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Abstract 9 

1. Photographic identification is an essential research and management tool for studying 10 

population size and dynamics of common bottlenose dolphins (Tursiops truncatus). 11 

Photographic identification involves recognizing individuals based on unique dorsal fin 12 

markings.  Manual identification of dolphins, while successful, is labor-intensive and 13 

time-consuming. To shorten processing times, we developed a series of neural networks 14 

that finds fins, assesses their unique characteristics, and matches them to an existing 15 

catalog. 16 

2. Our software, finFindR, shortens photo-ID processing times by autonomously finding and 17 

isolating (i.e., “cropping”) dolphin fins in raw field photographs, tracing the trailing edge 18 

of fins in cropped images, and producing a sorted list of likely identities from a catalog of 19 

known individuals. The program then presents users with the top 50 most likely matching 20 

identities, allowing users to view side-by-side image pairs and make final identity 21 

determinations.   22 

3. During testing on two sets of novel images, finFindR placed the correct individual in the 23 

first position of its ordered list in 88% (238/272 and 354/400) of test cases.  finFindR 24 
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placed the correct identity among the top 10 ranked images in 94% of test cases, and 25 

among the top 50 ranked images in 97% of test cases. Hence, if a match does not exist in 26 

the first 50 images of finFindR’s ordered list, researchers can be almost certain (~97%) 27 

that a match does not exist in the entire catalog.  28 

4. During a head-to-head blind test of the human-only and finFindR-assisted matching 29 

methods, two experienced photo-ID technicians both achieved 97% correct identification 30 

of identities when matched against a catalog containing over 2,000 known individuals. 31 

However, the manual-only technician examined 124 images on average before making a 32 

match, while the technician using finFindR examined only 10 images on average before 33 

finding a match.    34 

5. We conclude that finFindR will facilitate equal or improved match accuracy while greatly 35 

reducing the number of examined photos. The faster matches, automated detection, and 36 

automated cropping afforded by finFindR will greatly reduce typical photo-ID processing 37 

times.  38 

Key-words (no more than 8): Cetacean, machine learning, neural network, non-invasive sampling, 39 

photo-identification software, Tursiops truncatus. 40 

Introduction 41 

Identifying individuals from photographs is a common task in population biology, especially when 42 

research involves species that are not readily captured (IWC, 1990; Marshall & Pierce, 2012).  Photo 43 

identification (photo-ID) studies can provide information on demographic rates, population size, and 44 

habitat use.  In the terrestrial environment, Kelly (2001) and Sandfort (2015) applied photo identification 45 

to study cheetah and Alpine ibex . In the oceanic environment, researchers have applied photo-ID to 46 
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species like whale sharks (Speed et al., 2008), sea otters (Gilkinson, Pearson, Weltz, & Davis, 2007), 47 

manatees (Langtimm et al., 2004), right whales (Hiby et al., 2013), humpback whales (Friday, Smith, 48 

Stevick, & Allen, 2000), and bottlenose dolphins (McDonald et al., 2017).  Photo-ID methods recognize 49 

individuals using unique and enduring features, such as barnacle calluses on the heads of right whales or 50 

the fluke shape of humpback whales.  In studies of common bottlenose dolphins (Tursiops truncatus), 51 

researchers have long used the nicks, notches, and scars on dorsal fins to track the occurrence of 52 

individuals over time and to assess movements and population trends (Wells & Scott, 1990; Würsig & 53 

Jefferson, 1990; Zolman, 2002; Mazzoil, McCulloch, Defran, & Murdoch, 2004; Speakman, Lane, 54 

Schwacke, Fair, & Zolman, 2010).  55 

Although it produces valuable results, many photo-ID methods are time-consuming and labor-intensive. 56 

When applied to bottlenose dolphins, researchers manually crop raw field photos before attempting to 57 

recognize the unique dorsal fin markings of individuals. It is common to compare images of unknown 58 

individuals to large catalogs containing thousands to tens of thousands of known individuals in order to 59 

identify a potential match.  Identifying the fin in a single photo can take multiple hours, even if experts in 60 

photo-ID are familiar with the population of interest.  Moreover, in some cases two separate examinations 61 

of a catalog are required to conclude a query image contains a previously unknown individual.    62 

Software that facilitates partially automated photo-ID for bottlenose dolphins has existed for some time 63 

(Stewman, Stanley, & Allen, 1995; Auger-Méthé, Marcoux, & Whitehead, 2011; Towner, Wcisel, 64 

Reisinger, Edwards, & Jewell, 2013).  Previous generations of dolphin photo-ID software generally relied 65 

on “landmarks” (anatomical reference points) to match individuals and often required substantial image 66 

processing by hand. Even after substantial processing, these systems achieve mixed accuracy and are 67 

heavily dependent on technician experience.   68 

The rapid expansion of social media since the turn of the century has prompted improvements in photo 69 

recognition algorithms of all types. Current identification methods are typically landmark-free and 70 
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generally rely on neural networks trained using machine learning methods.  Image processing systems can 71 

now achieve human-level recognition rates for faces and many anthropogenic objects (Lin et al., 2014; 72 

Taigman, Yang, Ranzato, & Wolf, 2014).   73 

We adapted social media image processing and recognition methods for application to bottlenose dolphin 74 

photo-ID tasks.  Here, we introduce finFindR, a software system containing several neural networks that 75 

substantially shortens photo-ID processing time by autonomously cropping fins from raw photos and 76 

producing a list of likely identities sorted by likelihood.  finFindR’s workflow generally consists of 77 

finding and isolating dorsal fins in a query (raw) image, tracing the trailing edge of fins, assigning a 78 

“score” based on distinctive characteristics, and sorting similarly “scored” identities in a catalog of known 79 

individuals by the likelihood that they match the query image. We implemented the system as an open-80 

source R package and an associated user-friendly HTML-based application that requires no programming 81 

experience.  82 

In this paper, we describe methods behind the general steps of finFindR’s workflow. As part of this work, 83 

we compared the error rates of finFindR to both highly experienced and novice biological technicians 84 

using a traditional manual photo-ID matching approach.   85 

finFindR workflow 86 
finFindR’s workflow consists of three steps: 1) autonomous image processing to find and isolate dorsal 87 

fins in field photographs, 2) isolation of each fin’s trailing edge and computation of a “score” based on 88 

distinguishing features, and 3) computation of the proximity of an image’s “score” to the “scores” of all 89 

fins in a reference catalog.  finFindR’s wiki (https://github.com/haimeh/finFindR/wiki) contains specific 90 

information about implementing each workflow step and should generally be considered the most up-to-91 

date user reference for finFindR.        92 
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Step 1: Fin isolation 93 
To autonomously identify fins in raw color (RGB) images (e.g., Figure 1a), we implemented a novel 94 

neural network architecture loosely based on the “resnet” architecture (He, Zhang, Ren, & Sun, 2015). 95 

We constructed the training dataset for this network by manually labeling ~10,000 dorsal fin photographs.  96 

Manual labeling entailed outlining the fin’s edge and dolphin body by hand and assigning integer values 97 

to each region (“1” = fin edge, “2” = body; Figure 1b). Training involved passing fin photos to the 98 

network as input, allowing the network to predict regions containing fin edges and bodies, comparing 99 

predictions to labeled regions, and using backward propagation to adjust network weights.  Over many 100 

training iterations, the network “learned” the characteristics of images generally associated with labels, in 101 

this case fin edges and dolphin bodies. The network outputs a pixel-based continuous value between 0 102 

and 1 representing the likelihood that the pixel is part of a fin or body (Figure 1c). finFindR then creates a 103 

bounding polygon around pixels with likelihood values exceeding a sensitivity threshold. Users can 104 

specify both the sensitivity and whether extracted images should contain fins only or both fin and body.  105 

finFindR allows users to increase the default sensitivity threshold (0.4) to reduce the number of false fin 106 

detections.  Users can also reduce the threshold to increase finFindR’s sensitivity for small or distant fins.  107 

Finally, finFindR places a rectangle around all bounding polygons in the photo and saves each to separate 108 

image files (Figure 1d). 109 

Step 2: Trailing edge isolation and characteristic measurement 110 
Following fin isolation, finFindR isolates the trailing edge of each fin, standardizes the fin’s size, and 111 

characterizes its distinguishing features.  finFindR isolates the trailing edge of fins using three neural 112 

networks trained to distinguish the trailing from the leading edge and to distinguish fin from body.   113 

Once the trailing edge has been isolated, finFindR extracts characteristics of the trailing edge by recording 114 

red-blue-green (RGB) color values at 16 locations surrounding pixels in a large sample of pixels along the 115 

trailing edge. This sampling results in a three-dimensional matrix (hereafter, tensor) with dimensions 116 

equal to the number of pixels along trailing edge, by 16 locations, by 3 color channels.  finFindR’s tracing 117 
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tool resizes the tensor’s first dimension (i.e., the fin’s trailing edge) to a standard length by applying cubic 118 

spline interpolation (Hazewinkel, 2001). Resizing the tensor in this way accommodates variable length fin 119 

edges and makes training more efficient. This standardized tensor is input to a neural network designed to 120 

distinguish individuals in the next step.  121 

Step 3: Characteristic extraction and mapping  122 
The neural network in this step is finFindR’s key feature and primary contribution to photo recognition 123 

technologies. The neural network in this step computes and outputs a “score” based on the fin’s 124 

distinguishing features.  finFindR is designed to map scores to a high-dimensional mathematical space 125 

where individuals can be identified.  That is, the network produces scores in a space where multiple 126 

pictures of the same fin are “close” to one another (in the high dimensional space) and “far” from the 127 

scores of other individuals.  This mapping drastically reduces match-finding times when identities in the 128 

reference catalog are sorted by their proximity (“closeness”) to a query image in the high-dimensional 129 

space.  130 

The process of mapping a tensor to high-dimensional space in a way that maximizes the distance between 131 

individuals is generally known as large-margin metric embedding (Weinberger & Saul, 2009; Faghri, 132 

Fleet, Kiros, & Fidler, 2017). We made two important modifications to make our max-margin embedding 133 

network trainable on 10,000 or fewer images.  First, we induced negative curvature in the distance metric 134 

of the embedding space. This step created greater representational capacity, which ultimately allowed 135 

mapping more individuals into regions that do not already contain identities. Second, we used a squared 136 

soft-plus loss function computed on image sets containing randomly selected individuals and randomly 137 

selected photos of the same individual. Heuristically, this loss function measured distance between the 138 

embedding of a query image, those from other images of the same individual, and those known to be of 139 

other individuals.      140 
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Step 4: Identifying individual dolphins 141 
To construct an ordered list of likely matches, finFindR computes the distance between a query image’s 142 

location in the embedding space and the location of all other images in the same space. We designed the 143 

network of Step 3 to cluster images of similar-looking fins together in the induced space in such a way 144 

that clusters of dissimilar fins largely do not overlap. For each query image, finFindR presents the user 145 

with both a list of the 50 “closest” identities and a hierarchical cluster of distances between individual 146 

fins.  Based on these outputs, users make the final determination of matches and assign unique IDs.  All 147 

vectors of characteristics (embeddings) and assigned IDs are stored in simple R objects (i.e., .RData files).  148 

Users can choose to export characteristic vectors and IDs to other databases or software from R.  149 

Comparison and validation 150 

Speakman et al. (2010) and Melancon et al. (2011) outline a photo matching protocol commonly used by 151 

dolphin researchers. Under this protocol, researchers first manually crop raw field images to isolate fins, 152 

then visually compare query images with those of known individuals and judge whether or not the query 153 

image matches one or more in the catalog. To assist with these tasks researchers have developed 154 

customized databases to house their images, store manually assigned characteristics, and filter large sets 155 

of images. For many years, researchers have used the Finbase Microsoft Access database to store, 156 

organize, and filter catalog images (Adams, Speakman, Zolman, & Schwacke, 2006). Finbase allows 157 

users to sort a catalog of fin images based on user-assigned attributes but does not otherwise recommend 158 

matches.  159 

In order to evaluate the proficiency of finFindR’s matching algorithm, we matched a set of fin images 160 

using both the manual-only and finFindR-assisted methods. We compared both match agreement and the 161 

average number of inspected images required to obtain a match. Our query images consisted of 672 fin 162 

images taken during two surveys in Barataria Bay, Louisiana during May (n = 272 images) and 163 

September 2017 (n = 400 images).  Of those, we easily matched 468 images based on known associates, 164 
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freeze-brands, and the feature sorting capabilities in Finbase. Of the remaining 204 images, we identified 165 

and removed 55 duplicate photos of the same fin, leaving 149 images of unique individuals (n = 135 166 

individuals from May survey; n = 14 individuals from September survey).  We did not use any of the 672 167 

photos during finFindR training.  168 

One of us (TRS) with extensive photo-analysis experience followed the finFindR workflow and matched 169 

individuals among the top 50 likely matches. During this trial, finFindR “found a match” when it placed 170 

the correct identity of a previously seen individual among the top 50 positions of the sorted list.  Another 171 

of us (BMQ) with extensive photo-analysis experience manually matched the same set of dorsal fin 172 

images using Finbase only. Finally, a third researcher (JSMM) with less photo-analysis experience 173 

independently repeated the manual matching process using assistance from Finbase only.  We ensured no 174 

communication between analysts during matching. The experienced analysts checked and verified each 175 

other’s matches (TRS verified BMQ Finbase results, BMQ verified TRS finFindR results, TRS verified 176 

JSMM Finbase results), and conducted additional full-catalog manual searches if no match was found.  177 

Of the 149 identities, finFindR failed to place 5 (3%) known individuals in the top 50 ranked identities.  178 

Assisted by Finbase, the other experienced analyst failed to find 6 (4%) known individuals in the catalog. 179 

The less experienced analyst failed to find 11 (7%) known individuals.  While the manual and finFindR-180 

assisted error rates obtained by the experienced researchers were functionally equivalent and very low, 181 

the effort required to find a match using finFindR was considerably less than for the manual-only method. 182 

On average, the first experienced technician examined 10 images before finding a match using finFindR, 183 

while the other experienced analyst examined 124 photos on average before identifying a match. In some 184 

cases, the second analyst examined well over 1000 images to find a match.  185 

In additional, we were interested in finFindR’s performance on obvious matches and duplicate images. 186 

We re-tested the finFindR method on all images from the same surveys, not just the unique individuals 187 

(i.e., all 672 images). finFindR achieved similar results during this trial as it did during the test of unique 188 
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individuals reported above.  During these latter tests, finFindR placed the correct identity among the top 189 

50 ranked mages in 97% of test cases (Table 1).  In addition, finFindR placed the correct identity in the 190 

top position during 88% of our test cases, and among the top 10 ranked images during 94% of our tests 191 

(Table 1).    192 

Discussion 193 
Past software systems for identifying marine mammals made use of dolphin fin or whale fluke edge 194 

characteristics (Auger-Méthé et al. 2011; Towner et al. 2013). These programs were specifically designed 195 

for certain species and are difficult to apply to others in part because they rely on landmark features (e.g., 196 

the tip of the dorsal fin) to scale the notches’ characteristics (Stewman et al., 1995). Weideman et al. 197 

(2017) used differential curvature measures in a variety of dolphin and whale fin recognition problems, 198 

but these approaches are sensitive to noise and require careful feature isolation (Stewman et al., 1995). 199 

Because dolphins can be photographed from a variety of poses and viewpoints, and hence produce 200 

slightly perturbed images of the same fin, algorithms that rely purely on angles extracted along the fluke 201 

or fin have difficulty tracing and scaling the fin. finFindR overcomes these limitations by extracting a 202 

series of sub-images along the trailing edge that capture features in the vicinity of the edge, including 203 

coloration of scars. Hence, finFindR does not depend on perfect, consistent traces of the dorsal fin to 204 

achieve its results.  finFindR leverages information in the vicinity of the edge and is able to match a wider 205 

range of fin photos.  206 

Based on the results of our tests, researchers can have approximately 97% confidence that matches will 207 

occur (in the top 50 images) if the query image is of a previously known individual.  That is, when 208 

matches are not found using finFindR (not present in the top 50 ranked images), researchers can either 209 

choose to manually search the entire catalog for a match or call the image a previously unseen individual.  210 

If researchers do the latter, they can be ~97% confident that the query image does not actually occur in 211 

the catalog and that the associated image is of a new individual.  If the analyses of a particular study allow 212 

lower (than 97%) accuracy, finFindR can be run in a fully-automated mode by associating the query 213 
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image with the identity in the top slot of the ordered list.  When run in fully-automated mode, researchers 214 

can expect approximately 88% correct matches.   215 

Conclusions  216 
finFindR allows rapid and accurate comparison of dorsal fin characteristics in unprocessed photographs 217 

with those in a catalog of known individuals. finFindR assists researchers by sorting field photos, 218 

discarding unusable images, cropping dorsal fin images, and greatly reducing the time required to find 219 

matches. We conclude the use of finFindR will sustain the accuracy of experienced fin matching 220 

researchers while drastically reducing typical dolphin photo-ID processing times.  221 
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Tables and figures 306 

 307 

Table 1: Accuracy of image ranks produced by finFindR for novel images in two sets of hold-
out images.  Image identities verified through full search of the image catalog by an experienced 
image analyst after the experiment. Here, n is number of images. The two sets of images reflect 
field image-collection bouts conducted in Barataria Bay, Louisiana. 
 May 2017 (n = 272) September 2017 (n = 400) 
Top-ranked  image was correct match 87.50% (238/272) 88.50% (354/400) 
Correct match in top 10 ranked images 94.12% (256/272) 93.25% (373/400) 
Correct match in top 50 ranked images 96.69% (263/272) 97.25% (389/400) 

 308 
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(a) Raw image (b) Labeled image 

  
(c) Network prediction (d) Cropped image 

 

 

Figure 1: Example images illustrating fin and body isolation (Step 1 of the finFindR workflow). (a) The 

raw image; (b) manually labeled image showing location of fin edge (green) and body (blue); (c) the 

likelihood surface predicted by the trained network; and (d) the final cropped image.  
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(a) Raw image (b) Labeled image 

  
(c) Network prediction (d) Cropped image 

 

 

Alternate Black and White Figure 1: Example images illustrating fin and body isolation (Step 1 of the 

finFindR workflow). (a) The raw image; (b) manually labeled image showing location of fin edge (green) 

and body (blue); (c) the likelihood surface predicted by the trained network; and (d) the final cropped 

image.  
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Figure 2: Example of a final preprocessed image input to the character extraction and mapping neural 313 

network of finFindR’s workflow (Step 3). 314 
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