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ABSTRACT 

Although significant insights have been gained into the neural mechanisms of acute placebo 

responses, less is known about the mechanisms of longer-term placebo responses, such as those 

seen in clinical trials, or the interactions between these mechanisms and brain disease. We 

examined neuropathological and morphological brain correlates of placebo responses in a 

randomized clinical trial of a controversial endovascular treatment (“liberation therapy”) for 

multiple sclerosis. Patients were randomized to receive either balloon or sham extracranial 

venoplasty and followed for 48 weeks. The trial did not support therapeutic efficacy of 

venoplasty, but a subset of both venoplasty- and sham-treated patients reported an improvement 

in health-related quality of life that peaked at 12 weeks following treatment, suggesting a 

placebo response. Placebo responders had higher lesion activity than placebo non-responders. 

Although placebo responders did not differ from non-responders in terms of total normalized 

brain volume, regional grey or white matter volume or cortical thickness, graph theoretical 

analysis of cortical thickness covariance showed that placebo non-responders had a more 

homogenous cortical thickness topology with a more small-world-like architecture. In placebo 

non-responders, lesion load inversely predicted cortical thickness in primary somatosensory and 

motor areas, association areas, precuneus and insula, primarily in the right hemisphere. In 

placebo responders, lesion load was unrelated to cortical thickness. The neuropathological 

process in MS may result in a cortical configuration that is less suited to functional integration 

and less capable of generating a sustained placebo response. 

 

Keywords: placebo effect, MRI, brain morphology, cortical thickness, graph theory, 

connectivity, multiple sclerosis 
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INTRODUCTION 

Current understanding of the neurobiology of placebo effects comes primarily from 

laboratory studies of acute placebo interventions. Longer term placebo responses, such as those 

in clinical trials, have been less studied but appear to rely on structural and functional brain 

connectivity (Tétreault et al., 2016)(Hashmi et al., 2012)(Vachon-Presseau et al., 2018)(Liu et 

al., 2017) and involve modulation of fMRI-derived (Wanigasekera et al., 2018) and metabolic 

networks (Mayberg et al., 2002)(Ko et al., 2014)(Niethammer et al., 2018).  

Unlike acute laboratory placebo responses, often studied in healthy participants, those of 

patients with chronic conditions in clinical trials and real-world settings may reflect a yearning 

for improvement, tempered by varying levels of hope, prior therapeutic experiences and 

acceptance of risk for a chance at recovery. In neurobehavioural disorders, placebo mechanisms 

may interact with neuropathological processes. For example, Alzheimer’s patients show a 

reduced capacity for placebo analgesia, which has been linked to disrupted connectivity of the 

prefrontal cortex with the rest of the brain (Benedetti et al., 2006).  However, little is known 

about the interactions between placebo responses and brain disease.  

  To address this question, we examined neuropathological and structural neural 

correlates of placebo responses of multiple sclerosis (MS) patients undergoing a randomized 

clinical trial (RCT) of a controversial extracranial venoplasty procedure dubbed the “liberation 

therapy”. The treatment was based on the now discredited notion that chronic cerebrospinal 

venous insufficiency contributes (CCSVI) to MS pathogenesis (Traboulsee et al., 2013). Owing 

to the initially promising results of uncontrolled, unblinded studies (Dake, Dantzker, Bennett, & 

Cooke, 2012)(Hubbard et al., 2012)(Zamboni et al., 2009)(Radak et al., 2014)(Salvi, Buccellato, 

& Galeotti, 2012)(Zagaglia, Balestrini, & Perticaroli, 2013) and the associated publicity, many 
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patients viewed it as a potential cure and sought it out despite the potential risks and the 

skepticism of the scientific community. However, venoplasty proved ineffective in two double-

blind sham-controlled RCTs, one by the pioneers of the procedure (Zamboni et al., 2018), and 

the other by our group (Traboulsee et al., 2018). In the latter, while venoplasty was not superior 

to sham venoplasty on any outcome measure, a subset of both venoplasty- and sham-treated 

patients experienced a significant transient improvement in self-reported health-related quality of 

life suggesting a placebo response (Figure 1A). This presented a unique opportunity to examine 

the neural mechanisms of placebo responses in a real-world context.  

We examined MRI-based predictors of this placebo response (Figure 1).  These included 

lesion load, activity and location, global and regional brain volume and cortical thickness. 

Because brain disease can disrupt placebo response, we hypothesized that placebo non-

responders would have increased white matter lesions as well as grey matter atrophy. Based on 

the domain-general nature of this placebo response (i.e. health-related quality of life), we 

expected these increases to be most prominent in regions broadly implicated in reward 

expectancy and interception such as the prefrontal cortex, striatum and insula. Besides standard 

morphometric analyses, we performed a graph theoretical analysis of cortical thickness (CT) 

covariance to characterize its inter-regional relationships. Graph theory is a modality invariant 

framework that represents complex systems as networks and describes their organization using a 

set of common metrics. In graph theoretical terms, the brain is viewed as a network of regions 

(“nodes”) connected via links (“edges”) representing white matter tracts, structural covariance or 

functional connections. While the neurobiological significance of structural covariance networks 

and more specifically CT networks is not entirely clear, CT is known to covary between 

structurally and functionally connected regions (Alexander-Bloch, Giedd and Bullmore, 2013). 
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This covariation appears to reflect stronger synaptic connectivity between those regions that are 

microstructurally similar (Suarez, Markello, Betzel, & Misic, 2020)(Seidlitz et al., 2018). 

Previous studies applying graph theory to CT covariance in MS have found increased network 

segregation and enhancement of local properties in early disease (Fleischer et al., 

2019)(Muthuraman et al., 2016) with a shift in both local and global properties towards more 

“regular” or uniform networks with advancing disease (Tewarie et al., 2014)(He et al., 2009). 

Studies of diffusion tensor imaging (DTI) based structural networks (Fleischer et al., 2017)(Shu 

et al., 2011) and functional connectivity (Tewarie et al., 2014) yielded convergent findings. We 

hypothesized that CT covariance networks would be more anomalous in placebo non-responders. 

We specifically focused on three key graph metrics of network segregation and integration: 

clustering coefficient - a measure of segregation; pathlength – a measure of integration; and the 

small-world index – a derivative measure describing overall network topology. 

MATERIALS AND METHODS 

Participants 

Participants with relapsing remitting (RRMS), secondary (SPMS) and primary 

progressive (PPMS) MS were recruited between May 29, 2013 and Aug 19, 2015 from four 

Canadian academic centers: 1) University of British Columbia Hospital, Vancouver; 2) Health 

Sciences Centre, Winnipeg; 3) CHUM, Hôpital Notre-Dame, Montreal; 4) Hôpital Enfant-Jesus, 

Québec. Inclusion criteria were: age 18-65 years, diagnosis of definite MS by the 2010 

McDonald criteria (Polman et al., 2011), an Expanded Disability Status Score (EDSS) (Kurtzke, 

1983)  between 0 (i.e. minimal disability) and 6.5 (i.e. using bilateral aids to walk), 

neurologically stable disease within the 30 days prior to screening, and fulfillment of at least two 

ultrasound criteria for CCSVI see (Traboulsee et al., 2018) for a detailed description of the trial’s 
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methods and entry criteria. Participants on standard disease-modifying therapies were permitted to 

continue on the medication, and changes were allowed for on study relapses after randomization. 

Exclusion criteria were treatment with vasodilators, parasympathomimetics, sympathicolytics, 

calcium channel blockers, previous venoplasty and/or stenting, previous jugular or subclavian 

central line or major neck surgery or radiation, previous contrast allergy, inability to undergo 

MRI, and inadequate medical records confirming diagnosis and disease course. The clinical 

research ethics boards at the four participating centers approved the study protocol, and 

participants gave written informed consent. Of the total 104 MS participants, we analyzed the 

data of 88 who had T1-weighted MRIs of sufficient quality for CT analyses. For the remaining 

scans, signal intensity at the lateral extremes was too low for successful surface extraction. 

Although the primary purpose of this study was to compare the placebo responders to 

non-responders in the trial, we used MRIs from 43 gender and age-matched healthy controls (30 

females, age: 52.98 ± 8.93) to provide a benchmark for graph theory analysis of placebo 

responders vs. non-responders to help determine which CT pattern was more normative. Six of 

these scans were acquired at Site 1; the rest were obtained from the Open Access Series of 

Imaging Studies repository (OASIS-3, www.oasis-brains.org, RRID:SCR_007385).  

Experimental Design and Procedure 

Eligible participants were randomized 1:1 to either sham or active balloon venoplasty of 

all narrowed veins under study. Stratified randomization (RRMS versus progressive MS course) 

at each site was completed by a permuted-block size of six. Venography was performed under 

conscious sedation and the duration of time within the angiography suite was uniform for both 

venoplasty and sham treated participants. A 5-French diagnostic catheter was introduced through 

the common femoral vein to selectively catheterize the right and left internal jugular veins as 
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well as the azygos vein. The venoplasty participants were treated with an angioplasty balloon 

2mm greater than the nominal vein diameter which was inflated for 60 seconds. The participants 

randomized to sham had a catheter that was advanced across the stenosis and left for 60 seconds.  

After randomization and intervention, participants were followed for 48 weeks with MRI, 

ultrasound, clinical assessments and patient-reported outcome scales including Multiple Sclerosis 

Quality of Life -54 (MSQOL-54) (Vickrey et al., 1995). For MRI, T1 weighted images with and 

without gadolinium enhancement, T2 weighted images and fluid attenuated inversion recovery 

(FLAIR) images were obtained. MRI acquisition parameters are given in Table 1.  

Table 1. MRI acquisition parameters 

Site Scanner and Scan Resolution Voxel size TR TE TI 

Site 1  Philips Intera 3T      

 3D T1 weighted 320 x 320 x 200 0.8 x 0.8 x 0.8 6.2 3.0  

 3D T2 weighted 320 x 320 x 200 0.8 x 0.8 x 0.8 2500 363  

 FLAIR 320 x 320 x 200 0.8 x 0.8 x 0.8 8000 337 2400 

Site 2 Siemens Verio 3T      

 3D T1 weighted 320 x 320 x 176 0.78 x 0.78 x 0.78 1900 3.4 900 

 3D T2 weighted 512 x 512 x 160 0.488 x 0.488 x 1.0 3200 409  

 FLAIR 320 x 320 x 160 0.83 x 0.83 x 0.83 8000 337 2400 

Site 3  Philips Achieva 3T      

 3D T1 weighted 320 x 320 x 200 0.8 x 0.8 x 0.8  6.2 3.0  

 3D T2 weighted 320 x 320 x 200 0.8 x 0.8 x 0.8  2500 363  

 FLAIR 320 x 320 x 200 0.8 x 0.8 x 0.8  8000 337 2400 

Site 4 Philips Achieva 3T      

 3D T1 weighted 320 x 320 x 112 0.8 x 0.8 x 1.6  6.5 3.2  

 3D T2 weighted 320 x 320 x 112 0.8 x 0.8 x 1.6  2500 255  
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 FLAIR 336 x 336 x 112 0.76 x 0.76 x 1.6  4800 330 1650 

Controls: Site1 Philips 3T Achieva      

 3D T1 weighted 256 x 250 x 165 1.0 x 1.0 x 1.0 8.1 3.5  

Controls: OASIS 

 

(Siemens TIM Trio 

3T) 

     

 3D T1 weighted 256 x 256 x 176 1.0 x 1.0 x 1.0 2400 3.16  

3T = 3 Tesla; 3D=3-dimensional, TR = repetition time; TE = echo time; TI = inversion time; 

FLAIR = Fluid Attenuated Inversion Recovery; Site 1 control scans were acquired with parallel 

imaging, SENSE factor 1.5. 

 

Statistical Analyses 

The analyses of neuropathological and morphological predictors of placebo response 

focused on MRI measures obtained at baseline, directly prior to extracranial venoplasty. Unless 

otherwise specified, all statistical analyses of morphometric and lesion data included age, gender, 

age by gender interaction, disease duration and site as covariates. 

Placebo response 

Change in MSQOL-54 Physical Health Composite was used as the measure of placebo 

response, as this measure showed a transient significant improvement in the trial (Traboulsee et 

al., 2018). Scores at baseline and the subsequent 6 assessment points were used to compute the 

area under the curve (AUC) measure for each participant using the Matlab function trapz. These 

values were then adjusted for the baseline score using linear regression, as higher baseline scores 

predicted less change (b = -0.91, SE = 0.32, t = -2.88, 95% CI = -1.53 - -0.28, p = 0.005), and 

standardized residuals were used to subdivide participants into placebo responders (scores > 0) 

and non-responders (scores ≤ 0).  
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Lesion analyses 

These analyses aimed to determine whether placebo responders differed from non-

responders in terms of lesion burden, type, and location.  

Lesion segmentation was performed on FLAIR images by a trained radiologist blinded to 

treatment assignment using manual seed point and connected component analysis (McAusland, 

Tam, Wong, Riddehough, & Li, 2010). Lesion load (LL) was calculated as the sum of volumes 

of all FLAIR lesion masks (mm3) for a given patient.  Lesion activity analysis was carried out by 

the same radiologist. Gadolinium enhanced lesions indicating blood brain barrier disruption were 

identified on T1 gadolinium scans. Newly enhancing lesions were counted as lesions that were 

enhanced on the current scan but were not enhancing in previous scans; new and newly enlarging 

lesions on the FLAIR scans were counted as lesions that were respectively absent or stable and 

smaller in volume in previous assessment points; unique newly active lesions were newly 

enhancing lesions and non-enhancing new or newly enlarging lesions on a current scan without 

double counting. Lesion load and its change over the trial’s duration was compared between 

placebo responders and non-responders with a linear mixed-effects model with our standard 

covariates using the lme4 R package (RRID:SCR_015654) (Bates, Mächler, Bolker, & Walker, 

2015). Group differences in lesion counts at each assessment point were analyzed with Poisson 

regressions, as was change in lesion counts over time as a function of group.  

The analysis of lesion location was performed in FSL (Functional MRI of the Brain 

Software Library, http://www.fmrib.ox.ac.uk/fsl, RRID:SCR_002823). Only the lesions 

identified on FLAIR scans were considered for this analysis, as there were too few participants 

with gadolinium enhanced lesions on the baseline scans (four non-responders; six responders, 

Table 4). FLAIR lesions masks were moved into the MNI-152 space, and lesion probability 
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maps were created for the placebo responder and for the placebo non-responder groups by 

averaging the registered binary masks across patients in each group using the fslmaths utility. 

These voxel-wise maps representing the probability of each voxel being lesional were compared 

statistically between the two groups using the Randomise algorithm (Winkler, Ridgway, 

Webster, Smith, & Nichols, 2014), which uses non-parametric permutation inference to 

threshold a voxel-wise statistical map produced, in this case, by voxel-wise unpaired t-tests on 

the two groups.  

MRI processing for brain morphometric and cortical thickness analyses 

 Patients’ normalized brain volumes (parenchymal volume normalized by intracranial 

volume) were computed on T1 MRIs using a segmentation-based approach (Wicks et al., 2015) 

and compared between placebo responders and non-responders using linear regression with our 

standard covariates. Percentage brain volume change was computed using an automated in-house 

method based on parenchymal edge displacement between scans (Smith et al., 2002); change 

over time was compared between responders and non-responders using a linear mixed-effects 

model (lme4 R package).  

Prior to further morphometric analyses, white matter lesions on the patients’ scans were 

filled with intensities of neighboring white matter voxels using the Lesion Filling function in 

FSL (Battaglini, Jenkinson, & De Stefano, 2012). This reduces intensity contrast within lesion 

areas and can improve registration and segmentation of MS brains and resulting morphometric 

measurements (Valverde, Oliver, & Lladó, 2014). Native T1 MRIs were processed through the 

CIVET pipeline (version 2.1) (Zijdenbos, Forghani, & Evans, 2002) housed on the CBRAIN 

web-based image analysis platform (McGill Centre for Integrative Neuroscience, 

RRID:SCR_005513 (Sherif et al., 2014)). The pipeline included the following steps. 1) The 
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native MRIs were registered to standard space using a 9-parameter nonlinear transformation 

(Collins, Neelin, Peters, & Evans, 1994). For the controls, the MNI-152 template was used, 

whereas for the MS patients, a high-resolution Alzheimer’s disease template provided by CIVET 

was used. Because of paraventricular brain atrophy in the MS patients, the AD template 

produced superior registration, and since our hypotheses pertained to the MS groups, we chose to 

use the template that was the most optimal for the patients. Simultaneous non-uniformity 

correction was performed using N3 algorithms (Sled, Zijdenbos, & Evans, 1998). 3) The 

registered corrected images were classified into white matter, gray matter, CSF, and background, 

using an artificial neural network classifier (Zijdenbos et al., 2002). 4) Binary volumes consisting 

of gray matter voxels and white matter voxels were then extracted from classified images, 

smoothed using an 8-mm FWHM smoothing kernel and used in the subsequent voxel-based 

morphometry analyses (see below). 5) Cortical surfaces were extracted from the classified 

images using the Constrained Laplacian Anatomic Segmentation Using Proximities (CLASP) 

surface extraction procedure (Kim et al., 2005)(Macdonald, Kabani, Avis, & Evans, 2000). This 

process generates a triangulated mesh at the interface of gray matter and white matter and 

expands the mesh outwards toward the pial surface. 6) Cortical thickness was measured in native 

space as the distance between corresponding vertices on the inner and outer surfaces of the mesh 

across 40,962 vertices in each hemisphere (Lerch & Evans, 2005). The cortical thickness maps 

were then blurred using a 20 mm surface based kernel (Chung et al., 2003).  Quality control was 

performed using a combination of the CIVET QC tool and visual inspection of the outputs.   

Voxel-based morphometry 

Voxel-based morphometry was conducted on the 8-mm smoothed gray and white matter 

volumes using the PET and VBM module of Statistical Parametric Mapping (SPM 12, 
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RRID:SCR_007037). The grey and white matter volumes were compared using voxel-wise two 

sample t-tests with our standard covariates plus total brain volume. Dimensional associations 

between volumes and the degree of placebo response, represented by the AUC change in 

MSQOL-54 scores adjusted for baseline scores, were also examined using multiple regression 

models with the same covariates. The resulting statistical maps were thresholded using family-

wise error corrected threshold of p = 0.05.  

Vertex-Wise Cortical thickness analysis 

Native-space CT at 40,962  vertices was analyzed statistically using SurfStat 

(http://www.math.mcgill.ca/keith/surfstat/, RRID:SCR_007081), a Matlab toolbox for the 

statistical analysis of surface data with linear mixed effects models and random field theory to 

correct for multiple comparisons in determining vertex and cluster significance (Worsley, 

Andermann, Koulis, Macdonald, & Evans, 1999).  The analyses were performed using 

Matlab17a. We first considered models predicting vertex-wise CT as a function of group 

membership (placebo responder vs. non-responder), adjusting for our standard covariates as well 

as total brain volume and lesion load at baseline: 

CT = β1 + β2 Volume + β3 Age + β4Gender + β5Age*Gender + β6Disease_Duration + β7 Site 

+ β8 LL + β9 Group 

In light of the differential associations of lesion load with cortical thickness in placebo non-

responders and responders (see Results), which may be viewed as violating the assumption of 

homogeneity of regression slopes (Miller & Chapman, 2001), the analysis was performed using 

models with and without lesion load as a covariate, as well as those substituting baseline EDSS 

as a measure of disease burden. As this did not change the results, we report the findings from 

the models with lesion load included as a covariate.  
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We additionally considered whether placebo response as a continuous variable was 

associated with CT. We tested this in a model predicting CT from the AUC measure of change in 

MSQOL-54, our standard covariates, total brain volume and lesion load at baseline and baseline 

MSQOL-54 scores: 

CT = β1 + β2 Volume + β3 Age + β4 Gender + β5 Age*Gender + β6Disease_Duration + β7 

Site + β8 LL + β9 Baseline + β10 Response 

Given our finding of more regular CT graphs in placebo non-responders (see Results), 

which could arise from more coordinated tissue loss in anatomically connected regions owing to 

white matter lesions (He et al., 2009), we examined the associations between CT and lesion load 

in placebo responders versus non-responders. We first tested the significance of the interaction 

between lesion load and group in predicting CT.  

CT = β1 + β2 Volume + β3 Age + β4 Gender + β5 Age*Gender + β6 Disease_Duration + 

β7Site + β8 Responder*LL 

Once the significance of this interaction was established, we analyzed the associations between 

CT and lesion load separately in each group.  

CT = β1 + β2 Volume + β3 Age + β4 Gender + β5 Age*Gender + β6 Disease_Duration + 

β7Site + β8 LL 

Graph theoretical cortical thickness analysis 

Cortical surfaces were parcellated into 78 regions based on Automated Anatomical 

Labeling (AAL) (Tzourio-Mazoyer et al., 2002); subcortical labels were excluded. Mean CT 

values for each participant were extracted for each of the 78 regions. A linear regression was 

performed to adjust these CT values for total brain volume, age, gender and the interaction of age 

and gender for all participants, as well as disease duration, site and lesion load for the MS 
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participants. Again, given differential associations of lesion load with cortical thickness in 

placebo non-responders and responders, the graph theoretical analyses were performed on the 

data both with and without lesion load covaried out, as well as on data adjusting for baseline 

EDSS in place of lesion load as a measure of disease burden. As this did not change the results, 

we report the results adjusted for lesion load. The resulting residuals were substituted for the raw 

cortical thickness values to construct inter-regional correlation matrices for placebo responders, 

non-responders and controls: Rij (i, j =1, 2 ... n, where n is the number of regions). These 

correlation matrices were then used to construct binarized networks and compute graph metrics 

at 30 linearly spaced sparsity thresholds ranging from 0.1 to 0.5. This thresholding approach 

normalizes each group-level graph to have the same number of edges. Using the Brain 

Connectivity Toolbox (RRID:SCR_004841) (Rubinov & Sporns, 2010) in Matlab2017a, we 

computed the following graph metrics: the clustering coefficient and its normalized version, the 

characteristic pathlength and its normalized version and the small-world index (Table 2).  

Table 2. Graph theory metrics. 

Term Description Computation 

Clustering 

coefficient 

A fraction of a node’s neighbors that are also 

neighbours of each other; a measure of clustered 

connectivity around individual nodes.  

In the context of CT networks, it reflects uniformity 

of CT with respect to individual nodes. 

𝐶 =
1

𝑛
∑𝐶𝑖
𝑖∈𝑛

=
1

𝑛
∑

2𝑡𝑖
𝑘𝑖(𝑘𝑖 − 1)

𝑖∈𝑛

 

 

n = the total number of nodes  

Ci = the clustering coefficient of node i  

 ki = the degree of node i  

Ci = 0 for ki <2 
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Normalized 

clustering 

coefficient 

Ratio of the mean clustering coefficient C and 

normalization factor Crnad computed as the mean 

clustering coefficient of 10 random networks (see 

below) with the same number of nodes and edges as 

the tested input network 

𝐶𝑛𝑜𝑟𝑚 =
𝐶

𝐶𝑟𝑎𝑛𝑑
 

Characteristic 

pathlength 

A measure of network integration representing the 

number of edges typically required to connect pairs 

of nodes in the network.  

In the context of CT networks, path length 

represents the number of required indirect 

correlations surpassing the sparsity threshold. 

𝐿 =
1

𝑛
∑𝐿𝑖
𝑖∈𝑁

=
1

𝑛
∑

∑ 𝑑𝑖𝑗
−1

𝑗∈𝑁.𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁

 

 

Li = the average distance between node i 

and all other nodes  

dij = the distance from node i to node j 

Normalized 

pathlength 

The ratio of characteristic path length L and a 

normalization factor Lrnad based on 10 random 

networks, as described above 

𝐿𝑛𝑜𝑟𝑚 =
𝐿

𝐿𝑟𝑎𝑛𝑑
 

Small-world 

index 

Describes a topology featuring numerous short-

range connections with an admixture of few long-

range connections; balances specialized and 

distributed processing while minimizing wiring 

costs. Small-world networks lie on a continuum 

between regular networks, in which each node has 

the same number of edges, and random networks, 

in which nodes are connected to other nodes with a 

random probability. 

𝑆 =
𝐶 𝐶𝑟𝑎𝑛𝑑⁄

𝐿 𝐿𝑟𝑎𝑛𝑑⁄
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Leave-one-out cross-validation was performed to estimate the stability of the graph 

metrics, and error estimates from these cross validations were used to visualize group differences 

(Figure 2). Statistical significance of these differences was evaluated against null distributions of 

group differences on the metrics based on 1000 random permutations of participants in the input 

matrix. A Bonferroni correction for multiple comparisons was applied: considering three graph 

metrics (clustering coefficient, pathlength and small-world index) the α-level was determined to 

be 0.016. Because normalized and non-normalized variants of clustering coefficient and 

pathlength are redundant measures, these were not considered as separate comparisons. 

 

Data Availability 

Data and analysis code are available upon request. 

RESULTS 

Placebo responders and non-responders did not differ significantly on any demographic 

or clinical characteristics (Table 3). The proportion of placebo responders vs. non-responders did 

not differ as a function of recruitment site. As expected, the two groups had markedly different 

subjective treatment response (Figure 1A). 

Table 3. Demographic and clinical characteristics of placebo responders and non-responders. 
 Non-responder 

(n = 45) 

Responder 

(n = 43) 

p 

Venoplasty, n 24 18 

0.19 

Sham, n 21 25 

Males, n 18 13 

0.24 

Females, n 27 30 

Age, mean (SD) 55.0 (7.4) 53.0 (8.5) 0.26 
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Disease duration, mean (SD) 18.8 (9.6) 16.7 (8.1) 0.29 

MS type (n)    

        RRMS 25 30 

0.35         PPMS 6 3 

        SPMS 14 10 

Baseline EDSS, median (range) 4.0 (0-6.5) 4.0 (0-6.5) 0.09 

Baseline MSFC, mean (SD) 7.2 (6.2) 8.9 (4.9) 0.17 

        25 foot walk, mean (SD) 15.80 (12.15) 11.87 (7.24) 0.07 

        9 hole peg test, mean (SD) 108.50 (49.73) 94.41 (36.04) 0.13 

        PASAT, mean (SD) 37.53 (14.70) 38.63 (14.97) 0.73 

Baseline MSQOL-54 PH 55.54 (21.57) 56.96 (18.79) 0.74 

RRMS = remitting relapsing MS; PPMS = primary progressive MS; SPMS = secondary 

progressive MS; EDSS = Expanded Disability Status Scale; MSFC = Multiple Sclerosis 

Functional Composite; PASAT = Paced Auditory Serial Addition Test; MSQOL-54 PH = 

Multiple Sclerosis Quality of Life – 54, Physical Health Composite. For MSFC, raw scores 

rather than z-scores are given. 

 

Placebo responders and non-responders did not differ in terms of normalized brain 

volumes at baseline or percent brain volume change over the 48 weeks, although there was 

progressive atrophy in both groups (b = -0.31, SE = 0.09, t = -3.45, p = 0.0009). Voxel-based 

morphometry did not reveal any significant group differences in regional grey or white matter 

volume. Although there were no significant group differences in regional CT, there was a 

significant dimensional association between the magnitude of placebo response and CT of a left 

precuneus region (x = -3.16, y = -70.12, z = 37.10; Figure 3A). 

Placebo Responders Have Higher Lesion Activity 

 Although most patients did not have gadolinium enhanced lesions, there were significant 

differences in lesion activity between the groups (Table 4). Placebo responders were more likely 
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to display gadolinium enhanced lesions at baseline (b = 1.26, SE = 0.46, z = 2.73, p = 0.006) and 

to have newly enhancing lesions at 24 weeks (b = 1.26, SE = 0.42, z = 3.01, p = 0.003) and at 48 

weeks (b = 1.77, SE = 0.51, z = 3.43, p = 0.0006). A similar pattern was evident for new lesions  

on FLAIR scans at both 24 (b = 1.11, SE = 0.33, z = 3.34, p = 0.0008) and 48 weeks (b = 1.57, 

SE = 0.40, z = 3.97, p = 0.00007) and for new active lesions that were not present on previous 

gadolinium T1 scans, both at 24 (b = 1.24, SE = 0.27, z = 4.52, p=0.000006) and 48 weeks (b = 

1.54, SD = 0.36, z=4.25, p = 0.00002). The incidence of enlarging lesions was also higher in the 

placebo responders at 24 weeks (b = 2.61, SE = 0.75, z = 3.49, p = 0.0005), though not at 48 

weeks (p = 0.14).  

There was no significant change in lesion counts over the trial’s duration, and this did not 

differ as a function of group (ps ≥ 0.2). There were no significant differences between placebo 

responders and non-responders in lesion load either at baseline or at 24-week and 48-week 

follow-up points (ps ≥ 0.78), and there was no significant increase in lesion load over the 48 

weeks (p = 0.11). There were also no significant differences in lesion locations (Figure 3B; 

supporting 3D movie). 

Table 4. Brain morphometric characteristics and lesions 

Measure (SD) Non-responder (n = 45) Responder (n = 43) p 

Normalized brain parenchymal 

fraction (baseline) 

0.75 (0.03) 0.77 (0.03) 0.39 

% Change in brain volume 

from baseline 

   

24 weeks -0.40 (0.50) -0.43 (0.38) 0.78 

48 weeks -0.70 (0.60) -0.61 (0.61) 0.65 

WM lesion load (mm3)    
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Baseline 12031.63 (12002.73) 12269.53 (14538.12) 0.78 

24 weeks 12681.97 (12185.17) 12581.44 (14527.14) 0.92 

48 weeks 12792.65 (11875.89) 12907.21 (14698.09) 0.87 

New T2 lesions (# of patients 

with lesion count) 

W24 W48 W24 W48 

 

0 36 36 35 33 

< 0.001** 

1 4 5 3 4 

2 3 0 1 3 

3 0 2 0 1 

5 1 0 0 0 

6 0 0 1 0 

7 0 0 0 1 

8 0 0 2 0 

9 0 0 1 0 

11 0 0 0 1 

Unique newly active lesions (# 

of patients with lesion count) 

BL W24 W48 BL W24 W48 

 

0 40 33 36 33 34 33 

 < 0.0005*** 

1 1 6 5 3 2 3 

2 3 4 0 2 2 3 

3 0 0 1 2 1 1 

4 0 0 0 1 0 0 

5 0 0 1 0 0 0 

6 0 1 0 0 1 1 

7 0 0 0 1 0 0 

8 0 0 0 0 1 1 

11 0 0 0 0 0 1 

15 0 0 0 0 1 0 
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22 0 0 0 0 1 0 

Newly enhancing lesions (# of 

patients with lesion count) 

BL W24 W48 BL W24 W48 

 

       0 40 36 38 33 36 34 

 

 

 

< 0.01* 

       1 1 6 4 3 4 5 

       2 3 2 1 2 0 0 

3 0 0 0 2 1 2 

4 0 0 0 1 0 0 

5 0 0 0 0 0 2 

6 0 0 0 0 1 0 

7 0 0 0 1 0 0 

Newly enlarging T2 lesions (# 

of patients with lesion count) 

W24 W48 W24 W48 

 

0 42 42 38 38 

W24: 0.0005*** 

W48: 0.14 

1 2 0 2 4 

2 0 1 1 1 

7 0 0 1 0 

13 0 0 1 0 

BL = baseline; W24 = 24 weeks assessment point; W48 = 48 weeks assessment point; WM = 

white mater. P-values represent comparisons between placebo responders and non-responders for 

corresponding assessment points. The models include age, gender, age x gender interaction, 

disease duration and site as terms. 

 

Placebo Non-Responders Have a More Homogenous and Small-World-Like CT Covariance 

Pattern 

 Group differences in the metrics presented below were consistent over the range of 

sparsity thresholds (10%-50% sparsity). As input matrices are not stable at low sparsity, which 
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results in high error estimates, we chose a relatively high sparsity threshold of 43% yielding 

stable input matrices for presenting the results of random permutation tests. P-values for the 

entire range of sparsity thresholds are presented as supporting information (Table S1–S5); 

similar p-values were seen at most sparsity thresholds. 

CT of placebo non-responders was more regionally homogeneous (range r: 0.1 to 0.95, 

median r: 0.66) relative to that of responders (range rs: -0.15 to 0.95, median r: 0.49) and controls 

(range rs: -0.22 to 0.92, median r: 0.41, Figure 2A, B). Placebo responders did not differ 

significantly from controls on the computed metrics (ps ≥ 0.29). Uncorrected results showed that 

non-responders had a more segregated network topology with higher mean and normalized 

clustering coefficients (non-responders vs. responders: p = 0.02; non-responders vs. controls: p = 

0.01). Non-responders also had marginally shorter pathlengths relative to responders (p = 0.06) 

and controls (ps < 0.04). This resulted in stronger small-world attributes for non-responders 

relative to responders and controls (ps = 0.01), indicating a shift towards more regular and less 

random graphs. The group differences in small world index and the difference between non-

responders and controls in clustering coefficient survived the correction for multiple 

comparisons. 

Lesion Load Inversely Predicts CT Only in Placebo Non-Responders 

Although lesion load and location did not differ significantly between responders and 

non-responders, there was a significant difference between the groups in the association between 

CT and lesion load. While there was no relationship between lesion load and CT in responders, 

in non-responders, greater lesion load was associated with cortical thinning in 9 clusters (Figure 

3C, D, Table 5). The clusters covered a substantial portion of the right hemisphere including 

parts of the primary motor and sensory cortices as well as the premotor cortex and 
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Figure 2. Cortical thickness covariance patterns of in placebo 
responders and non-responders: graph theoretical analysis
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D.

p=0.02

p=0.06

p=0.01

(A) Correlation matrices of cortical thickness values across 78 cortical areas 

delineated using Automated Anatomical Labeling (AAL) in placebo non-

responders (NR), placebo responders (R), and a group of healthy age- and 

gender-matched controls (HC). (B) A histogram depicting distributions of 

correlation coefficients in placebo responders and non-responders. (C) 

Backbone structure for correlation matrices in A at the sparsity threshold of 

0.43. (D) Graph theoretical characteristics of these matrices across the range 

of sparsity thresholds from 0.1 to 0.5. Error ribbons represent standard 

deviation for parameter estimates from leave-one-out cross-validation. Box 

plots represent group comparisons at the sparsity threshold of 0.43 based on 

leave-one-out cross-validations; histograms represent the p-values based on 

permutation tests at the sparsity threshold of 0.43. 
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somatosensory, visual and auditory association areas. The major clusters included: the primary 

motor cortex, comprising both the paracentral lobule and the precentral gyrus and extending into 

the premotor cortex (middle frontal gyrus, Brodmann area BA 6) and the insula; primary 

somatosensory cortex (postcentral gyrus, BA 3) extending to the superior parietal lobule and the 

precuneus; superior occipital gyrus (BA 19) extending to middle temporal gyrus (BA 39); middle 

temporal gyrus (BA 21) extending to inferior temporal gyrus (BA 20). There were also smaller 

primary motor and superior occipital clusters in the left hemisphere.  

Table 5: Regions where cortical thickness was predicted by lesion load in placebo non-

responders. 
Cluster # vertices Peak x y z t p 

Right superior and medial 

frontoparietal 

p < 0.00005 

4080 

Medial frontal gyrus (R) 4.30 -24.62 57.64 5.22 0.008 

Superior parietal lobule (R) 28.69 -57.71 52.84 5.03 0.013 

Precuneus (R) 13.35 -66.54 32.83 4.96 0.015 

Middle occipital gyrus (R) 44.45 -77.33 22.46 4.83 0.021 

Postcentral gyrus (R) 11.82 -59.08 69.79 4.75 0.027 

Paracentral lobule (R) 13.69 -41.22 58.15 4.56 0.043 

Right precentral gyrus / insula 

p < 0.00005 

3026 

Precentral gyrus (R) 52.78 -6.92 10.30 5.32 0.006 

Insula (R) 39.91 -0.08 16.26 5.21 0.008 

Left parahippocampal gyrus  

p < 0.00005 

383 Parahippocampal gyrus (L) -12.13 -9.54 -12.02 5.41 0.005 

Right inferior temporal gyrus 

p = 0.0002 

1220 Inferior temporal gyrus (R) 59.56 -7.57 -28.66 4.51 0.05 

Right parahippocampal gyrus 

p = 0.0005 

335 Parahippocampal gyrus (R) 15.12 -12.79 -11.08 4.82 0.02 

Left lingual gyrus 

p = 0.01 

246 - -16.26 -93.19 -12.51 3.14 - 
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Right lingual gyrus 

p = 0.02 

311 - 10.08 -72.09 -4.17 4.03 - 

Left precentral gyrus 

p = 0.03 

385 - -14.29 -19.43 70.91 4.12 - 

Left superior parietal lobule 

p = 0.03 

329 - -31.33 -70.83 47.50 3.64 - 

Significance thresholds for vertices and clusters of contiguous vertices and are determined using 

Random Field Theory; corrected p-values are given. Due to some of the clusters being extensive, 

the coordinates (in MNI space) are given for either peak vertices for clusters featuring such 

peaks (labeled in hot colors on Figure 3). For smaller clusters without peaks, average cluster 

coordinates are provided. 

 

DISCUSSION 

We examined neural correlates of placebo responses to an ineffective invasive procedure, 

which nonetheless inspired hope in patients, driving many to pursue it despite the potential risks. 

Our findings revealed significant structural brain differences between the MS patients who 

experienced these real-world placebo responses and those who did not. These findings advance 

our understanding of both the neurobiology of placebo responses and of how the 

neuropathological changes in MS impact the propensity to experience them.  

While placebo responders and non-responders did not differ significantly in terms of 

clinical characteristics, lesion load, lesion location, brain volume or regional cortical thickness, 

the groups differed significantly in terms of their CT covariance patterns. Relative to placebo 

responders, non-responders had more uniform CT across different brain regions with a more 

segregated and clustered topology. Coupled with marginally shorter pathlengths, this resulted in 

stronger small-world attributes, indicating a shift towards more regular and less random graphs. 

While a more regular network may be associated with smaller wiring costs, potentially imposed 
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Figure 3. Cortical thickness, white matter lesions and placebo response

D.

B.

C.

A. (A) Precuneus region whose thickness 

dimensionally predicts a stronger placebo 

response as depicted in the scatterplot. (B) 

Lesion probability maps in placebo 

responders (red) and non-responders (blue): 

no significant differences in lesion location 

between groups. (C) Cortical areas whose 

thickness was significantly associated with 

lesion load in the placebo non-responders. 

(D) Mean cortical thickness of the regions 

shown in relation to white matter lesion load 

(FLAIR) in the placebo responders (red) and 

non-responders (blue). A mask of the 

regions shown in A was used to extract 

mean CT values across these regions for all 

participants.
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by axonal loss in MS, this type of network may be less capable of distributed processing and 

functional integration. The absence of differences between responders and controls, suggests that 

the more segregated and regular topology observed in non-responders is anomalous. 

Previous studies have suggested that CT covariance networks in MS are characterized by 

increased segregation with an enhancement of local properties, as well as a shift towards more 

regular networks in advanced disease (Fleischer et al., 2019)(Muthuraman et al., 2016)(He et al., 

2009)(Tewarie et al., 2014). Convergent findings have emerged from studies of DTI-based 

structural networks (Fleischer et al., 2017) (Shu et al., 2011) and MEG-based functional 

connectivity in MS patients (Tewarie et al., 2014). Together, the evidence points to a 

pathological shift towards more segregated and regular networks in MS, and our findings suggest 

that the MS patients who experience these shifts may also lose their capacity to experience 

placebo effects. It follows that placebo responses may require a cortical network topology that 

favours distributed processing and functional integration.   

One interpretation of our findings is that in placebo non-responders, the disease process 

may have resulted in more synchronized cortical tissue loss across different brain regions leading 

to increasingly correlated cortical thickness values. This interpretation is supported by the 

associations we found between lesion load and regional CT in placebo non-responders only. 

Although white matter demyelination is thought to drive neuronal degeneration in MS, there is 

evidence that the two can occur independently, and laminar contributions to cortical neuronal 

loss (and hence thinning) may differ depending on whether it is related to versus independent 

from white matter demyelination (Trapp et al., 2018). In the non-responders, lesion load 

significantly predicted cortical thinning in a substantial portion of the right hemisphere, 

including primary sensory and motor areas and somatosensory, visual and auditory association 
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areas. Together with precuneus and insula, association areas have been identified as hubs by 

graph theoretical studies of structural connectivity (van den Heuvel & Sporns, 2013). Insults to 

these hubs and their connections are likely to result in changes in network organization with 

major implications for functional integration of neural activity (Gratton, Nomura, Pérez, & 

D’Esposito, 2012) (Crossley et al., 2014). Synchronous loss of neurons in these regions and of 

projections between them could impair associative processes enabling placebo responses, such as 

integrating interoceptive appraisals with expectancy of therapeutic benefit. Precuneus and insula, 

which are key structures for self-referential thinking and interoceptive awareness, may play a 

central role in such expectancy-informed appraisals. Loss of projections between these regions 

and shared deep nuclei could also result in an organization increasingly dependent on local 

connections. 

Although the causes of the differential associations between CT and lesion load in 

placebo responders versus non-responders remain undetermined, lesion characteristics may play 

a role. Cortical grey matter loss in MS may arise from a combination of primary pathological 

processes and secondary effects of white matter damage. Regarding the latter, chronic inactive 

lesions are more likely to be associated with axonal degeneration (Mahad et al., 2015). Although 

both placebo responders and non-responders had relatively advanced disease (10-20 years, 

median EDSS of 4.0), at which point most lesions are inactive (Frischer et al., 2015), and 

gadolinium enhancing lesions were observed in a minority of patients, responders had a 

significantly higher incidence of active lesions. The same subset of patients also had more 

lesions that became enlarged at 24 or 48 weeks relative to baseline, suggesting either expanding 

inflammatory activity or slowly expanding “smoldering” lesions (Frischer et al., 2015). Based on 

this, and given equivalent lesion load in the two groups, it is plausible that placebo non-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 21, 2020. ; https://doi.org/10.1101/825638doi: bioRxiv preprint 

https://doi.org/10.1101/825638


 

 

 

27 
 

responders had a higher proportion of inactive lesions, more likely to be chronic and to reflect 

axonal loss potentially driving synchronized loss of cortical tissue. In addition, the absence of 

active inflammation in non-enhanced lesions may have caused their volume to be reduced 

compared to that of active lesions, resulting in an apparently smaller lesion load. Lesion location, 

on the other hand, did not drive differential associations between lesion load and CT, as lesion 

maps did not differ between responders and non-responders. 

Whether the network characteristics we observed to be associated with the absence of 

placebo response would generalize to other types of placebo responses or other patient groups 

remains to be determined. This could be tested by applying graph theoretical analysis in future 

studies of the neural mechanisms of placebo responses or to existing published datasets. Thus 

far, graph theory has seldom been used to study neural correlates of placebo responses. We are 

aware of only one study using graph theory metrics of DTI-based structural networks to predict 

placebo response in migraine patients (Liu et al., 2017). In that study, increased global and local 

efficiency at baseline inversely predicted placebo analgesic response to sham acupuncture, which 

is broadly consistent with our findings.  

Our study had several limitations. First, to maximize sample size, sham and venoplasty 

participants were combined under the reasonable assumption that both interventions were 

effectively sham, considering that venoplasty for MS had a questionable scientific rationale and 

was found ineffective in two independent trials. Indeed, the responder group included non-

significantly more sham participants (Table 3). Moreover, supplementary analyses performed 

separately in sham and venoplasty groups yielded similar trends (Supporting information, Tables 

S4-S5), highlighting the robustness of the differences in CT networks between responders and 

non-responders. We consider the findings from the full sample more likely to be reliable. 
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Second, we excluded some patients due to poor MRI quality. Third, the control scans were 

acquired on a different scanner than the patient scans, which could have introduced a bias. 

However, the primary comparisons were between the two patient groups, and the control group 

was used to provide a benchmark for interpreting the graphs derived from the placebo responder 

and non-responder groups. Fourth, responders and non-responders were identified based on 

subjective self-report of health-related quality of life. Hence, our findings may not generalize to 

placebo responses manifesting as more objective clinical improvement, which we did not 

observe in the trial (Traboulsee et al., 2018). However, even subjective placebo responses can be 

quite compelling for the patients: in the case of venoplasty, they may have contributed to fueling 

the efforts of patient advocacy groups to legitimize the procedure in the face of skepticism from 

the scientific community (Paylor et al., 2014). Fifth, in a trial with a 48-week follow-up, placebo 

response is necessarily confounded with the natural course of the disease including relapses, 

remissions and regression to the mean. We consider substantial effects of such confounds 

unlikely because 1) we adjusted our measure of placebo response for baseline scores to minimize 

the impact of regression to the mean; and 2) the incidence of active lesions did not change in 

either group over the course of the trial, making it unlikely that placebo response was driven by 

remissions. The latter is further supported by the absence placebo response on more objective 

clinician-rated measures, such as the EDSS. Finally, our graph theoretical analysis was based on 

cortical thickness covariance patterns, which do not represent either true structural connectivity 

or a direct measure of functional connectivity. Rather, they are thought of as an indirect 

reflection of functional connectivity between brain regions. Resting state fMRI data could have 

provided valuable direct information regarding functional connectivity differences between 

placebo responders and non-responders. Unfortunately, no resting state sequences were collected 
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as part of this trial. Although DTI sequences were available, DTI as measure of structural 

connectivity is problematic in advanced MS, as white matter lesions present a challenge for tract 

identification. 

In conclusion, our findings demonstrate that the absence of placebo response in MS is 

associated with 1) a more regular and segregated CT topology, 2) cortical tissue loss related to 

white matter pathology, and 3) lower lesion activity. Considering that placebo response is a 

constituent of active therapeutic response, these morphometric characteristics may by extension 

predict responses to active therapies. Finally, our findings highlight graph theory as a promising 

tool for future studies of the neurobiology of placebo responses.  
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FIGURE LEGENDS 

Figure 1: Method overview 

Figure 2. Cortical thickness covariance patterns in placebo responders and non-responders: graph 

theoretical analysis  

(A) Correlation matrices of cortical thickness values across 78 cortical areas delineated using 

Automated Anatomical Labeling (AAL) in placebo non-responders (NR), placebo responders 

(R), and a group of healthy age- and gender-matched controls (HC). (B) A histogram depicting 

distributions of correlation coefficients in placebo responders and non-responders. (C) Backbone 

structure for correlation matrices in A at the sparsity threshold of 0.43. (D) Graph theoretical 

characteristics of these matrices across the range of sparsity thresholds from 0.1 to 0.5. Error 

ribbons represent standard deviation for parameter estimates from leave-one-out cross-validation. 

Box plots represent group comparisons at the sparsity threshold of 0.43 based on leave-one-out 

cross-validations; histograms represent the p-values based on permutation tests at the sparsity 

threshold of 0.43.  

Figure 3: Cortical thickness, white matter lesions and placebo response 

(A) Precuneus region whose thickness dimensionally predicts a stronger placebo response as 

depicted in the scatterplot. (B) Lesion probability maps in placebo responders (red) and non-

responders (blue): no significant differences in lesion location between groups. (C) Cortical areas 

whose thickness was significantly associated with lesion load in the placebo non-responders. (D) 

Mean cortical thickness of the regions shown in relation to white matter lesion load (FLAIR) in 

the placebo responders (red) and non-responders (blue). A mask of the regions shown in A was 

used to extract mean CT values across these regions for all participants. 
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Table S1. Permutation test p-values for placebo responders versus non-responders at 

different sparsity thresholds. 

Sparsity 
threshold 

Mean 
clustering 
coefficient 

Normalized 
clustering 
coefficient 

Characteristic 
pathlength 

Normalized 
pathlength 

Small 
world 
index 

0.10 0.00* 0.02* 0.06† 0.06† 0.01* 

0.11 0.01* 0.03* 0.021* 0.02* 0.00* 

0.13 0.02* 0.02* 0.51 0.50 0.21 

0.14 0.04* 0.03* 0.54 0.53 0.20 

0.16 0.04* 0.06† 0.52 0.52 0.14 

0.17 0.07† 0.04* 0.46 0.46 0.07† 

0.18 0.07† 0.06† 0.39 0.39 0.04* 

0.20 0.13 0.19 0.40 0.40 0.09† 

0.21 0.05* 0.07† 0.40 0.40 0.03* 

0.22 0.03* 0.04* 0.31 0.31 0.01* 

0.24 0.03* 0.03* 0.25 0.24 0.01* 

0.25 0.04* 0.03* 0.22 0.22 0.01* 

0.27 0.04* 0.04* 0.21 0.21 0.01* 

0.28 0.02* 0.02* 0.19 0.19 <0.001* 

0.29 0.02* 0.02* 0.16 0.16 <0.001* 

0.31 0.02* 0.03* 0.15 0.15 <0.001* 

0.32 0.02* 0.02* 0.12 0.12 <0.001* 

0.33 0.02* 0.02* 0.11 0.11 0.01* 

0.35 0.03* 0.02* 0.10 0.10 0.01* 

0.36 0.02* 0.02* 0.09† 0.09† 0.01* 

0.38 0.02* 0.02* 0.08† 0.08† 0.01* 

0.39 0.02* 0.02* 0.07† 0.07† 0.01* 

0.40 0.02* 0.02* 0.07† 0.07† 0.01* 

0.42 0.02* 0.02* 0.06† 0.06† 0.01* 

0.43 0.02* 0.02* 0.06† 0.06† 0.01* 

0.44 0.02* 0.02* 0.05† 0.05† 0.01* 

0.46 0.02* 0.03* 0.05† 0.05† 0.03* 

0.47 0.05* 0.04* 0.05† 0.05† 0.03* 

0.49 0.05* 0.05* 0.05† 0.05† 0.04* 

0.50 0.03* 0.03* 0.05† 0.06† 0.03* 
 

*p ≤ 0.05; †p ≤ 0.1 
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Table S2. Permutation test p-values for controls versus placebo non-responders at 

different sparsity thresholds. 

Sparsity 
threshold 

Mean 
clustering 
coefficient 

Normalized 
clustering 
coefficient 

Characteristic 
pathlength 

Normalized 
pathlength 

Small 
world 
index 

0.10 0.09† 0.05* 0.06† 0.08† 0.03* 

0.11 0.06† 0.05* 0.49 0.06† 0.01* 

0.13 0.07† 0.23 0.50 0.49 0.41 

0.14 0.08† 0.14 0.49 0.50 0.34 

0.16 0.15 0.15 0.50 0.49 0.28 

0.17 0.11 0.12 0.40 0.50 0.23 

0.18 0.11 0.09† 0.42 0.40 0.10 

0.20 0.11 0.14 0.40 0.42 0.09† 

0.21 0.04* 0.07† 0.35 0.40 0.04* 

0.22 0.05* 0.03* 0.32 0.35 0.02* 

0.24 0.05* 0.05† 0.31 0.32 0.02* 

0.25 0.05* 0.05† 0.25 0.31 0.02* 

0.27 0.04* 0.03* 0.20 0.26 0.01* 

0.28 0.04* 0.05* 0.18 0.20 0.02* 

0.29 0.06† 0.08† 0.17 0.18 0.02* 

0.31 0.06† 0.05† 0.14 0.17 0.02* 

0.32 0.04* 0.05* 0.11 0.14 0.02* 

0.33 0.05* 0.04* 0.11 0.11 0.02* 

0.35 0.06† 0.06† 0.08† 0.11 0.03* 

0.36 0.04* 0.05* 0.06† 0.08† 0.02* 

0.38 0.04* 0.03* 0.05* 0.06† 0.02* 

0.39 0.02* 0.03* 0.05* 0.05† 0.02* 

0.40 0.02* 0.02* 0.05* 0.05* 0.02* 

0.42 0.01* 0.01* 0.04* 0.05* 0.01* 

0.43 0.01* 0.01* 0.03* 0.04* 0.01* 

0.44 0.01* 0.01* 0.03* 0.03* 0.01* 

0.46 0.01* 0.01* 0.03* 0.03* 0.01* 

0.47 0.02* 0.02* 0.03* 0.03* 0.02* 

0.49 0.02* 0.02* 0.03* 0.03* 0.02* 

0.50 0.02* 0.02* 0.07† 0.03* 0.02* 

 
*p ≤ 0.05; †p ≤ 0.1 
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Table S3. Permutation test p-values for controls versus placebo responders at different 

sparsity thresholds. 

Sparsity 
threshold 

Mean 
clustering 
coefficient 

Normalized 
clustering 
coefficient 

Characteristic 
pathlength 

Normalized 
pathlength 

Small 
world 
index 

0.10 0.83 0.50 0.26 0.27 0.35 

0.11 0.66 0.54 0.48 0.49 0.51 

0.13 0.67 0.63 0.41 0.43 0.55 

0.14 0.57 0.59 0.44 0.42 0.53 

0.16 0.71 0.73 0.43 0.43 0.65 

0.17 0.59 0.69 0.58 0.57 0.71 

0.18 0.60 0.62 0.38 0.39 0.52 

0.20 0.39 0.43 0.38 0.37 0.36 

0.21 0.39 0.42 0.38 0.38 0.37 

0.22 0.51 0.53 0.42 0.42 0.48 

0.24 0.45 0.54 0.47 0.47 0.51 

0.25 0.41 0.38 0.52 0.53 0.42 

0.27 0.40 0.40 0.45 0.45 0.40 

0.28 0.59 0.56 0.43 0.43 0.50 

0.29 0.65 0.61 0.43 0.43 0.55 

0.31 0.62 0.55 0.42 0.42 0.49 

0.32 0.55 0.51 0.45 0.45 0.48 

0.33 0.43 0.48 0.43 0.43 0.45 

0.35 0.47 0.45 0.43 0.43 0.44 

0.36 0.46 0.46 0.40 0.40 0.42 

0.38 0.42 0.42 0.39 0.39 0.40 

0.39 0.34 0.33 0.41 0.41 0.36 

0.40 0.33 0.33 0.40 0.40 0.35 

0.42 0.30 0.31 0.40 0.40 0.34 

0.43 0.30 0.33 0.39 0.39 0.35 

0.44 0.30 0.33 0.38 0.38 0.34 

0.46 0.29 0.29 0.37 0.37 0.32 

0.47 0.28 0.28 0.35 0.35 0.31 

0.49 0.27 0.26 0.35 0.35 0.30 

0.50 0.31 0.32 0.34 0.34 0.33 

 
*p ≤ 0.05; †p ≤ 0.1 
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Table S4. Permutation test p-values for placebo responders versus non-responders 

including only sham-treated participants at different sparsity thresholds. 

Sparsity 
threshold 

Mean 
clustering 
coefficient 

Normalized 
clustering 
coefficient 

Characteristic 
pathlength 

Normalized 
pathlength 

Small 
world 
index 

0.10 0.01* 0.02* 0.82 0.83 0.33 

0.11 0.01* 0.01* 0.84 0.85 0.27 

0.13 <0.00* <0.00* 0.83 0.83 0.12 

0.14 <0.00* 0.01* 0.86 0.86 0.16 

0.16 0.01* 0.02* 0.93 0.93 0.35 

0.17 <0.001* <0.001* 0.91 0.91 0.16 

0.18 <0.001* <0.001* 0.79 0.79 0.05* 

0.20 <0.001* <0.001* 0.73 0.73 0.03* 

0.21 <0.001* <0.001* 0.74 0.74 0.03* 

0.22 0.03* 0.04* 0.68 0.68 0.10 

0.24 0.04* 0.04* 0.65 0.65 0.08† 

0.25 0.04* 0.04* 0.59 0.58 0.07† 

0.27 0.06† 0.10* 0.59 0.59 0.11 

0.28 0.06† 0.08† 0.55 0.55 0.10 

0.29 0.06† 0.05* 0.45 0.45 0.06† 

0.31 0.08† 0.07† 0.43 0.43 0.08† 

0.32 0.07† 0.07† 0.39 0.39 0.08† 

0.33 0.05* 0.06† 0.42 0.42 0.07† 

0.35 0.05* 0.05* 0.36 0.36 0.07† 

0.36 0.03* 0.03* 0.27 0.27 0.04* 

0.38 0.04* 0.04* 0.26 0.26 0.04* 

0.39 0.04* 0.04* 0.25 0.25 0.06† 

0.40 0.04* 0.04* 0.25 0.25 0.06† 

0.42 0.05* 0.05* 0.23 0.23 0.07† 

0.43 0.06† 0.06† 0.24 0.24 0.08† 

0.44 0.06† 0.07† 0.24 0.24 0.09† 

0.46 0.07† 0.07† 0.23 0.23 0.09† 

0.47 0.08† 0.09† 0.22 0.22 0.11 

0.49 0.11 0.11 0.22 0.22 0.13 

0.50 0.13 0.12 0.22 0.22 0.15 

 
*p ≤ 0.05; †p ≤ 0.1; sham responders: n = 25; sham non-responders: n = 21 
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Table S5: Permutation test p-values for placebo responders versus non-responders 

including only venoplasty-treated participants at different sparsity thresholds. 

Sparsity 
threshold 

Mean 
clustering 
coefficient 

Normalized 
clustering 
coefficient 

Characteristic 
pathlength 

Normalized 
pathlength 

Small 
world 
index 

0.10 0.28 0.31 <0.001* <0.001* <0.001* 

0.11 0.40 0.49 0.07† 0.08† 0.07† 

0.13 0.33 0.20 0.03* 0.03* 0.02* 

0.14 0.32 0.34 0.04* 0.04* 0.04* 

0.16 0.53 0.50 0.01* 0.01* 0.06† 

0.17 0.42 0.43 0.02* 0.02* 0.06† 

0.18 0.33 0.32 0.10† 0.10† 0.09† 

0.20 0.30 0.17 0.17 0.17 0.09† 

0.21 0.29 0.21 0.19 0.19 0.12 

0.22 0.26 0.34 0.18 0.18 0.17 

0.24 0.33 0.34 0.08† 0.08† 0.13 

0.25 0.22 0.21 0.13 0.13 0.10 

0.27 0.19 0.22 0.10† 0.10† 0.11 

0.28 0.16 0.16 0.09† 0.09† 0.08† 

0.29 0.13 0.13 0.09† 0.09† 0.07† 

0.31 0.13 0.12 0.07† 0.07† 0.06† 

0.32 0.12 0.15 0.06† 0.06† 0.08† 

0.33 0.12 0.10† 0.06† 0.06† 0.06† 

0.35 0.11 0.12 0.06† 0.06† 0.07† 

0.36 0.11 0.10† 0.05* 0.05* 0.06† 

0.38 0.11 0.10† 0.04* 0.04* 0.06† 

0.39 0.10† 0.08† 0.04* 0.04* 0.05† 

0.40 0.06† 0.09† 0.05* 0.05* 0.05† 

0.42 0.06† 0.06† 0.05* 0.05* 0.05* 

0.43 0.07† 0.06† 0.05* 0.05* 0.05* 

0.44 0.06† 0.06† 0.05* 0.05* 0.05* 

0.46 0.06† 0.06† 0.04* 0.05* 0.04* 

0.47 0.07† 0.07† 0.04* 0.04* 0.05* 

0.49 0.07† 0.07† 0.04* 0.04* 0.05* 

0.50 0.06† 0.06† 0.04* 0.04* 0.04* 
 

*p ≤ 0.05; †p ≤ 0.1; venoplasty responders: n = 18; venoplasty non-responders: n = 24 
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