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Abstract 

Xylanases are a class of enzymes with numerous industrial applications and are involved in the 

degradation of xylose polysaccharide, which is present in lignocellulosic biomass. The optimum 

temperature of enzymes is the indicator of their thermal activity and is an essential factor to be 

considered when choosing an appropriate biocatalyst for a particular purpose. Therefore, in-

silico prediction of this enzymatic attribute is a significant cost and time-effective step in the 

effort to identify and characterize novel enzymes. The objective of this study was to develop an 

accurate computational method to predict the thermal activity status of xylanases from 

glycoside hydrolases families 10 and 11, the most prevalent known xylanase families. Here we 

present TAXyl (Thermal Activity Prediction for Xylanase), a new sequence-based machine 

learning method that has been trained using a selected combination of various physicochemical 

protein features. This ensemble of four supervised learning algorithms discriminates mesophilic, 

thermophilic, and hyper-thermophilic xylanases based on their optimum temperature with the 

process of soft-voting. TAXyl’s performance was ultimately evaluated through multiple 

iterations of six-fold cross-validations, and it exhibited a mean accuracy of ~0.94, F1-score of 

~0.91, and MCC of ~0.9. Additionally, the model was tested on previously unseen data and 

depicted relatively similar performance. To the best of our knowledge, this tool is the most 

accurate and practical prediction tool currently available and operating on this class of enzymes. 

TAXyl is freely accessible as a web-service at http://arimees.com/ and provides users with 

several features to facilitate the characterization of GH10 and GH11 xylanases.  

Keywords: 

xylanase, machine learning, optimum temperature, ensemble learning, sequence-based 

classification 
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1. Introduction 

  Endo-1,4-beta-xylanase (EC 3.2.1.8) catalyzes the degradation of xylan, a component of 

hemicellulose, into xylooligosaccharides and D-xylose. Xylanases are currently being used for a broad 

spectrum of industrial applications, such as pulp and paper, food, textiles, biofuel, animal feed, and 

beverages (1). A considerable ratio of known xylanases are from glycoside hydrolases (GH) families 10 

and 11 (2).  

 One of the essential attributes of enzymes is their optimum temperature, in which they exhibit their 

maximum relative activity. An enzyme’s optimum temperature the indicator of its thermal activity (3). 

On the one hand, high temperature increases substrates’ solubility and bioavailability, accelerates 

molecular dynamics, and decreases the probability of microbial contamination significantly (4,5). On 

the other hand, numerous biological processes are carried out at mild or cold temperatures (6). 

Therefore, various research studies have been designed to predict the enzymes’ optimum temperature in 

order to introduce novel appropriate biocatalysts for specific processes. 

New enzymes are being discovered at an increased pace, thanks to the advances in sequencing 

technologies. Unlike culture-dependent methods that are unable to cultivate up to 99% of 

microorganisms, culture-independent methods such as metagenomics enable the extended exploration 

of the natural diversity within an environmental sample (7). Metagenomics is the direct analysis of 

genetic material found within an environmental sample (8,9).  This field of study is a comparatively 

new culture-independent method to analyze microbial communities, their functional genes, and 

phylogenetic properties. Therefore, metagenomics provides access to almost all the genetic material 

inside an environmental sample. However, experimental functional annotation of newly identified 

genes is becoming a significant challenge (10,11).   Utilizing an in-silico approach to address this 

problem can make a notable contribution. Consequently, the availability of metagenomic data is rapidly 
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increasing, hence employing computational methods instead of wet-lab experiments in order to identify 

new enzymes with specific properties can effectively reduce the costs and make the process much 

faster. 

 The primary structure of a protein is one of the most important factors affecting an enzyme’s 

thermal activity, and there is a strong correlation between this functional property and its sequence. 

Many studies have used sequence similarity-based methods in order to predict different properties of 

proteins. However, there are many cases where sequence similarity does not directly correlate with the 

functional resemblance, as proteins with a nearly similar primary structure can sometimes depict 

unique properties or functional similarity can be observed among proteins with different amino acid 

sequences  (12). Machine learning approaches have been successfully applied to predict various 

properties of proteins such as tertiary structure (13),(14), function (15), localization (16), thermal 

stability (17), etc.(18),(19) . These computational methods are capable of learning more complex 

relationships between the primary structure of proteins and their different properties (20–22). 

 Numerous studies have presented in-silico methods for predicting enzymatic attributes. 

Discrimination between thermophilic and mesophilic proteins by using machine learning methods was 

the focus of a study by Gromiha and Suresh (23).  Similarly, Tang et al. used  support vector machines 

(SVM) to develop a two-step method for discriminating thermophilic proteins (24) and amino acid 

compositions have been the basis of a statistical method for a similar task (25). Pucci et al. presented a 

statistical approach to predict thermostability (26), and Jia et al. designed a thermostability predictor 

tool (27). AcalPred is another similar study that utilizes SVM to classify acidic and alkaline enzymes 

based on their primary structure (28). In another research, Ariaeenejad et al. applied a regression model 

based on a pseudo amino acid composition (PAAC) (29) to predict the optimum temperature and pH of 

xylanase in strains of Bacillus subtilis enzymes (30). Genetic Algorithm-Artificial Neural Network 
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(GA-ANN) have been employed for the optimization of xylanase production for industrial purposes 

(31,32). In order to find features with the highest correlation with the thermostability of proteins, K-

mean algorithm clustering method and a decision tree have been employed (33). Panja et al. found that 

the prevalence of smaller non-polar amino-acids, more hydrophobicity, and salt-bridges are some 

shared characteristics among most thermophilic proteins (34). Moreover, feature selection methods 

such as recursive feature elimination (RFE) have been previously used by some studies in order to 

choose best sequence-extracted features. As an instance, Kumar et al. employed RFE with SVM to 

classify the enzymes’ function into different classes and subclasses (35). 

 The increasing use of new high throughput technologies can rapidly produce enormous amounts of 

data, while the processes of getting access to the protein’s tertiary and quaternary structures are much 

slower. Therefore, an accurate sequence-based approach with acceptable agility is in demand. The 

objective of this study was to design and implement a multi-step method for the classification of the 

thermal activity of xylanases from glycoside hydrolases families 10 and 11 based on their optimum 

temperature. Since most of the available data in the literature belong to GH10 and GH11 families, we 

focused on the members of these two protein families. To the best of our knowledge, this is the first 

time that a combination of different protein descriptors is calculated, selected, and used to train 

multiple machine-learning algorithms to make predictions on xylanase optimum temperature by an 

ensemble voting method. We presented TAXyl (Thermal Activity prediction for xylanase), a prediction 

web-server for the thermal activity of xylanases. The performance of TAXyl was evaluated using 

multiple cross-validation tests and also on previously unseen data. 

 

2. Methods 

2.1. Dataset preparation 
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 A new dataset from GH families 10 and 11, which constitutes a considerable ratio of known 

xylanases, had to be collected. Even though this makes the scope narrower, it can help the final 

estimation be more accurate and reliable. The National Center for Biotechnology Information (NCBI) 

database was explored by searching for thermoactive or thermostable xylanases, and 254 results were 

found. After removing the records without the exact optimum temperature report, the remaining 

sequences were divided into two groups of families 10 and 11. Afterward, the BRENDA database was 

explored for xylanases with reported optimum temperature, and newly collected data were added to the 

previous dataset. The Uniprot website was finally searched with the same strategy, and new samples 

were collected. 

Redundant or highly similar samples were removed using the CD-Hit tool, which clusters highly-

homologous sequences, with a 0.9 cut-off (36). In some protein sequences, a few amino acids are 

unknown. These residues are represented by the character “X.” Since the existence of such noise could 

potentially interfere with the learning process and feature extraction tools are designed for 20 amino 

acid residues, all unknown amino acids were removed from the sequences. 

 The final dataset consisted of 145 different xylanases from GH families 10 and 11 with optimum 

temperature ranging from 25°C to 95°C. These samples were labeled accordingly into three different 

categories: 1) “Non-thermoactive” with optimum temperature below 50°C; 2) “thermoactive” with the 

optimum temperature between 50°C and 75°C, and 3) “hyper-thermoactive” with the optimum 

temperature above 75°C. Fig. 1 shows the proportion of each thermal class and GH family in the 

dataset. 
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Figure 1 The dataset is divided into three categories.  Samples in the dataset are from GH10 and GH11 families with optimum 

temperatures ranging from 25°C to 95°C. These enzyme samples are divided into three thermal activity classes. This figure illustrates the 

proportion of each class and GH family in the dataset. 

2.2. Feature extraction 

 Using an appropriate set of features is undoubtedly one of the most crucial elements in creating an 

efficient classifier. Because there is not much precise evidence regarding the most related features to 

thermal activity, in this study, various protein descriptors were computed using the PyDPI python 

package (37). 

The PyDPI computed protein features are 15 descriptor types, which are from six main groups. 

Amino acid composition (AAC), dipeptide composition (2AAC) and tripeptide composition (3AAC), 

represent their fraction in the protein sequence. Unlike previous feature groups, pseudo amino acid 

composition (PAAC) and amphiphilic pseudo amino acid composition (APAAC), try to evade missing 

the sequence-order information and combine that with the composition data (38),(39).  Conjoint triad 
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features (CTF) cluster twenty amino acids into several classes based on their dipoles and the number of 

side chains (40). CTF considers the properties of an amino acid and its neighboring ones while 

regarding any amino acid triads as a unit. Other features are calculated by taking structural and 

physiochemical properties into account. Three autocorrelation descriptors, including normalized 

Moreau−Broto, Geary, and Moran autocorrelations, attempt to describe the amount of correlation 

among peptide or protein sequences. Composition, transition, distribution descriptors (CTD), sequence-

order coupling number (SOCN), and quasi-sequence-order (QSO) delineate the distribution pattern of 

amino acids along a protein sequence in terms of structural and physicochemical attributes.  

As a result, a feature vector with 10,074 descriptors was calculated for each protein sequence. 

Many of these features were duplicates and were removed afterward. Due to the different ranges of the 

descriptors, all raw values had to be rescaled into the same range. This transformation was done using 

MinMaxScaler. 

2.3. Feature selection 

 Different protein descriptors were used separately to train the same models and depicted different 

prediction performances. These individually evaluated features were then combined and submitted to 

steps of feature selection which resulted in a significant improvement in prediction performmance. All 

features do not contribute equally to the final prediction. Thus, a process of feature selection is 

necessary in order to find the most relevant descriptors for optimum temperature classification and to 

remove ones of less importance. 

Filter feature selection methods utilize a statistical measure to rank features based on their score. 

For this step, an f-test was applied as the filter method, and the best features were chosen using the 

SelectKBest method for the next selection step. Recursive feature elimination (RFE) trains a machine 

learning model using input features and ranks them based on their contribution to the prediction. The 
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RFE method was executed with logistic regression, a classification algorithm, and most relevant 

features were selected. As a result, the final feature vector was prepared with 512 dimensions. 

2.4. Model selection and training 

A plethora of classification algorithms are currently available. Each algorithm is built based on 

different theories. In order to find the best methods for our problem, various classification algorithms 

were tested, including multilayer perceptron (MLP), decision tree, Gaussian Naïve Bayes, Gaussian 

process, AdaBoost, KnearestNeighbors and support vector machine (SVM), all of which were applied 

from the sci-kit learn python package (41) Four of these supervised learning algorithms with the best 

accuracies were chosen. These four classifiers were MLP, SVM, Gaussian process classifier, and 

Gaussian Naïve Bayes. 

An MLP with four hidden layers was constructed to address this classification. SVM classifiers 

form hyperplanes that categorize inputs into different classes. The hyperplane can be constructed using 

various kernel functions, including linear, radial basis, and polynomial. Our support-vector machine 

used a radial basis function (RBF) kernel to predict the protein’s thermal activity. Naïve Bayes is based 

on Bayes theorem and can be applied for this classification problem. This algorithm is relatively fast 

since it only calculates the probability of each class and the probability of each class given different 

sets of inputs. Gaussian Naïve Bayes is a popular supervised learning algorithm for dealing with 

continuous data, and this method was used for this problem (42). Gaussian process classifier is another 

classification algorithm that was employed with the RBF kernel (43). Afterward, an ensemble classifier 

was implemented to decide the final output based on soft voting among the four mentioned classifiers 

(44). In the process of soft voting, each model returns an array representing the probabilities of each 

class, and the ensemble classifier decides the final answer based on the weighted average of class 

probabilities. 
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The pipeline mentioned above required several parameter tuning steps, all of which were done 

using the GridSearchCV method. Grid searching is the process of testing the model with various 

hyperparameters and finding the optimum configuration. The sci-kit learn python package was used 

several times during this study (41) 

2.5. Evaluation criteria 

Since this is a multi-class classification problem, accuracy, macro-recall, macro-precision, the macro-

f1 score, and the Matthews correlation coefficient were used as evaluation metrics. These metrics were 

calculated using the following formulas: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
(3) 

𝐹1 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(4) 

𝑀𝐶𝐶 =
(𝑇𝑃)(𝑇𝑁)−(𝐹𝑃)(𝐹𝑁)

√[𝑇𝑃+𝐹𝑃][𝑇𝑃+𝐹𝑁][𝑇𝑁+𝐹𝑃][𝑇𝑁+𝐹𝑁]
(5) 

Here, TP (true positive) and TN (true negative) are respectively positive and negative examples that 

were correctly predicted. Similarly, FP (false positive) and FN (false negative) are positive and 

negative examples that were mistakenly classified. Matthew’s correlation coefficient represents the 

correlation coefficient between the predictions and the actual values (45) The “macro” prefix refers to 

getting the average of each metric across the three different classes. 

 For the evaluation step, samples were randomly split into two subsamples (85% as the training set 

and 15% as the test set) five times, and each time 20 iterations of the six-fold cross-validation were 

done on the training set. Subsequently, the models were tested on the unseen subsample (test set). This 
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means that our classifiers were evaluated through 100 iterations of six-fold cross-validations and were 

tested on unseen data five times to assure that the models are robust. In the six-fold cross-validation 

step, the training set was randomly split into six equal subsamples, five of which were used as training 

sets, and one subsample was then used for testing the models with different evaluation metrics. This 

was done six times, leaving out one subsample each time for testing. Figure 2 is the schematic diagram 

of the steps of development and evaluation of the current prediction model. 

 

Figure 2 Schematic diagram of the workflow . The figure above illustrates the steps for the development and evaluation of proposed 

prediction model. 

3. Results 

3.1. Feature importance analysis and feature selection 

Generated protein descriptors encapsulate various molecular and sequential information with 

different degrees of relevance to the enzyme’s thermal activity. In order to obtain a better perception of 

the relationship between different descriptors and the prediction performance, the same model was 
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trained using different sets of features. A summary of generated features, their feature groups, and their 

dimensions are presented in Table 1. 

Table 1 A summary of different generated features from enzyme sequences that were used in this study 

Feature Group Number of Descriptors 

Amino acid, Dipeptide and Tripeptide compositions 8420 

Autocorrelations 

 (Moreau−Broto, Geary, and Moran) 

720 

Composition, Transition, Distribution 147 

Conjoint triad 512 

Quasi-Sequence-order and  

Sequence-order coupling number 

190 

Pseudo Amino Acid Composition and 

 Amphiphilic Pseudo Amino Acid Composition  

85 

 

  The average of metrics for different models were calculated and then compared to combined 

features that went through feature Selection steps. Amino acid composition, Pseudo amino acid 

composition, dipeptide composition, amphiphilic pseudo amino acid composition, and Quasi sequence 

order were ranked in descending order by their performances when implemented individually. This 

implies their order in terms of importance and relevance to thermal activity. A complete representation 

of feature importance analysis is presented in Table 2 and Fig. 3. Our results showed that a selected 

combination of different descriptors augments the prediction performance noticeably. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2019. ; https://doi.org/10.1101/826040doi: bioRxiv preprint 

https://doi.org/10.1101/826040
http://creativecommons.org/licenses/by/4.0/


13 

Table 2 : Mean of different evaluation metrics for the same models when trained with different sets of features. Feature groups are 

sorted in an ascending order of accuracy. 

 Accuracy Macro-Recall Macro-Precision Macro-F1 MCC 

SOCN 0.383 0.33 0.231 0.245 -0.009 

MoreauBroto 0.397 0.385 0.351 0.332 0.064 

CTF 0.445 0.433 0.409 0.385 0.13 

3AAC 0.458 0.461 0.437 0.391 0.19 

Moran 0.467 0.441 0.428 0.403 0.16 

Geary 0.481 0.459 0.443 0.417 0.195 

CTD 0.488 0.472 0.455 0.427 0.205 

QSO 0.557 0.544 0.537 0.505 0.327 

APAAC 

(lambda=15) 

0.569 0.556 0.555 0.529 0.327 

2AAC 0.588 0.566 0.591 0.546 0.362 

PAAC (lambda=15) 0.597 0.604 0.602 0.572 0.383 

AAC 0.605 0.603 0.612 0.582 0.387 

Combined + 

Feature Selection 

0.905 0.882 0.895 0.877 0.855 
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Figure 3 : Feature Importance Analysis. This chart represents the importance and relevance of each generated feature set with the task 

of thermal activity prediction. Mean of accuracy for the same model, trained with different feature sets, are provided and compared. This 

representation implies the importance of feature selection steps in order to obtain a better prediction performance. 

In the process of filter feature selection, both chi-2 test and f-test were both used as filter methods, 

and the f-test showed a slightly better result based on final evaluations. For the filter feature selection, 

we used the SelectKBest method, and the value of K was chosen to be 3500 based on the better 

prediction performance after multiple tests. Afterward, 3500 selected features were used in the feature 

selection step with the RFE method. In the RFE step, logistic regression was employed, and 512 most 

contributing features were chosen as the final feature vector. Again, the dimension of 512 was opted 

due to better performance. 

3.2.  Model performance 

 As it is shown in Table 3, our four models depicted reasonably high performance, achieving 

acceptable scores at different evaluation metrics. Although all four models mostly depicted agreement 
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on correct predictions, in case of mistake, outputs were diverse. This diversity is because of the 

different algorithms that each model implements to make the prediction. Therefore, an ensemble 

method such as Voting Classifier could be a promising synergistic approach to get a higher overall 

performance since it enables us to exploit multiple learning algorithms for a single prediction. Soft 

voting refers to the process in which the final output is determined based on the computed probabilities 

of all models for each class. Since our four models had different capabilities, voting was executed by 

assigning uneven weights to each model. Reported performance metrics were computed through 100-

time six-fold cross-validation tests. In each cross-validation (CV) iteration, the dataset was shuffled 

with different random seeds before splitting. The ensemble method demonstrated a slight improvement, 

out-performing the most accurate individual model, which was MLP. Table 3 demonstrates the 

performance of different individual classification methods in comparison to the ensemble voting 

classifier. 

Table 3 A numerical comparison of different models' classification performance through 100 iteration of six-fold cross-validation. 

 Accuracy Macro-Recall Macro-Precision Macro-F1 MCC 

Multi-Layer 

Perceptron 
0.932 0.905 0.936 0.908 0.893 

Gaussian Naive 

Bayes 
0.846 0.798 0.855 0.8 0.755 

Support Vector 

Machine 
0.925 0.9 0.925 0.901 0.881 
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Gaussian 

Process 
0.844 0.748 0.716 0.717 0.759 

Voting Classifier 0.940 0.917 0.940 0.919 0.906 

 

3.3. Testing the model on unseen test data  

   As described, our final model was chosen to be the ensemble classifier due to the achievement of 

better classification scores. The thermal activity prediction for xylanases (TAXyl) was tested using 

unseen test data (15% of the initial dataset, which was reserved at the beginning). This step was 

executed five times, and each time, the data was shuffled entirely. Table 4 shows the comparison of 

TAXyl evaluation during cross-validation and holdout method tests and Fig. 4 illustrates the TAXyl’s 

performance through multiple cross-validation tests. 

Table 4 Comparison of cross-validation and holdout method test results. TAXyl's performance during 100 iterations of 6-fold cross 

validations and five iterations of test (holdout) validations on previously unseen data. 

 Accuracy Macro-Recall Macro-Precision Macro-F1 MCC 

Test Performance 0.94 0.92 0.95 0.93 0.91 

CV Performance 0.94 0.91 0.94 0.91 0.9 
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Figure 4 Box plot of TAXyl evaluation metrics during 100 times six-fold cross validations.  

3.4. Online Server 

 TAXyl is freely available at http://arimees.com. This web service is capable of getting inputs in the 

forms of the FASTA file, amino acid sequence, or protein entry of xylanases from GH families 10 and 

11 and returns their probable thermal activity status. TAXyl also enables users to download and export 

the selected features for their inserted protein sequences in CSV format for other machine learning 

applications. This web service is also accessible from the CBB lab website (http://cbb.ut.ac.ir), under 

databases and tools sub-menu. 
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4. Discussion and conclusion 

 Xylanases are carbohydrate-active enzymes responsible for the hydrolysis of xylan polysaccharide 

into xylose. This group of biocatalysts have multiple industrial applications and therefore have high 

commercial value (1). Determining the optimum temperature of activity plays an essential role in 

choosing the appropriate enzymes for a specific task, making this enzymatic property substantially 

important. Since the advent of next-generation sequencing and its accelerating improvements, getting 

access to metagenomic data is becoming increasingly easier and more affordable, and the only possible 

way to analyze these enormous amounts of data is by fast and accurate computational methods.  

In this study, we presented a novel method based on an ensemble of machine learning algorithms 

to predict the optimum temperature of xylanases activity from GH families 10 and 11. Because of the 

limited number of xylanases with a reported optimum temperature in the literature, we explored 

different learning methods to find ones with an acceptable interpretation of the data. TAXyl uses 

sequence-based and length-independent protein descriptors to train four different supervised machine 

learning algorithms and employs a voting classifier to integrate all individual models to obtain a more 

accurate prediction. As demonstrated, the ensemble method which benefits from the synergistic 

combination of various information sources can slightly improve the performance by taking several 

learning methods into account for a single task of decision making. Furthermore, the voting classifier 

exhibited less variance in its metrics in comparison to other methods, which stems from its greater 

flexibility and robustness.  

In comparison to similar previous studies, TAXyl out-performs the model developed by Gromiha 

et al. on the prediction of GH10 and GH11 xylanases by providing the CV accuracy of 94% over 89% 

(23).  Similarly, our model’s performance was higher than the statistical method which was based on 

amino acid compositions (25). Although TAXyl and the two-step discrimination model of Tang et al. 
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had a relatively similar accuracy (24), our model, unlike non of the above,  extends the classification 

ability to the third class which are the hyper-thermoactive enzymes.  

Our results indicated the competence of computational methods to address common problems in 

bioinformatics and the capability of sequence-based and length-independent protein descriptors for 

training supervised learning algorithms to effectively predict general enzymatic features (26). It is clear 

that various protein attributes are related to their structural and functional properties. With a proper 

multi-step method, it is possible to predict them with minimal cost in time and expenses. We observed 

that amino acid composition, pseudo amino acid composition and sequence order descriptors are 

among the most relevant protein features for thermal activity prediction (33) Moreover, our findings 

indicate that the feature selection steps amended the performance considerably by enabling us to 

exploit the best descriptors from different feature groups and pruning the trivial ones. As presented in 

Table 3, all individual models were capable of reasonably accurate classifications. When testing the 

classifiers separately, MLP and SVM demonstrated a better performance than Gaussian Naïve Bayes 

and Gaussian process classifier. However, the ensemble classifier depicted a better performance by 

combining all four classifiers’ discrimination ability. 

Advancements in sequencing technologies and metagenomics have revolutionized our access to a 

wealth of sequence data from enzymes with possible industrial applications. In comparison with our 

previous two studies, in which xylanase enzymes from the metagenomic source were identified and 

characterized by experimental techniques (10,11), TAXyl enabled the identification of more putative 

thermoactive xylanases and enhanced the extended exploration of the metagenomic data as well as 

validating our two previously characterized enzymes. This tool can be implemented to significantly 

reduce the number of potential candidates of xylanases with a specific thermal activity profile before 

engaging the wet-lab experiments. Another potential usage for such tools is in facilitating the 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2019. ; https://doi.org/10.1101/826040doi: bioRxiv preprint 

https://doi.org/10.1101/826040
http://creativecommons.org/licenses/by/4.0/


20 

engineering of enzymes through directed evolution to obtain biocatalysts with higher thermal stability 

targeted at particular industrial purposes. In case of sufficient data availability, a possible direction for 

future works would undoubtedly be developing similar tools to predict the structural, functional, and 

thermodynamic properties of other enzyme families. The TAXyl web-service is available and provides 

users with a reasonably accurate approximation of any GH10 or GH11 xylanase thermal activity status. 
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Dataset which was used for this study. (.xlsx) 
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