” function) to map cleaned 

reads (cleaned-reads dataset explained above) to our reference markers, adding the read group 

information (e.g. Flowcell, Lane, Library) obtained from the fastq header files. Next we used 

SAMTOOLS to convert the mapped reads SAM file to a cleaned BAM file, and merged BAM 

files with our unmapped reads, as required for downstream analyses. We used the program 

PICARD to mark exact duplicate reads that may have resulted from optical and PCR artifacts, 

and reformatted each dataset for variant calling. To locate variant and invariant sites, we used 

GATK4 to generate a preliminary variant dataset using the GATK program HaplotypeCaller, to 

call haplotypes, in GVCF format, for each sample individually.  

 After processing each sample, we used the GATK GenomicsDBImport program to 

aggregate samples from separate datasets into their own combined database. Using these 

databases, we used the GenotypeGVCF function to genotype the combined sample datasets and 

output separate “.vcf” files for each marker, containing variant data, from all samples, for final 

filtration. The preliminary variant set was filtered into four datasets: (1) All variants, variants 

kept after moderate filtering to remove probable errors filtered at a quality score > 5; (2) High 

quality variants, variants included SNPs, MNPs, and indels filtered at a quality > 20; (3) SNPs, 

the number of SNPs after high-quality filtering (quality > 20); and (4) unique markers, the 

number of unique markers from the probe sets that contain at least one high quality SNP.  
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Figure 2. A summary of the data obtained for each sample, shown at each phylogenetic scale. The total number of 
markers in (A) are those obtained after matching to the target markers and removal of paralogs. In (B), the 
proportion is the sample total number of markers divided by the number of target markers. Finally, in (C) the total 
number of megabase pairs are the number of aligned bases before (light green) and after trimming (dark green). 
Note that the Hyloidea probe set sampling included one Salamander and two Archaeobatrachian frogs (the first 3 
samples), which were tested and performed poorly compared to the Hyloidea clade samples. More detailed per 
sample information from this figure can be found in Supplementary Figure S1.  
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Table 2. Sequence capture evaluation for each probe set. Our Reduced probe set uses the same markers and probes 
from the Ranoidea set but was designed with half the number of baits for a specific taxonomic group. “X” depth 
refers to the number of overlapping bases in a given marker.  
 

 Hyloidea Ranoidea Reduced 
N probes 40K 40K 20K 

N base pairs 2,929,956 3,454,114 1,519,233 
N markers 9,229 13,517 3,247 

Mean sensitivity (%) 70.3% 70.6% 89.1% 
Mean specificity (%) 47.9% 71.1% 35.7% 

Mean marker missing data (%) 21.9% 22.7% 4.5% 
Median depth of coverage 19.7X 22.1X 26.6X 

Median exon depth 40.4X 43.6X 48.1X 
Median intron depth 13.8X 13.2X 15.8X 

    
 

RESULTS 

Sequence capture evaluation. We sequenced 105 samples, resulting in a mean base pair yield of 

1,234 ± 577 mega base pairs (Mbp; range: 466–4,321 Mb) and a mean 8,172,461 ± 3,827,207 

(range: 3,090,636–28,621,450) paired reads for each sample (Figure 2; for raw results per sample 

see Supplementary Table S4 and Supplementary Figure S1). Filtering raw reads to remove exact 

duplicates, low complexity and poor-quality bases, adapter and contamination from other non-

target organisms resulted in a mean 84.5% ± 11% of reads (range: 27–96%) passing the quality 

filtration steps (mean: 1,041 ± 544 Mbp; range: 233–3,900 Mbp). After merging paired-end 

reads and reducing redundant reads, we recovered a mean of 443,032 ± 275,084 (range: 

159,958–2,123,190), merged paired-end reads and singletons were used as input for assembly. 

After assembly, our samples yielded a mean of 15,832 ± 5,575.9 (range: 6,968–43,113) contigs, 

with a mean length of 860 ± 92 (range: 128–24,355) base pairs (Figure 2).  

The assembled contigs from each sample were next matched using BLAST to the target 

markers from each of the three probe sets (Hyloidea, Ranoidea, Reduced-Ranoidea). The 

Hyloidea set produced a mean of 7,443 ± 2,022 (range: 616–9,570) contigs that were matched 
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uniquely to target markers (mean marker proportion: 0.701 ± 0.199; range: 0.058–0.901). The 

Ranoidea set produced a mean of 10,304 ± 1,645 (range: 5,050–12,235) contigs that matched 

uniquely to target marker set (mean marker proportion: 0.757 ± 0.121; range: 0.371–0.898). 

Finally, The Reduced-Ranoidea set produced a mean of 2,847 ± 123 (range: 2,299–2,983) unique 

contig matches (mean marker proportion: 0.877 ± 0.038; range: 0.708–0.919). 

 

 
 
Figure 3. Sample sensitivity and specificity compared among three different probe sets (Hyloidea, Ranoidea, and 
Reduced-Ranoidea). In addition, relationships between genetic distance and sensitivity / specificity, evaluated for 
Hyloidea and Ranoidea probe sets (Reduced-Ranoidea not included because samples are all from a single genus and 
have the same genetic distances). The box plots show the distribution of sensitivity (A) and specificity (B) values 
across the probe sets. Sensitivity (A) has a significant negative relationship with genetic distance in Ranoidea and a 
weaker but still significant relationship in Hyloidea. Specificity (B) has a significant negative relationship in 
Ranoidea and a weak and non-significant relationship in Hyloidea. The 95 percent confidence intervals of the 
estimated regression line are indicated by green and blue shading.  
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Sequence capture sensitivity. Sequence capture “sensitivity” was measured across our three 

probe sets (Hyloidea, Ranoidea, Reduced-Ranoidea) by assessing the percent of bases of target 

markers (exons and UCEs) covered by post-assembly contigs. The mean sensitivity across exons 

from samples in the Hyloidea set was 70.3 ±  20% (n = 24; range: 5.7–89.9%); the Ranoidea set 

mean sensitivity was 70.6  ± 19% (n = 24; range: 36.9–93.1%); and our Reduced-Ranoidea set 

mean sensitivity was 89.1 ± 4 % (n = 30; range: 71.6–93.5%; Table 2; Figure 3A). For UCEs, the 

mean sensitivity from samples in the Hyloidea set was 87.1% ± 16.9% (n = 24; range: 15.5–

96.6%), the Ranoidea set was 85.7 ± 8% (n = 24; range: 62.2–94.6%), and our Reduced-

Ranoidea set did not include UCEs.  

 

Sequence capture specificity. Specificity (the percentage of cleaned reads that can be mapped 

back to the target markers) was assessed within our Hyloidea, Ranoidea, and Reduced-Ranoidea 

probe sets. The Hyloidea set had a mean specificity of 47.9 ± 13.8% (n = 24; range: 1.7–68.3%); 

our Ranoidea set, had a mean specificity was substantially higher at 71.1 ± 12.8% (n = 24; range: 

47.3–90.5%); and surprisingly, specificity was lowest in our Reduce-Ranoidea set, with a mean 

of 35.7 ± 3.3% (n = 30; range: 24.5–40.0%; Table 2; Figure 3B).  

 
Sequence capture missing data. We assessed the amount of missing data for the three probe sets 

(Hyloidea, Ranoidea, Reduced-Ranoidea) by calculating the percent of missing base pairs (mbp) 

and missing markers (mm) out of the alignment lengths and number of target markers for each 

sample, respectively (Figure 4A–B). The mean mbp from samples in the Hyloidea set was 29.7 ± 

20 % (n = 24; range: 10.1–94.3%), with a much larger range and variation because of the 

inclusion of divergent clades (Archaeobatrachian frogs and Salamanders). The Ranoidea set 

mean mbp was 29.4 ± 19 % (n = 24; range: 6.9–63.1%). Last, our Reduced-Ranoidea set mean 
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mbp was 10.9 ± 4 % (n = 30; range: 6.5–28.4%; Table 2; Figure 4A). The Hyloidea set had a 

mean of 21.9 ± 22.7 % mm (n = 24; range: 0–95.0%), with a much larger range and variation 

from the divergent clades. In our Ranoidea set, mean mm was slightly higher at 22.7 ± 21.2 % (n 

= 24; range: 0–59.7%). Finally, mm in our Reduce-Ranoidea set was substantially lower, with a 

mean of 4.5 ± 4.2 % (n = 30; range: 0–23.2%; Table 2; Figure 4B).  

 

 
Figure 4. Missing data are compared for three different probe sets (Hyloidea, Ranoidea, Reduced-Ranoidea). Base 
pair missing data (also the inverse of sensitivity) in (A) is the percent of missing data calculated from the number of 
missing bases pairs across alignments for each sample. Marker missing data in (B) is the percent of missing markers 
across alignments for each sample. The consensus-based marker design missing data from Hyloidea in (C) has a 
weak and non-significant relationship with genetic distance. Conversely, the genome-based missing data from 
Ranoidea in (D) has a strong and significant positive relationship with genetic distance. Reduced-Ranoidea not 
included because samples are all from a single genus and have the same genetic distances). The 95 percent 
confidence intervals of the estimated regression line indicated with green and blue shading. 
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Effect of genetic distance. To explore the impact of the genome-based Ranoidea and consensus 

sequences from transcriptomes in the Hyloidea probe sequences might lead to different 

sensitivity, specificity and missing data in sequence capture, we used linear regression to test for 

a relationship between these variables and genetic distance in our Ranoidea and Hyloidea 

datasets. For these tests, we calculated these measures from markers shared between both probe 

set datasets. The Reduced-Ranoidea samples were not tested because all of the samples are from 

the same genus with very similar genetic distances; therefore, phylogenetic distance from the 

design sequences would not be relevant. 

When testing for sensitivity in the genome-designed Ranoidea samples, we found a 

strong negative relationship (R2 = 0.684; P < 0.001; Figure 3A), as described by the equation 

[sensitivity = 129.8 + -3.78 * average pairwise divergence], with pairwise divergence and 

sensitivity measured as percentages. Sensitivity decreased 3.78 percent for each percent increase 

of pairwise divergence. In addition, we found a weak but significant relationship among 

Hyloidea consensus sequence samples (R2=0.288; P = 0.007; Figure 3A), which was likely 

driven by three outlier data points (Figure 3A). In Hyloidea, sensitivity is equal to the equation 

[percent sensitivity = 171.5 + -6.62 * average percent pairwise divergence] where sensitivity 

decreased 6.62 percent for each percent increase of pairwise divergence. 

To explore whether specificity is related to phylogenetic distance, we found a strong 

negative relationship (R2 = 0.632; P < 0.001) among our genome-designed Ranoidea samples 

(Figure 3B), equal to the equation [specificity = 102.0 + -2.67 * average pairwise divergence], 

and again with pairwise divergence and specificity measured as percentages. Specificity 

decreased 2.67 percent for each percent increase of pairwise divergence. Conversely, we found a 
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weak and non-significant relationship within the Hyloidea consensus sequence samples 

(R2=0.121; P = 0.095; Figure 3B).  

Finally, to ascertain whether increased divergence from the target marker sequence leads 

to more missing marker data, we tested for a relationship between percent of missing markers 

and genetic distance and found a strong positive relationship (R2 = 0.698; P < 0.001) in our 

genome-designed Ranoidea samples (Figure 4C). Missing marker data in Ranoidea is equal to 

the equation [missing data = 11.27 + 1.66 * average pairwise distance], when pairwise distance 

and missing data are measured as percentages. Missing marker data increased 1.66 percent for 

each percent increase of pairwise divergence. In the consensus-designed Hyloidea samples, we 

found a weak and non-significant relationship (R2=0.007; P = 0.695; Figure 4D).  

 

Marker depth of coverage. We assessed depth of coverage across markers and, also, separately 

for exons and introns (from the post-assembly contigs not alignments), for exons targeted with 

probes, and introns that were incidentally sequenced. Depth was calculated from the median 

number of cleaned-read base pairs that overlapped with the sample sequenced region per 1 

percent bin. We compared depth using three different metrics: (1) we calculated sample depth 

(median depth of all markers for each sample; Figure 5A); (2) marker depth (median depth of all 

samples for each marker; Figure 5B); and (3) marker depth for the exon and intron, separately, 

from all samples, for each marker (Figure 5C).  

In our Hyloidea probe set, we found a median sample depth of 19.7 ± 6.9 X (n = 24; 

range: 5.1–34.1 X; Figure 5A) and in Ranoidea, we found a median sample depth of 22.1 ± 8.5 X 

(n = 24; range: 4.2–39.2 X; Figure 5A). Finally, our Reduced-Ranoidea probe set had a median 

sample depth of 26.8 ± 5.5 X (n = 30; range: 14.2–34.7 X; Figure 5A). Because of small sample 
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size and non-normal distributions, we used a Mann-Whitney U test and found a significant 

difference in the mean ranks of the median sample depth between the Reduced-Ranoidea 20K 

and Ranoidea 40K probe sets (U = 236; P = 0.031).  

 
 

 

Figure 5. Depth of coverage statistics calculated for three different probe sets. Depth is summarized for A) median 
depth of markers within samples; B) median depth calculated between markers; C) median depth of markers was 
calculated for the exon and intron separately; and (D–F). Depth was calculated across each full-length marker contig 
by aligning the cleaned reads to the aligned sample contigs and counting the number of bases within each 1 percent 
bin (100 total bins per marker), and the median for each bin across markers was plotted. The gray coloration 
represents the standard deviation within each 1 percent bin across markers. The vertical dotted lines in each plot give 
the mean position where exon-intron boundaries occur, with the standard deviation shown in the red-colored 
shading.  
 

We assessed the median depth across markers, and found the Hyloidea probe had a 

median marker depth of 16.6 ± 13.5 X (n = 24; range: 1.8–87.0 X; Figure 5B, D) and the 

Ranoidea probe set had a median marker depth of 21.9 ± 14.0 X (n = 24; range: 3–115 X; Figure 
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5B, E). The Reduced-Ranoidea probe set had a median marker depth of 27.1 ± 16.0 X (n = 30; 

range: 2–100.7 X; Figure 5B, F), which was higher than the Ranoidea 40K set. Using a Student’s 

two-sample t-test, we found a significant difference in the distribution of median depth of 

markers between the Reduced-Ranoidea 20K and the Ranoidea 40K probe set (ln transformed; T 

= -9.346; df = 4464.6; P < 0.001). It is possible that the unshared markers between the 20K and 

40K sets led to this difference, so we test only markers shared between the two sets (3,054 

markers); we still found a significant difference in depth of coverage between the median depth 

of markers (ln transformed; T = 4.8; df = 6105.2; P < 0.001). Unexpectedly, the 40K had a higher 

median depth than the 20K across shared markers, but the overall median difference was very 

small (Ranoidea = 26.9 X; Reduced = 26.5 X).  

To evaluate exons and introns separately, we measured the same parameters as above 

across all the samples. When measuring depth in the Hyloidea dataset, we found a median depth 

of 40.4 ± 29.3 X (n = 24; range: 2.3–129.8 X) for exons and a reduced median depth of 13.8 ± 

10.7 X (n = 24; range: 1.3–72.9 X) for introns (Figure 5C). In our Ranoidea dataset, we found a 

median exon depth of 43.6 ± 29.6 X (n = 24; range: 2.7–147.7 X) and a lesser median intron 

depth of 13.2 ± 9.7 X (n = 24; range: 1.5–96.2 X; Figure 5C). Finally, for our 20K Reduced-

Ranoidea data, we found a median depth of 48.1 ± 25.7 X (n = 30; range: 2.3–117.6 X) for exons 

and a lesser median depth of 15.8 ± 8.9 X (n = 30; range: 1.4–64.6 X) for introns (Figure 5C). 

Within the whole contig (Figure 5D–F), depth is generally highest near the center of the 

sequence and decreased towards its two ends. When binning contigs in 1 percent bins, the 

distance from the either edge to the start of the exon is ~32–37 percent of the contig itself (Figure 

5D–F). Interestingly, only ~25 percent of any given contig is targeted exon sequence, whereas 

~75 percent is intron sequence, demonstrating that incidental capture is 3X higher than targeted 
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areas. These results also show that when considering the exon separately from the intron, the 

median depth between the 20K and 40K probe sets are nearly the same.  

 

 

Figure 6. Summary statistics of alignments, comparing quantity of sequence data for different dataset types across 
different phylogenetic scales after filtration, alignment, trimming and dataset partitioning. Comparisons include: (A) 
number of alignments for each dataset at each phylogenetic scale; (B) number of base pairs and parsimony 
informative sites (shown as the darker shading) plotted for each dataset within each phylogenetic scale; (C) mean 
alignment length (with standard deviation shown as error bars) is compared for different data types and phylogenetic 
scales; and (D) percent of missing marker data (measured across markers with standard deviation shown as error 
bars) is compared for different datasets.  
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Phylogenetic scale. The resulting number of alignments before delimiting into data types (Exons, 

Introns, UCEs, Legacy, and Genes; the All-Markers dataset) for each of the phylogenetic scales 

was variable (Table 3; Figure 6A–B). Our Reduced-Ranoidea probe set (genus: Occidozyga) had 

3,156 alignments (out of 3,247 targeted markers) created from the reduced probe set of 20,020 

baits. Among the larger 40K bait sets, the scale with the fewest alignments was the Order-level 

scale with 5,500 alignments, which were shared after filtration and trimming (compared to the 

original 6,130 markers shared across the Ranoidea and Hyloidea probe sets). Hyloidea resulted 

in 8,712 alignments (because this probe set intentionally was designed with longer alignments) 

and the remainder of the scales had similar numbers of alignments at 12,009–13,099 because 

they resulted from the Ranoidea set (Table 3). Counts of alignments and other statistics across 

data types across phylogenetic scales are shown in Table 4 and Figure 6.  

 

Table 3. Summary of the All-Markers dataset for each phylogenetic scale. The abbreviation PIS refers to parsimony 
informative sites.  
 

Clade 
(Scale) 

Total 
samples 

N samples 
(mean ± sd) 

N  
markers Total bp Length Total PIS 

PIS 
(mean ± sd) 

Anura 
(Order) 48 35 ± 8 5500 1,806,209 328.4 ± 

189.5 944,195 52.5 ± 10.6 

Hyloidea 
(Superfamily) 24 17.1 ± 5.3 8712 4,678,657 537 ± 

312.4 1,432,769 31.9 ± 12.8 

Ranoidea 
(Superfamily) 24 17.1 ± 5 13099 5,421,176 413.9 ± 

202.8 2,144,350 40.6 ± 11.5 

Mantellidae 
(Family) 8 7 ± 1.1 12106 8,129,529 671.5 ± 

249.5 818,032 10.2 ± 4.6 

Cornufer 
(Genus) 24 20 ± 4.8 12701 7,526,490 592.6 ± 

206.1 1,032,575 13.8 ± 5.6 

Cornufer 
vertebralis 
(Species) 

16 14.1 ± 2.9 12009 7,061,983 588.1 ± 
182.4 155,675 2.2 ± 2.5 

Occidozyga 
(Reduced) 30 27 ± 5.3 3156 2,268,852 718.9 ± 

545.2 243,238 11.4 ± 4.6 
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Mean alignment length was variable among the phylogenetic scales. Alignments at the 

Order-level scale were among the shortest, which can be largely attributed to trimming highly 

variable intron regions which were relatively more complex, resulting in more discarded 

alignments after filtration (Table 4; Figure 6C). Conversely, alignment lengths increased at more 

shallow phylogenetic scales, for which intron regions were less variable and easier to align due 

to less ambiguous inference of positional homology (Table 3). Missing marker data was also 

variable at various phylogenetic scales. In general, at the broadest phylogenetic scales (i.e. Order 

and Superfamily) there were higher levels of missing marker data (Figure 6D). 

There was also a general pattern of all markers exhibiting increased variability (in terms 

of informative sites) at broader phylogenetic scales (Figure 5B; Figure 7). Not surprisingly, 

Introns were the most variable data type across all phylogenetic scales and even displayed at the 

species level (Table 4; Figure 7). Exons were moderately variable and similar to our Gene data 

type (which are composed of multiple exons). The UCEs were slightly less variable than the 

Exons and Genes, but still variation occurred in their characteristic flanking regions (admittedly, 

we selected the most variable UCEs for our probe sets). Finally, when testing whether alignment 

length is related to percentage of parsimony informative sites, we found a significant relationship 

across all phylogenetic scales. The strength of this relationship decreased at shallower 

phylogenetic scales (genus and species level), indicating marker variation generally decreased at 

shallower scales (Table 5). However, clear differences in variation exist between the Exons and 

Introns, with Introns providing a majority of the informative sites detected at shallower scales 

(Table 5; Figure 7).  
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Table 4. Summary of the All-Markers dataset for each phylogenetic scale. The abbreviation PIS refers to parsimony 
informative sites.  
 

Clade 
(Scale) Dataset 

N samples 
(mean ± sd) 

N 
markers Total bp Length Total PIS 

PIS 
(mean ± sd) 

Anura exon 34.3 ± 7.9 4566 961,305 210.5 ± 145.4 409,774 40.4 ± 8.9 
(Order) intron 31.6 ± 7.9 4185 1,317,305 314.8 ± 171.4 1,041,290 80.5 ± 14.2 

 legacy 42.8 ± 3.5 15 15,258 1017.2 ± 412.2 5,523 35.6 ± 6.7 

 gene 41.6 ± 4.7 857 457,743 534.1 ± 323.7 190,521 40.6 ± 6.4 

 UCE 42.3 ± 5.7 567 319,259 563.1 ± 178.8 128,088 39.3 ± 12.3 
Hyloidea exon 16.2 ± 5.2 5696 1,332,048 233.9 ± 241.3 307,447 20.9 ± 8.6 
(Superfamily) intron 15.6 ± 4.9 5636 2,310,925 410 ± 199.1 1,174,156 52.5 ± 20.3 

 legacy 21.1 ± 4.1 84 79,113 941.8 ± 321.6 19,900 25.2 ± 6.7 

 gene 19.9 ± 3.1 985 546,951 555.3 ± 376.6 121,821 21.1 ± 6.1 

 UCE 20.9 ± 3.2 2359 1,941,867 823.2 ± 232.2 519,351 26.5 ± 10.3 
Ranoidea exon 17 ± 5 12149 2,453,364 201.9 ± 149.7 718,950 27 ± 9.2 
(Superfamily) intron 16.1 ± 4.4 2982 1,104,972 370.5 ± 134.7 673,284 62.4 ± 16.6 

 legacy 20.6 ± 4.4 24 21,186 882.8 ± 415.1 5,162 23.2 ± 7.5 

 gene 21.3 ± 3 2235 1,347,147 602.8 ± 417 388,411 27.6 ± 6.5 

 UCE 20.6 ± 4.7 650 442,500 680.8 ± 173.8 138,803 31 ± 10 
Mantellidae exon 7 ± 1.1 11339 2,413,164 212.8 ± 190 135,430 5.2 ± 2.8 
(Family) intron 7 ± 1.1 11314 6,700,598 592.2 ± 206.8 1,050,533 16 ± 7.7 

 legacy 7.5 ± 1.1 29 35,352 1219 ± 787 1,621 4.4 ± 2.2 

 gene 7.8 ± 0.5 2077 1,275,423 614.1 ± 445.5 68,487 5.2 ± 2 

 UCE 7.4 ± 1 604 545,819 903.7 ± 215.8 32,938 5.9 ± 3.1 
Cornufer exon 20 ± 4.8 11990 2,609,055 217.6 ± 231.3 177,481 6.2 ± 3.4 
(Genus) intron 19.9 ± 4.7 11967 6,046,801 505.3 ± 159.8 1,108,147 18.4 ± 7.8 

 legacy 22.1 ± 4 29 36,594 1261.9 ± 828.8 2,198 5.8 ± 3.7 

 gene 23.2 ± 1.8 2203 1,368,702 621.3 ± 459.2 85,886 6.1 ± 2.3 

 UCE 20.6 ± 5 628 473,984 754.8 ± 167 31,250 6.4 ± 4.1 
Cornufer  exon 14.1 ± 2.9 11393 2,507,571 220.1 ± 207 18,347 0.7 ± 1.2 
vertebralis intron 14.1 ± 2.9 11375 5,790,769 509.1 ± 134.8 189,974 3.3 ± 4.1 
(Species) legacy 14.6 ± 2.7 29 36,036 1242.6 ± 826.9 201 0.5 ± 0.4 

 gene 15.7 ± 1 2100 1,314,084 625.8 ± 460.3 8,657 0.7 ± 0.7 

 UCE 14.5 ± 2.7 602 436,702 725.4 ± 127.5 4,564 1 ± 1.8 
Occidozyga exon 27 ± 5.3 3110 1292427 415.6 ± 678.3 75,773 5.3 ± 2.8 
(Reduced) intron 26.8 ± 5.3 3100 1472238 474.9 ± 138.5 235,791 16 ± 7.1 

 legacy 28 ± 5.9 85 88188 1037.5 ± 551.9 3,842 4.2 ± 2.3 

 gene 29.6 ± 1.9 213 156186 733.3 ± 718.1 8,216 5.1 ± 2.3 

 UCE 24.8 ± 10.5 4 3662 915.5 ± 311.1 260 6.6 ± 6 
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Figure 7. Comparisons of percent of parsimony informative sites, for each data type, at phylogenetic scales. Introns 
are the most variable data type across phylogenetic scales and display moderate variation even at the species level. 
Exons and UCEs had moderate amounts of variation, where both data types had little variation at the species level. 
The marker density has been normalized to best compare the different data types.  
 
 
Population genetics. To assess whether FrogCap markers have utility in population genetic 

studies, we used GATK4 to discover genetic variants and SNPs across our sampling of 

taxonomic variation, within our seven datasets, addressing five phylogenetic scales. Generally, 

we found a pattern of decreasing variants (i.e. SNPs, indels) from higher to lower phylogenetic 

scales (Order to Species -levels), with greater than 20,000 variants at the species level after high 

quality filtering (Figure 8). This pattern remains for SNPs only, with greater than 10,000 SNPs 

found at the species level after aggressive filtering (Figure 8). Finally, in studies for which the 

independence of SNPs is required, we find at least one strongly supported SNP (and often 

numerous others) per each individual marker, thus permitting thousands of unlinked SNPs in 

FrogCap datasets, even at the species level (Figure 8).  
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Figure 8. Mean number of variants across samples after different filtration schemes are shown at each phylogenetic 
scale (Anura not shown). The different variant filtering are: (A) all variants after moderate filtering (quality > 5); (B) 
High quality variants including SNPs, MNPs, and indels (quality > 20); (C) the number of SNPs after high-quality 
filtering (quality > 20); and (D) the number of unique markers from the probe sets that contain SNPs.  
 
 
DISCUSSION 

We introduce FrogCap, a publicly available collection of markers with associated sequence 

capture probe sets, representing a remarkably powerful suite of resources for the collection of 

genomic data for phylogenomics, systematics, and population genetics in any frog system. 

FrogCap is modular and topically-adaptable, providing a wealth of options for marker selection 
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and analyses, which allows it to be tailored to specific study questions. FrogCap was created 

with a novel approach that identified orthologous markers from frog genomes and transcriptomes 

and includes two complementary probe sets (with 40,040 baits) designed to capture the same 

markers across major clades (Ranoidea and Hyloidea; >95% of frog diversity). We assessed 

three differently designed probe sets of FrogCap using 105 samples, selected strategically across 

five phylogenetic scales. Importantly, we demonstrate the success of FrogCap at each of these 

levels, suggesting our approach to sequence capture design can be applied to other groups of 

organisms. Based on the development of FrogCap and our sampling design, we are able to make 

several recommendations on key topics related to sequence capture. We discuss the effects of 

using different bait kit sizes, whether genome-based or consensus-based probe design are more 

successful, the impact of phylogenetic scale on sequence capture success, and the importance of 

incorporating different molecular marker types. Altogether these results suggest that the FrogCap 

marker set is adaptable and contains a variety of markers potentially useful for phylogenetic 

analyses and population genetics; this effort provide a much-needed novel mixture of molecular 

marker types for empirical comparison, side-by-side optimization, and exploration of data type 

combinations which have the potential to resolve difficult phylogenetic relationships.  

 

Bait kit size. One of the first decisions in sequence capture study design is selecting the size of 

the bait kit. Given the same library pooling design, sequencing effort, and probe tiling scheme, 

the number of probes available for capture design will directly affect the number of target 

markers and can indirectly affect the depth of coverage. Here we aimed for an optimal trade-off 

between depth of coverage and sequencing costs while maintaining the same conditions for 

multiplexing sample numbers and sequencing effort. Although larger sized bait kits can target 
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more markers, they could be disadvantageous if the sequencing effort is not adequate, resulting 

in higher amounts of missing data. Additionally, a smaller bait kit that targets a subset of markers 

would be expected to have greater resulting depth per sample because fewer genomic areas are 

being targeted for sequencing. Given these expectations, we tested the effects of using a 20,020 

and a 40,040 bait kit (20K and 40K respectively; MyBaits kits from Arbor Biosciences). To 

control for additional variables in this experiment, we used comparable library pooling designs, 

sequencing effort, and probe tiling schemes for each kit size. The Ranoidea and Reduced-

Ranoidea sets were compared here because the Reduced-Ranoidea set uses a subset of the same 

bait sequences from the Ranoidea set.  

Our results suggest that there might be an advantage to using the 20K bait set when 

compared to the 40K set, because using a smaller bait set resulted in a higher capture success. 

Specifically, we found the 20K bait set had a higher sensitivity (~89% versus ~70% in the 40K; 

Figure 3) and much fewer missing marker data overall (~5% vs ~22% in the 40K; Figure 4). 

When capture success is not related to sequencing effort, we would expect no relationship 

between genetic distance and sensitivity / missing data; here we found significant relationships 

between genetic distance of samples from design markers and missing marker data / sensitivity 

in the Ranoidea 40K bait set (Figure 3–4). These results suggest that the 40K set had adequate 

sequencing depth to sequence most of the markers, ruling out a potential advantage of the 20K 

set.  

Despite the potential advantages regarding capture success and missing data, depth of 

coverage is another important factor to consider. Our expectation was for a 2X difference in 

depth between the 20K and 40K kits. Although depth of coverage was significantly different 

between the samples and markers in the kits, the difference was actually relatively small 
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(medians: 40K = ~24X; 20K = ~26X; Figure 5). The same was true for a comparison of the 

shared markers only (medians: 20K = ~26.5X; 40K = ~26.9X). Although significant differences 

were found, both kits resulted in favorable depth of coverage values. Overall our results indicate 

that the 20K offers only a small advantage over the 40K, but we recommend using the 40K 

because it results in thousands more sequenced markers despite the increased capture success of 

the 20K. This ultimately results in more target markers recovered in the 40K despite the lowered 

capture success. Given the high depth of coverage found for the 20K kit in our experiment, it 

may be possible to multiplex more samples (possibly even the twice the number of samples), 

which could offer an advantage for projects focused on fewer markers and reduce costs.  

 

Probe design. There are numerous considerations for designing probes for sequence-capture 

experiments. Ultimately, the availability of genomic resources dictates how probes can be 

designed. The availability of a genome allows the detection of exon boundaries, inclusion of 

non-coding sequences (introns, UCEs), and enhanced paralog detection. Conversely, probe 

design based on transcriptomes is more challenging because paralog detection is difficult and the 

presence of intron-exon boundaries could interfere with capture success (but see Portik et al. 

2016). Regarding both types of genomic resources, probe tiling density is an important factor. 

Higher densities result in many probes covering the target regions, which is expected to increase 

the likelihood of obtaining that region (i.e. AHE markers; Lemmon et al. 2012). In contrast, 

lower densities result in fewer probes per target, allowing more overall targets to be included but 

at the potential cost of lower capture success.  

Our experiment included probes designed from a combination of transcriptomes and 

genomes. We found that the genome-based design (Ranoidea) had slightly more capture success 
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than the transcriptome-based (Hyloidea) design. Many of the uncaptured target markers and 

paralogs detected post-processing in Hyloidea were transcriptome-based, whereas the shared 

markers between Ranoidea were largely successful. However, the transcriptome-based approach 

successfully recovered 70 percent of the target markers, which is consistent with other 

transcriptome-based studies (e.g. Bi et al. 2012; Portik et al. 2016; Reilly et al. 2019). 

Furthermore, the number of genomic resources available for designing the Ranoidea probe set 

was much higher (24 transcriptomes and 1 genome vs. 5 transcriptomes), and likely affected the 

sequence capture outcomes for Ranoidea and Hyloidea. For example, the Hyloidea transcriptome 

markers could not be filtered as rigorously as the Ranoidea markers, and the lack of phylogenetic 

diversity in sampling resulted in consensus probe sequences more similar to some groups in the 

clade.  

Probe tiling density is another important variable that differentiates FrogCap from other 

frog probe sets. A higher tiling density limits the number of target markers but increases the 

likelihood of obtaining a target region; conversely, a lower tiling density allows for more target 

markers but may result in higher levels of missing data. In our study, we used a lower density 2X 

tiling scheme (at least 50 percent of each probe overlaps with adjacent probes) that has been 

recommended as a standard for sequence capture designs (Tewhey et al. 2009). We found a 

slightly lower capture success (i.e. specificity and missing data) than other studies with more 

dense tiling designs (specificity: this study = 70–75%; Portik et al. 2016 = 80%), which led to a 

higher amount of missing marker data (this study = 20–25%; Portik et al. 2016 = 8–10%). 

However, the Reduced-Ranoidea design had greater success than these densely tiled studies, 

indicating that careful selection of markers based on prior successful sequencing can actually 

circumvent limitations imposed by lower density tiling. Despite the increased capture success in 
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the Reduced-Ranoidea and more densely tiled sequence capture designs, having more markers 

by using a 2X tiling scheme actually results in more markers being recovered (Figure 6). 

Therefore, we recommend less dense tiling schemes because the number of markers lost from the 

2X tiling scheme is small compared to the number of markers gained from the higher number of 

markers being targeted.  

 
Table 5. Results from tests for a relationship between alignment length and parsimony informative sites across 
phylogenetic scales. The trimmed All-Markers dataset was used for this analysis.  
 

Scale Clade R2 P 
Order Anura 0.799 <0.001 
Superfamily Ranoidea 0.623 <0.001 
Superfamily Hyloidea 0.523 <0.001 
Family Mantellidae 0.286 <0.001 
Genus Cornufer 0.289 <0.001 
Species Cornufer vertebralis 0.030 <0.001 
Reduced Occidozyga 0.445 <0.001 

 

Genetic divergence from probes. Phylogenetic distance from the design markers is likely one of 

the most important and predictable factors affecting sequence capture performance (i.e. 

sensitivity, specificity, and missing marker data). Similar to other studies (Portik et al. 2016), we 

found higher genetic distances from a target lead to a decreased likelihood of capture for the 

Ranoidea probe set that used genome-based marker design. This probe set was designed using 

only the Nanorana genome sequences, rather than from multiple species or consensus sequences. 

Surprisingly, the consensus-sequence probe design for the Hyloidea set had poor or non-

significant relationships between genetic distance and sequence capture performance metrics. 

This would suggest that other factors could explain missing markers, such as paralogs which are 

more prevalent in the transcriptome-based sequence capture samples and genetic distance for a 

subset of the samples not related to the design transcriptomes (discussed above). Overall, our 
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results suggest that these markers designed using consensus sequences improved the sequence 

capture success when compared to genome-based (i.e. Ranoidea) or multispecies transcriptome-

based (e.g., Portik et al. 2016) designs.  

 

Phylogenetic scale. Understanding how sequence capture experiments perform at different 

phylogenetic scales is important for decisions about marker selection and probe design. In our 

experiment, we assessed the impact of phylogenetic scale on the number of markers recovered, 

total base pairs recovered, the proportion of informative sites, and levels of missing data at the 

order, superfamily, family, genus and species level (Taylor & Piel 2004; Townsend 2007). 

Generally, at broader phylogenetic scales (e.g. order, superfamily) the number of alignments 

decreases because missing data were more prevalent (~25%) as a result of marker drop-off in 

divergent samples (Figure 6D). At shallower phylogenetic scales (e.g. family, genus, species) 

missing data levels were lower (< 10%) and more uniform across samples (Figure 6D). At 

shallower scales, the number of markers recovered appears to be related to how divergent the 

target group is from the design probes (i.e. Microhylidae genus level comparison would differ 

from Ceratobatrachidae). To help remedy this issue, we designed the FrogCap probe sets are 

modular in design. For example, the Reduced-Ranoidea probe set was designed based on 

successful capture data from Ranoidea, where we selected markers that were successful and had 

longer alignment lengths. With this probe set, we find a higher capture success (sensitivity) and 

many fewer missing data across alignments (~5%).  

 

Molecular marker type. We evaluated the properties of UCE, Exon, Intron and Gene (i.e. exons 

concatenated from the same gene; see Materials and Methods) sequence data within and across 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2019. ; https://doi.org/10.1101/825307doi: bioRxiv preprint 

https://doi.org/10.1101/825307
http://creativecommons.org/licenses/by-nc/4.0/


48 

phylogenetic scales. UCEs and Exons were targeted in the marker design, and Gene alignments 

are exons combined from the same gene; however, intronic sequence was indirectly acquired as 

“by-catch” from by sequencing adjacent regions of a captured DNA fragment (e.g. Bi et al. 2012; 

Guo et al. 2012; Tewhey et al. 2015). Similar to Portik et al. (2016), the number of base pairs of 

data available from non-targeted intronic sequence was 2–3 times higher than explicitly targeted 

exon sequence (Figure 6), suggesting that intronic sequence is an abundant and potentially 

important resource in exon-capture. Additionally, intronic sequence could be valuable because of 

potential neutral evolution relative to exons which are typically functional and under selection, 

and UCEs which are likely under strong purifying selection to remain ultra-conserved (Halligan 

et al. 2004; Katzman et al. 2007; Stephen et al. 2008).  

 Perhaps the most important characteristic to evaluate across different data types is the 

informativeness or variability of the marker, which could potentially differ based on 

phylogenetic scale and data type. We show that parsimony informative sites vary markedly 

between both data type and phylogenetic scale (Figure 7). Among data types, the Intron is the 

most variable and is similar to UCEs in that the variability increases towards the flanks of the 

marker alignment; however, UCEs have moderate variability when including the central 

conserved region. Conversely, Exons have a small to moderate amount of variation. Introns show 

this pattern likely because of neutral evolution or weak selection (Halligan et al. 2008), whereas 

exons remain more conserved because they are under strong selection (Katzman et al. 2007). At 

shallow phylogenetic scales (species or genus) exons and UCEs have little variation, but Introns 

are quite variable (Figure 7). At broader phylogenetic scales (order, superfamily), Exons and 

UCEs are more variable. At these scales Introns become highly variable, and data could be lost 

due to the difficulty in aligning these regions.  
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 The alignment length for exons in particular should be considered when including 

markers for analyses, and the FrogCap probe set includes a mixture of exons from different size 

classes (Figure 1B). We generally show that exon length is related to the number of informative 

sites, where longer exons provide more information for phylogenetic analyses (Table 5; 

Townsend 2007). The mean size of exons was ~250 bp (Table 1) which is similar to the 

predicted mean exon length across the Nanorana and Xenopus genomes (~200 bp). Short exons 

are advantageous because they would allow more SNPs to be incorporated into analyses that 

require genetically unlinked SNPs (Figure 8). The main disadvantage of short exons is that they 

may lack sufficient variability for strong support in phylogenetic analyses, which is important for 

summary species tree methods using individual gene trees. For these types of analyses, FrogCap 

also includes ~1,000 long exons greater than 500 bp in length (and ~500 exons greater than 

1,000 bp; Table 1). Long exons would be ideal for analyses where the goal is to have fewer 

markers/partitions, but stronger statistical support among gene trees. The publicly available 

FrogCap pipeline and website (https://www.frogcap.com) separates alignments into these 

different data types so that researchers will have a great deal of flexibility in choosing their 

optimal marker attributes for individual strategies behind analyzing sequence data.  

 

Future directions. FrogCap is a new modular collection of markers and sequence capture probe 

sets for frogs, which forms an important foundation for future work. First, although not the focus 

of this work, a phylogenetic assessment of the different data types and how they perform at 

different phylogenetic scales across different types of analyses would be important for future 

FrogCap studies and other phylogenomic studies that include different data types (Hutter et al. 

unpublished data). Second, some smaller amphibian phylogenetic groups are underrepresented 
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(Salamanders, Caecilians, and Archeaobatrachian frogs) in FrogCap; work is currently underway 

on a “universal” module of markers that could be captured reliably across amphibians (but at the 

cost of fewer informative sites). In addition, specialized subsets and additional probe sets 

including a greater number of markers have been designed for specific clades (the genus 

Limnonectes, and family Dendrobatidae), which emphasizes the modular, taxon-specific 

adaptability of FrogCap (unpublished data). Third, although sequence capture is not the best 

method for acquiring SNP data, we demonstrate that thousands of high-quality SNPs can be 

discovered; future studies will address the performance of SNP-based analyses resulting from 

FrogCap. Finally, we create a refined version of the Ranoidea probes set (Version 2.0) informed 

from the analyzed Ranoidea V1 in this study; the refined Ranoidea V2 excluded markers that did 

not capture well across our test samples; these were replaced with additional UCEs, Legacy 

markers, and longer exons. Both versions are available, along with Version 1 at 

https://github.com/chutter/FrogCap-Sequence-Capture.  

 

DATA AVAILABILITY 

A major goal in disseminating these resources is to provide the probe set described and tested 

here as a freely available and open access resource. The probe set and other resources are 

licensed under a Creative Commons Attribution 3.0 United States 

(https://creativecommons.org/licenses/by/3.0/us/legalcode). 

 All raw sequencing reads are made available in the GenBank SRA (BioProject: available upon 

publication) upon acceptance of this manuscript in a peer-reviewed journal. All alignments 

analyzed and materials for replicating analyses are made available on the Open Science 

Framework (https://osf.io/gvbr5/) following manuscript publication. Finally, the data analysis 
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pipeline and scripts for all analyses here, the probe set and marker files, and data for several 

outgroups for other researchers to use are now available on Carl R. Hutter’s GitHub 

(https://github.com/chutter/FrogCap-Sequence-Capture).  

 

COST ESTIMATES 

We provide a brief summary of cost estimates for this project, which are based off of current 

quotes from library preparation and sequencing providers we have worked with (as of October 

2019). The cost of the probes amounts to ~$25 per sample, library preparation (outsourced at 

Arbor BiosciencesTM) is ~$75 per sample, and sequencing is ~$15 a sample ($1300 a lane at 

NovoGeneTM), which totals $110 a sample. These costs were attained with a large sample 

volume (>192 samples). None of these costs are guaranteed and are likely to fluctuate, and we 

offer no guarantee of similar quotes from these providers. Additionally, we note that in-house 

library prep (rather than using a service) can substantially reduce the library prep costs, and 

purchasing more probes in bulk can reduce costs.  
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SUPPLEMENTARY MATERIAL 

Supplementary Table S1. GenBank accession numbers for transcriptomes and genomes for probe 

design.  

Supplementary Table S2. Meta-data and sample information for each sample.  

Supplementary Table S3. GenBank accessions numbers for the decontamination genome 

filtration step. 

Supplementary Table S4. Per sample sequencing and processing statistics.  

Supplementary Figure S1. Detailed per sample summary statistics.  
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