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Abstract

Xylanases are a class of enzymes with numerous industrial applications and are involved in the 

degradation of xylose polysaccharide, which is present in lignocellulosic biomass. The optimum 

temperature of enzymes is the indicator of their thermal activity and is an essential factor to be 

considered when choosing an appropriate biocatalyst for a particular purpose. Therefore, in-silico 

prediction of this enzymatic attribute is a significant cost and time-effective step in the effort to 

identify and characterize novel enzymes. The objective of this study was to develop an accurate 

computational method to predict the thermal activity status of xylanases from glycoside 

hydrolases families 10 and 11, the most prevalent known xylanase families. Here we present 

TAXyl (Thermal Activity Prediction for Xylanase), a new sequence-based machine learning 

method that has been trained using a selected combination of various physicochemical protein 

features. This ensemble of four supervised learning algorithms discriminates mesophilic, 

thermophilic, and hyper-thermophilic xylanases based on their optimum temperature with the 

process of soft-voting. TAXyl’s performance was ultimately evaluated through multiple iterations 

of six-fold cross-validations, and it exhibited a mean accuracy of ~0.94, F1-score of ~0.91, and 

MCC of ~0.9. Additionally, the model was tested on previously unseen data and depicted 

relatively similar performance. To the best of our knowledge, this tool is the most accurate and 

practical prediction tool currently available and operating on this class of enzymes. TAXyl is 

freely accessible as a web-service at http://arimees.com/ and provides users with several features 

to facilitate the characterization of GH10 and GH11 xylanases. 
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1. Introduction

 Endo-1,4-beta-xylanase (EC 3.2.1.8) catalyzes the degradation of xylan, a component of 

hemicellulose, into xylooligosaccharides and D-xylose. Xylanases are currently being used for a broad 

spectrum of industrial applications, such as pulp and paper, food, textiles, biofuel, animal feed, and 

beverages (1). A considerable ratio of known xylanases are from glycoside hydrolases (GH) families 10 

and 11 (2). 

One of the essential attributes of enzymes is their optimum temperature, in which they exhibit their 

maximum relative activity. An enzyme’s optimum temperature the indicator of its thermal activity (3). 

On the one hand, high temperature increases substrates’ solubility and bioavailability, accelerates 

molecular dynamics, and decreases the probability of microbial contamination significantly (4,5). On the 

other hand, numerous biological processes are carried out at mild or cold temperatures (6). Therefore, 

various research studies have been designed to predict the enzymes’ optimum temperature in order to 

introduce novel appropriate biocatalysts for specific processes.

New enzymes are being discovered at an increased pace, thanks to the advances in sequencing 

technologies. Unlike culture-dependent methods that are unable to cultivate up to 99% of 

microorganisms, culture-independent methods such as metagenomics enable the extended exploration of 

the natural diversity within an environmental sample (7). Metagenomics is the direct analysis of genetic 

material found within an environmental sample (8,9).  This field of study is a comparatively new culture-

independent method to analyze microbial communities, their functional genes, and phylogenetic 

properties. Therefore, metagenomics provides access to almost all the genetic material inside an 
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environmental sample. However, experimental functional annotation of newly identified genes is 

becoming a significant challenge (10,11).   Utilizing an in-silico approach to address this problem can 

make a notable contribution. Consequently, the availability of metagenomic data is rapidly increasing, 

hence employing computational methods instead of wet-lab experiments in order to identify new 

enzymes with specific properties can effectively reduce the costs and make the process much faster.

The primary structure of a protein is one of the most important factors affecting an enzyme’s thermal 

activity, and there is a strong correlation between this functional property and its sequence. Many studies 

have used sequence similarity-based methods in order to predict different properties of proteins. However, 

there are many cases where sequence similarity does not directly correlate with the functional 

resemblance, as proteins with a nearly similar primary structure can sometimes depict unique properties 

or functional similarity can be observed among proteins with different amino acid sequences  (12). 

Machine learning approaches have been successfully applied to predict various properties of proteins 

such as tertiary structure (13),(14), function (15), localization (16), thermal stability (17), etc.(18),(19). 

These computational methods are capable of learning more complex relationships between the primary 

structure of proteins and their different properties (20–22).

Numerous studies have presented in-silico methods for predicting enzymatic attributes. 

Discrimination between thermophilic and mesophilic proteins by using machine learning methods was 

the focus of a study by Gromiha and Suresh (23).  Similarly, Tang et al. used  support vector machines 

(SVM) to develop a two-step method for discriminating thermophilic proteins (24) and amino acid 

compositions have been the basis of a statistical method for a similar task (25). Pucci et al. presented a 

statistical approach to predict thermostability (26), and Jia et al. designed a thermostability predictor tool 

(27). AcalPred is another similar study that utilizes SVM to classify acidic and alkaline enzymes based 
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on their primary structure (28). In another research, Ariaeenejad et al. applied a regression model based 

on a pseudo amino acid composition (PAAC) (29) to predict the optimum temperature and pH of xylanase 

in strains of Bacillus subtilis enzymes (30). Genetic Algorithm-Artificial Neural Network (GA-ANN) 

have been employed for the optimization of xylanase production for industrial purposes (31,32). In order 

to find features with the highest correlation with the thermostability of proteins, K-mean algorithm 

clustering method and a decision tree have been employed (33). Panja et al. found that the prevalence of 

smaller non-polar amino-acids, more hydrophobicity, and salt-bridges are some shared characteristics 

among most thermophilic proteins (34). Moreover, feature selection methods such as recursive feature 

elimination (RFE) have been previously used by some studies in order to choose best sequence-extracted 

features. As an instance, Kumar et al. employed RFE with SVM to classify the enzymes’ function into 

different classes and subclasses (35).

The increasing use of new high throughput technologies can rapidly produce enormous amounts of 

data, while the processes of getting access to the protein’s tertiary and quaternary structures are much 

slower. Therefore, an accurate sequence-based approach with acceptable agility is in demand. The 

objective of this study was to design and implement a multi-step method for the classification of the 

thermal activity of xylanases from glycoside hydrolases families 10 and 11 based on their optimum 

temperature. Since most of the available data in the literature belong to GH10 and GH11 families, we 

focused on the members of these two protein families. To the best of our knowledge, this is the first time 

that a combination of different protein descriptors is calculated, selected, and used to train multiple 

machine-learning algorithms to make predictions on xylanase optimum temperature by an ensemble 

voting method. We presented TAXyl (Thermal Activity prediction for xylanase), a prediction web-server 

for the thermal activity of xylanases. The performance of TAXyl was evaluated using multiple cross-

validation tests and also on previously unseen data.
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2. Methods

2.1. Dataset preparation

A new dataset from GH families 10 and 11, which constitutes a considerable ratio of known 

xylanases, had to be collected. Even though this makes the scope narrower, it can help the final estimation 

be more accurate and reliable. The National Center for Biotechnology Information (NCBI) database was 

explored by searching for thermoactive or thermostable xylanases, and 254 results were found. After 

removing the records without the exact optimum temperature report, the remaining sequences were 

divided into two groups of families 10 and 11. Afterward, the BRENDA database was explored for 

xylanases with reported optimum temperature, and newly collected data were added to the previous 

dataset. The Uniprot website was finally searched with the same strategy, and new samples were 

collected.

Redundant or highly similar samples were removed using the CD-Hit tool, which clusters highly-

homologous sequences, with a 0.9 cut-off (36). In some protein sequences, a few amino acids are 

unknown. These residues are represented by the character “X.” Since the existence of such noise could 

potentially interfere with the learning process and feature extraction tools are designed for 20 amino acid 

residues, all unknown amino acids were removed from the sequences.

The final dataset consisted of 145 different xylanases from GH families 10 and 11 with optimum 

temperature ranging from 25°C to 95°C. These samples were labeled accordingly into three different 

categories: 1) “Non-thermoactive” with optimum temperature below 50°C; 2) “thermoactive” with the 

optimum temperature between 50°C and 75°C, and 3) “hyper-thermoactive” with the optimum 

temperature above 75°C. Fig. 1 shows the proportion of each thermal class and GH family in the dataset.
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Figure 1 The dataset is divided into three categories.  Samples in the dataset are from GH10 and GH11 

families with optimum temperatures ranging from 25°C to 95°C. These enzyme samples are divided 

into three thermal activity classes. This figure illustrates the proportion of each class and GH family 

in the dataset.

2.2. Feature extraction

Using an appropriate set of features is undoubtedly one of the most crucial elements in creating an 

efficient classifier. Because there is not much precise evidence regarding the most related features to 

thermal activity, in this study, various protein descriptors were computed using the PyDPI python 

package (37).

The PyDPI computed protein features are 15 descriptor types, which are from six main groups. 

Amino acid composition (AAC), dipeptide composition (2AAC) and tripeptide composition (3AAC), 

represent their fraction in the protein sequence. Unlike previous feature groups, pseudo amino acid 

composition (PAAC) and amphiphilic pseudo amino acid composition (APAAC), try to evade missing 

the sequence-order information and combine that with the composition data (38),(39).  Conjoint triad 

features (CTF) cluster twenty amino acids into several classes based on their dipoles and the number of 

side chains (40). CTF considers the properties of an amino acid and its neighboring ones while regarding 

any amino acid triads as a unit. Other features are calculated by taking structural and physiochemical 

properties into account. Three autocorrelation descriptors, including normalized Moreau−Broto, Geary, 

and Moran autocorrelations, attempt to describe the amount of correlation among peptide or protein 

sequences. Composition, transition, distribution descriptors (CTD), sequence-order coupling number 
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(SOCN), and quasi-sequence-order (QSO) delineate the distribution pattern of amino acids along a 

protein sequence in terms of structural and physicochemical attributes. 

As a result, a feature vector with 10,074 descriptors was calculated for each protein sequence. Many 

of these features were duplicates and were removed afterward. Due to the different ranges of the 

descriptors, all raw values had to be rescaled into the same range. This transformation was done using 

MinMaxScaler.

2.3. Feature selection

Different protein descriptors were used separately to train the same models and depicted different 

prediction performances. These individually evaluated features were then combined and submitted to 

steps of feature selection which resulted in a significant improvement in prediction performmance. All 

features do not contribute equally to the final prediction. Thus, a process of feature selection is necessary 

in order to find the most relevant descriptors for optimum temperature classification and to remove ones 

of less importance.

Filter feature selection methods utilize a statistical measure to rank features based on their score. For 

this step, an f-test was applied as the filter method, and the best features were chosen using the 

SelectKBest method for the next selection step. Recursive feature elimination (RFE) trains a machine 

learning model using input features and ranks them based on their contribution to the prediction. The 

RFE method was executed with logistic regression, a classification algorithm, and most relevant features 

were selected. As a result, the final feature vector was prepared with 512 dimensions.

2.4. Model selection and training

A plethora of classification algorithms are currently available. Each algorithm is built based on 

different theories. In order to find the best methods for our problem, various classification algorithms 

were tested, including multilayer perceptron (MLP), decision tree, Gaussian Naïve Bayes, Gaussian 
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process, AdaBoost, KnearestNeighbors and support vector machine (SVM), all of which were applied 

from the sci-kit learn python package (41) Four of these supervised learning algorithms with the best 

accuracies were chosen. These four classifiers were MLP, SVM, Gaussian process classifier, and 

Gaussian Naïve Bayes.

An MLP with four hidden layers was constructed to address this classification. SVM classifiers form 

hyperplanes that categorize inputs into different classes. The hyperplane can be constructed using various 

kernel functions, including linear, radial basis, and polynomial. Our support-vector machine used a radial 

basis function (RBF) kernel to predict the protein’s thermal activity. Naïve Bayes is based on Bayes 

theorem and can be applied for this classification problem. This algorithm is relatively fast since it only 

calculates the probability of each class and the probability of each class given different sets of inputs. 

Gaussian Naïve Bayes is a popular supervised learning algorithm for dealing with continuous data, and 

this method was used for this problem (42). Gaussian process classifier is another classification algorithm 

that was employed with the RBF kernel (43). Afterward, an ensemble classifier was implemented to 

decide the final output based on soft voting among the four mentioned classifiers (44). In the process of 

soft voting, each model returns an array representing the probabilities of each class, and the ensemble 

classifier decides the final answer based on the weighted average of class probabilities.

The pipeline mentioned above required several parameter tuning steps, all of which were done using 

the GridSearchCV method. Grid searching is the process of testing the model with various 

hyperparameters and finding the optimum configuration. The sci-kit learn python package was used 

several times during this study (41)

2.5. Evaluation criteria
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Since this is a multi-class classification problem, accuracy, macro-recall, macro-precision, the macro-

f1 score, and the Matthews correlation coefficient were used as evaluation metrics. These metrics were 

calculated using the following formulas:

(1)𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(2)𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

(4)𝐹1 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(5)𝑀𝐶𝐶 =
(𝑇𝑃)(𝑇𝑁) ‒ (𝐹𝑃)(𝐹𝑁)

[𝑇𝑃 + 𝐹𝑃][𝑇𝑃 + 𝐹𝑁][𝑇𝑁 + 𝐹𝑃][𝑇𝑁 + 𝐹𝑁]

Here, TP (true positive) and TN (true negative) are respectively positive and negative examples that 

were correctly predicted. Similarly, FP (false positive) and FN (false negative) are positive and negative 

examples that were mistakenly classified. Matthew’s correlation coefficient represents the correlation 

coefficient between the predictions and the actual values (45) The “macro” prefix refers to getting the 

average of each metric across the three different classes.

For the evaluation step, samples were randomly split into two subsamples (85% as the training set 

and 15% as the test set) five times, and each time 20 iterations of the six-fold cross-validation were done 

on the training set. Subsequently, the models were tested on the unseen subsample (test set). This means 

that our classifiers were evaluated through 100 iterations of six-fold cross-validations and were tested on 

unseen data five times to assure that the models are robust. In the six-fold cross-validation step, the 

training set was randomly split into six equal subsamples, five of which were used as training sets, and 

one subsample was then used for testing the models with different evaluation metrics. This was done six 

times, leaving out one subsample each time for testing. Figure 2 is the schematic diagram of the steps of 

development and evaluation of the current prediction model.
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Figure 2 Schematic diagram of the workflow . The figure above illustrates the steps for the 

development and evaluation of proposed prediction model.

3. Results

3.1. Feature importance analysis and feature selection

Generated protein descriptors encapsulate various molecular and sequential information with 

different degrees of relevance to the enzyme’s thermal activity. In order to obtain a better perception of 

the relationship between different descriptors and the prediction performance, the same model was 

trained using different sets of features. A summary of generated features, their feature groups, and their 

dimensions are presented in Table 1.

Table 1 A summary of different generated features from enzyme sequences that were used in this 

study

Feature Group Number of Descriptors

Amino acid, Dipeptide and Tripeptide compositions 8420

Autocorrelations

 (Moreau−Broto, Geary, and Moran)

720
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Composition, Transition, Distribution 147

Conjoint triad 512

Quasi-Sequence-order and 

Sequence-order coupling number

190

Pseudo Amino Acid Composition and

 Amphiphilic Pseudo Amino Acid Composition 

85

 The average of metrics for different models were calculated and then compared to combined 

features that went through feature Selection steps. Amino acid composition, Pseudo amino acid 

composition, dipeptide composition, amphiphilic pseudo amino acid composition, and Quasi sequence 

order were ranked in descending order by their performances when implemented individually. This 

implies their order in terms of importance and relevance to thermal activity. A complete representation 

of feature importance analysis is presented in Table 2 and Fig. 3. Our results showed that a selected 

combination of different descriptors augments the prediction performance noticeably.

Table 2 : Mean of different evaluation metrics for the same models when trained with different sets 

of features. Feature groups are sorted in an ascending order of accuracy.

Accuracy Macro-Recall Macro-Precision Macro-F1 MCC

SOCN 0.383 0.33 0.231 0.245 -0.009
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MoreauBroto 0.397 0.385 0.351 0.332 0.064

CTF 0.445 0.433 0.409 0.385 0.13

3AAC 0.458 0.461 0.437 0.391 0.19

Moran 0.467 0.441 0.428 0.403 0.16

Geary 0.481 0.459 0.443 0.417 0.195

CTD 0.488 0.472 0.455 0.427 0.205

QSO 0.557 0.544 0.537 0.505 0.327

APAAC 

(lambda=15)

0.569 0.556 0.555 0.529 0.327

2AAC 0.588 0.566 0.591 0.546 0.362

PAAC (lambda=15) 0.597 0.604 0.602 0.572 0.383

AAC 0.605 0.603 0.612 0.582 0.387

Combined + 

Feature Selection

0.905 0.882 0.895 0.877 0.855

Figure 3 : Feature Importance Analysis. This chart represents the importance and relevance of each 

generated feature set with the task of thermal activity prediction. Mean of accuracy for the same 
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model, trained with different feature sets, are provided and compared. This representation implies 

the importance of feature selection steps in order to obtain a better prediction performance.

In the process of filter feature selection, both chi-2 test and f-test were both used as filter methods, 

and the f-test showed a slightly better result based on final evaluations. For the filter feature selection, 

we used the SelectKBest method, and the value of K was chosen to be 3500 based on the better prediction 

performance after multiple tests. Afterward, 3500 selected features were used in the feature selection 

step with the RFE method. In the RFE step, logistic regression was employed, and 512 most contributing 

features were chosen as the final feature vector. Again, the dimension of 512 was opted due to better 

performance.

3.2.  Model performance

As it is shown in Table 3, our four models depicted reasonably high performance, achieving 

acceptable scores at different evaluation metrics. Although all four models mostly depicted agreement 

on correct predictions, in case of mistake, outputs were diverse. This diversity is because of the different 

algorithms that each model implements to make the prediction. Therefore, an ensemble method such as 

Voting Classifier could be a promising synergistic approach to get a higher overall performance since it 

enables us to exploit multiple learning algorithms for a single prediction. Soft voting refers to the process 

in which the final output is determined based on the computed probabilities of all models for each class. 

Since our four models had different capabilities, voting was executed by assigning uneven weights to 

each model. Reported performance metrics were computed through 100-time six-fold cross-validation 

tests. In each cross-validation (CV) iteration, the dataset was shuffled with different random seeds before 

splitting. The ensemble method demonstrated a slight improvement, out-performing the most accurate 
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individual model, which was MLP. Table 3 demonstrates the performance of different individual 

classification methods in comparison to the ensemble voting classifier.

Table 3 A numerical comparison of different models' classification performance through 100 iteration 

of six-fold cross-validation.

Accuracy Macro-Recall Macro-Precision Macro-F1 MCC

Multi-Layer 

Perceptron
0.932 0.905 0.936 0.908 0.893

Gaussian Naive 

Bayes
0.846 0.798 0.855 0.8 0.755

Support Vector 

Machine
0.925 0.9 0.925 0.901 0.881

Gaussian 

Process
0.844 0.748 0.716 0.717 0.759

Voting Classifier 0.940 0.917 0.940 0.919 0.906

3.3. Testing the model on unseen test data 

  As described, our final model was chosen to be the ensemble classifier due to the achievement of 

better classification scores. The thermal activity prediction for xylanases (TAXyl) was tested using 

unseen test data (15% of the initial dataset, which was reserved at the beginning). This step was executed 

five times, and each time, the data was shuffled entirely. Table 4 shows the comparison of TAXyl 
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evaluation during cross-validation and holdout method tests and Fig. 4 illustrates the TAXyl’s 

performance through multiple cross-validation tests.

Table 4 Comparison of cross-validation and holdout method test results. TAXyl's performance during 

100 iterations of 6-fold cross validations and five iterations of test (holdout) validations on previously 

unseen data.

Accuracy Macro-Recall Macro-Precision Macro-F1 MCC

Test Performance 0.94 0.92 0.95 0.93 0.91

CV Performance 0.94 0.91 0.94 0.91 0.9

Figure 4 Box plot of TAXyl evaluation metrics during 100 times six-fold cross validations.

3.4. Online Server

TAXyl is freely available at http://arimees.com. This web service is capable of getting inputs in the 

forms of the FASTA file, amino acid sequence, or protein entry of xylanases from GH families 10 and 

11 and returns their probable thermal activity status. TAXyl also enables users to download and export 

the selected features for their inserted protein sequences in CSV format for other machine learning 

applications. This web service is also accessible from the CBB lab website (http://cbb.ut.ac.ir), under 

databases and tools sub-menu.

4. Discussion and conclusion
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Xylanases are carbohydrate-active enzymes responsible for the hydrolysis of xylan polysaccharide 

into xylose. This group of biocatalysts have multiple industrial applications and therefore have high 

commercial value (1). Determining the optimum temperature of activity plays an essential role in 

choosing the appropriate enzymes for a specific task, making this enzymatic property substantially 

important. Since the advent of next-generation sequencing and its accelerating improvements, getting 

access to metagenomic data is becoming increasingly easier and more affordable, and the only possible 

way to analyze these enormous amounts of data is by fast and accurate computational methods. 

In this study, we presented a novel method based on an ensemble of machine learning algorithms to 

predict the optimum temperature of xylanases activity from GH families 10 and 11. Because of the 

limited number of xylanases with a reported optimum temperature in the literature, we explored different 

learning methods to find ones with an acceptable interpretation of the data. TAXyl uses sequence-based 

and length-independent protein descriptors to train four different supervised machine learning algorithms 

and employs a voting classifier to integrate all individual models to obtain a more accurate prediction. 

As demonstrated, the ensemble method which benefits from the synergistic combination of various 

information sources can slightly improve the performance by taking several learning methods into 

account for a single task of decision making. Furthermore, the voting classifier exhibited less variance in 

its metrics in comparison to other methods, which stems from its greater flexibility and robustness. 

In comparison to similar previous studies, TAXyl out-performs the model developed by Gromiha et 

al. on the prediction of GH10 and GH11 xylanases by providing the CV accuracy of 94% over 89% (23).  

Similarly, our model’s performance was higher than the statistical method which was based on amino 

acid compositions (25). Although TAXyl and the two-step discrimination model of Tang et al. had a 

relatively similar accuracy (24), our model, unlike non of the above,  extends the classification ability to 

the third class which are the hyper-thermoactive enzymes. 
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Our results indicated the competence of computational methods to address common problems in 

bioinformatics and the capability of sequence-based and length-independent protein descriptors for 

training supervised learning algorithms to effectively predict general enzymatic features (26). It is clear 

that various protein attributes are related to their structural and functional properties. With a proper multi-

step method, it is possible to predict them with minimal cost in time and expenses. We observed that 

amino acid composition, pseudo amino acid composition and sequence order descriptors are among the 

most relevant protein features for thermal activity prediction (33) Moreover, our findings indicate that 

the feature selection steps amended the performance considerably by enabling us to exploit the best 

descriptors from different feature groups and pruning the trivial ones. As presented in Table 3, all 

individual models were capable of reasonably accurate classifications. When testing the classifiers 

separately, MLP and SVM demonstrated a better performance than Gaussian Naïve Bayes and Gaussian 

process classifier. However, the ensemble classifier depicted a better performance by combining all four 

classifiers’ discrimination ability.

Advancements in sequencing technologies and metagenomics have revolutionized our access to a 

wealth of sequence data from enzymes with possible industrial applications. In comparison with our 

previous two studies, in which xylanase enzymes from the metagenomic source were identified and 

characterized by experimental techniques (10,11), TAXyl enabled the identification of more putative 

thermoactive xylanases and enhanced the extended exploration of the metagenomic data as well as 

validating our two previously characterized enzymes. This tool can be implemented to significantly 

reduce the number of potential candidates of xylanases with a specific thermal activity profile before 

engaging the wet-lab experiments. Another potential usage for such tools is in facilitating the engineering 

of enzymes through directed evolution to obtain biocatalysts with higher thermal stability targeted at 

particular industrial purposes. In case of sufficient data availability, a possible direction for future works 
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would undoubtedly be developing similar tools to predict the structural, functional, and thermodynamic 

properties of other enzyme families. The TAXyl web-service is available and provides users with a 

reasonably accurate approximation of any GH10 or GH11 xylanase thermal activity status.

Supporting Information

Dataset which was used for this study. (.xlsx)

Availability and implementation: 

Prediction online webservice: http://arimees.com/ 

Codes: https://github.com/mehdiforoozandeh/TAXyl

Abbreviations

AAC, Amino acid composition; 2AAC, Dipeptide composition; 3AAC, Tripeptide composition; ANN, 

Artificial Neural Networks; APAAC, amphiphilic pseudo amino acid composition; CTD, Composition, 

Transition, Distribution; CTF, conjoint triad features; GH, Glycoside Hydrolase; MCC, Matthews 

Correlation Coefficient; MLP, Multi-Layer Perceptron; PAAC, Pseudo amino acid composition; QSO, 

Quasi-sequence Order; RBF, Radial Basis Function; RFE, Recursive Feature Elimination; SOCN, 

Sequence order coupling number; SVM, Support-Vector Machine
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