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Estrogen exposure may influence women’s risk of Alzheimer’s
disease, but little is known about how it affects normal brain ag-
ing. Recent findings from the UK Biobank demonstrate less ev-
idence of brain aging in women with a history of multiple child-
births. Here, we investigated the link between brain aging, es-
trogen exposure, and APOE genotype beyond the effects of par-
ity in 16,854 UK Biobank women. Machine learning was used to
predict brain age based on neuroimaging-derived measures, and
the difference between an individual’s predicted and chronolog-
ical age was used as an estimate of brain aging. Cumulative es-
trogen exposure was estimated using an index including age at
menarche and menopause, BMI, time since menopause, and du-
ration of hormone replacement therapy. Endogenous hormone
exposure was approximated by reproductive span, while exoge-
nous exposure was estimated by usage, onset, and duration of
hormone replacement therapy and oral contraceptives. Higher
cumulative, endogenous, and exogenous estrogen exposure were
each linked to higher brain age relative to chronological age.
Earlier onset of hormone replacement therapy, particularly be-
fore menopause, was associated with less evident brain aging in
APOE e4 carriers only, while higher circulating estradiol lev-
els during menopause were linked to more evident brain aging
in carriers and less evident brain aging in non-carriers. The
results indicate that estrogen exposure and parity may differen-
tially relate to women’s brain aging, and that APOE e4-specific
associations between estrogen and brain aging may be of impor-
tance for optimizing hormone replacement therapy regimes in
perimenopausal women.
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1 Introduction

Women are at significantly greater risk of developing
Alzheimer’s disease (AD) or other types of dementia relative
to men (1), and among women, a higher degree of lifetime
exposure to estrogen has been linked to a lower risk of AD
(2, 3). Estrogen may also have beneficial effects on cogni-
tion (4, 5), and studies have shown a link between endoge-
nous estrogen exposure and less cognitive decline in older
age (6, 7). However, other studies have found no associa-
tion between endogenous exposure and dementia risk (8, 9)
or cognitive performance (9, 10). Only a small number of

studies have been population-based (8), and among those,
findings are mixed. Results from the Guangzhou Biobank
Cohort Study in China showed that longer reproductive span,
i.e. higher endogenous exposure to estrogen, was associated
with higher cognitive scores (11). Results from the Esprit
study in France showed an association between longer repro-
ductive span and better cognitive performance, but no rela-
tionship was observed between reproductive span and cogni-
tive decline across four years (9). A recent meta-analysis
found no link between endogenous estrogen exposure and
incident dementia (8). Findings from the Rotterdam cohort
showed that women with longer reproductive span had an in-
creased risk of dementia, but the association was only evident
in women carrying the apolipoprotein E type 4 (APOE e4)
genotype (12). Carried by 14% of the worlds population (13),
the APOE e4 allele is a known risk factor for AD: 91% of ho-
mozygous e4 carriers and 47% of heterozygous carriers have
been shown to develop AD (14). The APOE-related risk of
developing AD is modified by sex, with higher risk in women
compared to men (15), and emerging evidence suggests that
estrogen and APOE genotype may interact (16–18). For
instance, Yaffe and colleagues (19) found that among non-
carriers, hormone replacement therapy (HRT) use reduced
the risk of cognitive impairment by almost half compared to
never-users, while there was no such effect among carriers.
Results from the Nurses’ Health Study showed that HRT use
was associated with worse rates of decline in general cogni-
tion, especially among women with an APOE e4 allele (20).
While a number of studies indicates positive effects of HRT
on cognition (9, 11, 21), other studies have shown associ-
ations between HRT use and worse rates of cognitive de-
cline (12), as well as increased risk of dementia (20). Thus,
results from HRT studies are inconclusive, and findings differ
across observational studies and randomised trials (22, 23)

Despite its widespread use, exogenous estrogen exposure
via oral contraceptives (OC) is understudied. Studies on OC
use have mainly compared cognitive performance in users
and non-users at high or low hormone states across the men-
strual cycle in premenopausal women (24, 25). The results
of these studies are inconclusive, largely due to small sample
sizes with an overall mean of 24 OC users per study, includ-
ing several studies with 10 or fewer participants (26). To the
best of our knowledge, only one study has investigated the
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impact of OC use on cognition later in life, using data from
the Wisconsin Registry for Alzheimer’s Prevention (27). The
results from this study suggested a positive association be-
tween OC duration and cognitive performance. However, the
sample of OC users (n = 227) and never-users (n = 34) was
highly imbalanced, precluding the drawing of firm conclu-
sions. Whether short or long-term use of OC modulates risk
for developing AD is unknown.

While a number of studies have investigated the effects of
estrogen and APOE genotype on dementia and AD risk, little
is known about the influence on normal brain aging. Changes
in hormones such as estradiol are known to influence brain
plasticity (28, 29), and in premenopausal women, magnetic
resonance imaging (MRI) studies have indicated modulating
effects of endogenous estrogen fluctuations on brain structure
across the menstrual cycle (30) and during pregnancy (31).
While higher endogenous estrogen levels have been associ-
ated with larger hippocampal volumes during women’s repro-
ductive years (30, 32), results from the Rotterdam Scan Study
showed that in menopausal women, higher endogenous es-
trogen levels were associated with smaller hippocampal vol-
umes as well as poorer memory performance in menopausal
women (33). Negative effects of exogenous estrogen lev-
els have also been reported, and findings from the Women’s
Health Initiative Memory Study showed that conjugated es-
trogen, both alone and in combination with progestin, was
associated with greater atrophy among women aged 65 years
and older (34). In addition, conjugated estrogen administra-
tion has been linked to higher rates of ventricular expansion
over 4 years in recently menopausal women (35). However,
other MRI studies suggest a protective effect of HRT on gray
matter (36), as well as white matter and ventricle size (37),
and larger hippocampal volumes have been observed in users
relative to non-users (38). Thus, the results from previous
MRI studies are equivocal, and the majority of existing find-
ings are based on relatively small sample sizes.

Cumulative estrogen exposure is often approximated by
including information on age at menarche and menopause,
duration of HRT use, postmenopausal weight, years since
menopause, and parity (7). Parity represents a complex ad-
dition to the estimation given the role of immune factors in
pregnancy such as the proliferation of regulatory T cells (39),
which is suggested to protect against AD (40). In addition,
estrogen levels rise up to 300-fold throughout pregnancy (41)
and fall 100–1000 fold postnatally (42), often in relation to
breastfeeding (8), of which the duration influences the num-
ber of total menstrual cycles within a woman’s reproductive
years (11, 43). Parous women may also have shorter men-
strual cycles and lower levels of estradiol than nulliparous
women (44, 45), indicating that age at first birth also influ-
ences lifetime estrogen exposure. Studies have demonstrated
a protective effect of parity on brain aging (31, 46–48), and
we recently showed lower brain age in parous compared to
nulliparous women in the UK Biobank cohort (49). In the
present paper, we investigate the association between estro-
gen exposure and brain aging beyond the effects of parity.

We analysed the association between endogenous as well
as exogenous estrogen exposure and predicted brain age rel-
ative to chronological age (brain age gap) in 16,854 women
with a mean age of 54.70 years ± 7.29 (standard deviation).
Brain age prediction estimates an individual’s apparent brain
aging based on MRI-derived brain characteristics, and is be-
coming a widely applied marker of the neuroanatomical ag-
ing process (50–53). We estimated brain age using the XG-
Boost Python Package (54). To test for associations between
estimates of estrogen exposure and structures and modali-
ties (55–57), we included separate brain age models based on
T1-weighted MRI measures (full T1w model, cortical thick-
ness, cortical and subcortical volume) (51, 53, 58, 59), and
diffusion-weighted MRI in a sub-sample of 9,829 women.
Cumulative estrogen exposure was estimated by an index
of cumulative estrogen exposure (ICEE) including age at
menarche and menopause, time since menopause, body mass
index (BMI), and duration of HRT use (7). Endogenous es-
trogen exposure was estimated by reproductive span (age at
menopause – age at menarche), while exogenous exposure
was estimated by usage, onset, and duration of HRT and OC
use. To examine the effect of APOE e4 genotype on the as-
sociation between estrogen exposure and brain age gap, we
performed follow-up analyses including interaction terms be-
tween APOE e4 genotype and estimates of estrogen exposure
for each of the measures (see Materials and Methods for de-
tails). In order to investigate the link between estrogen ex-
posure and brain aging beyond the effects of parity (49), all
analyses were corrected for number of childbirths.

2 Results
The root mean square errors (RMSE) for each brain age
model are shown in Table 1. Figure 1, Figure 2, and Ta-
ble 2 show an overview of the main results. p-values are
reported before and after false discover rate (FDR) correc-
tion (60) (pcorr).

2.1 Index of cumulative estrogen exposure (ICEE): A
multiple linear regression showed a positive association be-
tween ICEE and brain age gap based on the full T1w model,
indicating that higher ICEE was linked to higher brain age
relative to chronological age (n = 8,878). The inclusion
of age at first birth and education as additional covariates
yielded similar results for ICEE and brain age gap (β =
0.04,SE = 0.02, t = 2.71,p = 6.72 × 10−3,pcorr = 8.06 ×
10−3, n = 7,068). Significant relationships were also found
between ICEE and brain age gap based on cortical thickness,
and cortical volume, and subcortical volume. No relationship
was found between ICEE and brain age gap based on diffu-
sion MRI.

2.2 Endogenous estrogen exposure:

2.2.1 Reproductive span: Reproductive span was calculated
as age at menopause − age at menarche. 9,188 menopausal
women had data on both variables and were included in
the analysis. A multiple linear regression including number
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Table 1. Number of MRI variables, RMSE values, and the correlations between predicted and chronological age for each of the brain age
models.

Model MRI variables RMSE Predicted age versus chronological age Corrected predicted age versus chronological age

Full T1w model 1118 6.06 r = 0.56,p=< 0.001,CI95% = [0.55,0.57] r = 0.93,p=< 0.001,CI95% = [0.93,0.93]
Thickness 126 6.02 r = 0.57,p=< 0.001,CI95% = [0.55,0.57] r = 0.93,p=< 0.001,CI95% = [0.92,0.93]
Volume 360 6.45 r = 0.47,p=< 0.001,CI95% = [0.46,0.48] r = 0.95,p=< 0.001,CI95% = [0.94,0.95]
Subcortical 25 6.02 r = 0.56,p=< 0.001,CI95% = [0.55,0.57] r = 0.92,p=< 0.001,CI95% = [0.91,0.92]
Diffusion 170 5.55 r = 0.66,p=< 0.001,CI95% = [0.65,0.67] r = 0.93,p=< 0.001,CI95% = [0.92,0.93]
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Fig. 1. Associations between estimates of hormone exposure and brain age gap. The points show the β values (slope) from multiple regression analyses on brain
age gap and number of births, index of cumulative estrogen exposure (ICEE), reproductive span, and hormone replacement therapy (HRT) status, for each of the brain age
models (y axis). HRT status = 0 for never-users and 1 for current and former users. The error bars represent the standard error on the β. The ICEE, reproductive span, and
HRT analyses were corrected for number of births. In addition, the analyses on reproductive span also included ever used HRT and/or OC as covariates, and the analysis on
HRT status included had hysterectomy and/or oophorectomy.

of births, ever used HRT, and ever used OC as covariates
showed a positive association between reproductive span
and brain age gap based on the full T1w model, indicating
that a longer reproductive span was linked to higher brain
age relative to chronological age. When including age at first
birth and education as covariates, the results were similar
(β = 0.02,SE = 6.65 × 10−3, t = 2.52,p = 0.01,pcorr =
0.01, n = 7,323). Significant relationships were found be-
tween reproductive span and brain age gap based on cortical
thickness, cortical volume, and subcortical volume. No
significant relationship was found between reproductive span
and brain age gap based on diffusion MRI. The associations
between brain age gap and age at menarche and menopause
are provided in the Supplementary Information (SI).

2.3 Exogenous estrogen exposure:

2.3.1 Hormone replacement therapy (HRT): A multiple lin-
ear regression including number of births, had hysterectomy
and/or oophorectomy in the models showed an association
between HRT status and brain age gap based on the full T1w
model in pre-menopausal and menopausal women, with a
lower brain age relative to chronological age in never-users
(n = 11,139) compared to users (n = 5,546 with 1,182 still
using). When including age at first birth and education in
the model, the results were similar (β = 0.22,SE = 0.06, t=
3.93,p = 8.57 × 10−5,pcorr = 4.57 × 10−4, never-users =
8,414, n users = 4,505). HRT status also showed an associ-
ation with brain age gap based on cortical thickness, cortical
volume, subcortical volume, and diffusion (n for never-users
= 6,461, n for users = 3,240), with a lower brain age relative
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to chronological age in never-users compared to users.

Within the group of HRT users (n = 5,164), a positive re-
lationship was found between age at HRT onset and brain
age gap based on the full T1w model, indicating that start-
ing HRT earlier may be beneficial (covariates: number of
births, had hysterectomy, and/or oophorectomy). Positive re-
lationships were found between age at HRT onset and brain
age gap based on cortical volume and subcortical volume,
as well as cortical thickness. No significant relationships
were found between age at HRT onset and brain age gap
based on diffusion MRI. No significant associations were
found between duration of HRT use (age last used HRT -
age started HRT) and brain age gap based on any of the brain
age models (full T1w model: β = 3.41×10−3,SE = 4.81×
10−3, t = 0.71,p = 0.48,pcorr = 0.55, n = 5,164; cortical
thickness: β= 4.32×10−3,SE = 4.97×10−3, t= 0.87,p=
0.39,pcorr = 0.47; cortical volume: β = 3.71×10−4,SE =
4.19 × 10−3, t = 0.09,p = 0.93,pcorr = 0.93; subcortical
volume: β = 8.77 × 10−3,SE = 5.41 × 10−3, t = 1.62,p =
0.11,pcorr = 0.15; diffusion: β = 5.95×10−3,SE = 6.35×
10−3, t= 0.94,p= 0.35,pcorr = 0.47, n = 2,998, covariates:
number of births, had hysterectomy and/or oophorectomy).

2.3.2 Oral contraceptives (OC): A linear regression showed
no significant association between OC use and brain age
gap based on the full T1w model in pre-menopausal and
menopausal women, as shown in Table 2 (never-users =
2,213, users = 14,615 with 398 still using, covariate: num-
bers of births). After adjusting for education and age at first
births, the result was similar (β = −0.003,SE = 0.08, t =
−0.04,p = 0.97,pcorr = 0.97, never-users = 2,201, n users
= 14,581). No relationships were found between OC use
and brain age gap based on cortical volume, subcortical vol-
ume, or diffusion MRI (never-users = 1,279, n users = 8,501).
An association was seen between OC use and brain age gap
based on cortical thickness, with a lower brain age rela-
tive to chronological age in never-users compared to users
(β = 0.17,SE = 0.07, t= 2.55,p= 0.01,pcorr = 0.09).

In OC users (n = 14,284), age started OC intake
was not significantly associated with brain age gap based
on any of the models (full T1w model: β = 2.76 ×
10−3,SE = 5.73 × 10−3, t = 0.48,p = 0.63,pcorr = 0.72);
cortical thickness: β = 4.45 × 10−3,SE = 5.98 × 10−3, t=
0.74,p = 0.46,pcorr = 0.71; cortical volume: β = −5.82 ×
10−3,SE = 5.07 × 10−3, t = −1.15,p = 0.25,pcorr =
0.47; subcortical volume: β = 4.42 × 10−3,SE = 6.53 ×
10−3, t= 0.68,p= 0.49,pcorr = 0.71; diffusion (n = 8,336):
β = −1.27 × 10−3,SE = 7.76 × 10−3, t = −0.16,p =
0.87,pcorr = 0.92, covariate: number of births).

Within the group of OC users (n = 13,462), a positive
relationship was found between duration of OC use and
brain age gap based on the full T1w model (β = 6.19 ×
10−3,SE. = 3.08 × 10−3, t = 2.01,p = 0.04,pcorr = 0.15,
covariate: number of births), indicating higher brain age rel-
ative to chronological age in longer-term users. When in-
cluding age at first birth and education as covariates, the as-

sociation was less strong (β = 6.19 × 10−3,SE = 3.58 ×
10−3, t = 1.73,p = 0.08,pcorr = 0.24, n = 10,654). No sig-
nificant relationship was found between duration of OC use
and brain age gap based on cortical thickness (β = 4.99 ×
10−3,SE = 3.21 × 10−3, t = 1.55,p = 0.12,pcorr = 0.29).
Positive relationships were found between duration of OC
and brain age gap based on cortical volume (β = 8.57 ×
10−3,SE = 2.73×10−3, t= 3.15,p= 0.002,pcorr = 0.03),
subcortical volume (β= 7.47×10−3,SE = 3.51×10−3, t=
2.13,p = 0.03,pcorr = 0.14), and diffusion (β = 9.83 ×
10−3,SE = 4.18 × 10−3, t = 2.35,p = 0.02,pcorr = 0.11,
n = 7834).

2.4 APOE e4 genotype and estimates of hormone ex-
posure: APOE e4 status showed no main associations with
brain age gap based on any of the models (covariate: number
of births, n carriers = 4,276, n non-carriers = 11,649). We
found no effects of the interaction APOE e4 status * ICEE
on any of the brain age gap models. Similarly, no effects were
found for APOE e4 status * reproductive span, and APOE
e4 status * ever used HRT (see SI Table 1).

There was a effect of APOE e4 status * age for HRT onset
on brain age gap based on cortical thickness (β = 0.05,SE =
0.02, t = 2.66,p = 0.01,pcorr = 0.07). Follow-up analyses
showed that the relationship between age started HRT and
brain age gap based on cortical thickness was confined to
the carrier group (n = 1,227), as shown in Figure 2 (β =
0.05,SE = 0.02, t= 2.96,p= 3.00×10−3,pcorr = 0.04; for
the non-carrier group (n = 3,646), β = 0.01,SE = 0.01, t =
0.49,p = 0.63,pcorr = 0.80). Within the group of carriers,
there was no dose-dependent effect of the interaction age
started HRT * carrier group (n with 1 e4 allele = 1,126, n
with 2 e4 alleles = 101, β = 0.05,SE = 0.07, t = 0.80,p =
0.43,pcorr = 0.73).

In menopausal APOE e4 carriers, age started HRT rela-
tive to age at menopause (age at menopause – age started
HRT) was associated with brain age gap based on the
full T1w model (β = −0.08,SE = 0.02, t = −3.34,p =
8.80 × 10−4,pcorr = 0.02, n = 826, covariates: number of
births, had hysterectomy and/or oophorectomy), indicating
that HRT initiation before onset of menopause may have
a beneficial effect on brain aging. Adjusting for age at
first birth and education did not change the results (β =
−0.09,SE = 0.03, t= −3.39,p= 7.5×10−4,pcorr = 0.02,
n = 666). The effect was absent in non-carriers (full
T1w model: β = 6.33 × 10−3,SE = 0.01, t = 0.46,p =
0.65,pcorr = 0.80, n = 2480), and not dose-dependent
(n with 1 e4 allele = 758, n with 2 e4 alleles = 68,
full T1w model: β = −0.04,SE = 0.08, t = −0.48,p =
0.63,pcorr = 0.80). In the carrier group, negative associa-
tions were also found between age for HRT onset relative
to onset of menopause and brain age gap based on cortical
thickness and cortical volume (β = −0.06,SE = 0.02, t =
−2.38,p = 0.02,pcorr = 0.13 and β = −0.04,SE =
0.02, t = −2.00,p = 0.05,pcorr = 0.21, respectively), while
no significant relationships were found with brain age
gap based on subcortical volume or diffusion MRI (β =
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Table 2. The associations between each estimate of hormone exposure and brain age gap. β = slope, SE = standard error. P-values are reported before and after false
discovery rate (FDR)-correction (pcorr ) (60)

Index of cumulative estrogen exposure (ICEE)

Model β SE t p pcorr

Full T1w model 0.05 0.01 3.43 6.09 × 10−3 1.22 × 10−3

Cortical thickness 0.04 0.01 2.74 6.08 × 10−3 8.06 × 10−3

Cortical volume 0.06 0.01 4.75 2.03 × 10−6 1.22 × 10−5

Subcortical volume 0.06 0.02 3.92 8.93 × 10−5 2.68 × 10−4

Diffusion 0.01 0.02 0.58 0.56 0.56

Reproductive span

Model β SE t p pcorr

Full T1w model 0.02 5.88 × 10−3 3.25 1.17 × 10−3 2.34 × 10−3

Cortical thickness 0.02 6.05 × 10−3 2.84 4.56 × 10−3 6.83 × 10−3

Cortical volume 0.02 5.16 × 10−3 3.45 5.66 × 10−4 1.70 × 10−3

Subcortical volume 0.03 6.66 × 10−3 4.00 6.45 × 10−5 3.87 × 10−4

Diffusion 3.30 × 10−3 7.88 × 10−3 0.42 0.67 0.68

Hormone replacement therapy (HRT) status

Model β SE t p pcorr

Full T1w model 0.16 0.05 3.27 1.07 × 10−3 4.28 × 10−3

Cortical thickness 0.12 0.05 2.34 0.02 0.03
Cortical volume 0.17 0.04 3.96 7.50 × 10−5 4.57 × 10−4

Subcortical volume 0.23 0.06 4.00 6.30 × 10−5 4.57 × 10−4

Diffusion 0.17 0.07 2.53 0.01 0.03

Age at HRT onset

Model β SE t p pcorr

Full T1w model 0.02 8.07 × 10−3 2.79 5.3 × 10−3 0.02
Cortical thickness 0.02 8.35 × 10−3 2.06 0.04 0.06
Cortical volume 0.02 7.04 × 10−3 2.53 0.01 0.03
Subcortical volume 0.02 9.08 × 10−3 2.49 0.01 0.03
Diffusion −1.29 × 10−3 0.01 −0.12 0.91 0.93

Oral contraceptive (OC) status

Model β SE t p pcorr

Full T1w model 0.09 0.07 1.43 0.15 0.33
Cortical thickness 0.17 0.07 2.55 0.01 0.09
Cortical volume 0.03 0.06 0.60 0.55 0.72
Subcortical volume 0.04 0.07 0.48 0.63 0.73
Diffusion 0.07 0.09 0.79 0.43 0.71

−0.03,SE = 0.03, t = −1.30,p = 0.20,pcorr = 0.55, and
β = −0.03,SE = 0.03, t = −0.84,p = 0.40,pcorr = 0.72,
n = 464, respectively).

2.4.1 APOE e4 genotype and circulating estradiol: Signif-
icant cross-over interaction effects of APOE e4 status *
circulating estradiol levels were found on brain age gap
based on the full T1w model in menopausal women, as

shown in Figure 2 (β = 2.72×10−3,SE = 1.22×10−3, t=
2.24,p = 0.03,pcorr = 0.03, n = 539, covariates: current
HRT use, ever used HRT, length since menopause and num-
ber of births). When including age at first birth and ed-
ucation as covariates, the result showed a stronger associ-
ation (β = 7.78 × 10−3,SE = 1.75 × 10−3, t = 4.43,p =
1.25 × 10−5,pcorr = 6.39 × 10−5, n = 411), with a nega-
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Fig. 2. APOE genotype interactions. Left plot: The lines show the β values (slope) from the regression analyses on thickness-based brain age gap and age started
hormone replacement therapy (HRT), for the APOE e4 carriers (red) and non-carriers (blue). The fitted values are corrected for the effect of the covariates in the model
(number of births, had hysterectomy, and/or oophorectomy). The shaded areas show the 68.3% (1 SD) and 95% (2 SD) confidence intervals for each fit. Right plot: The lines
show the β values (slope) from the regression analyses on full T1w model brain age gap and oestradiol levels, for the APOE e4 carriers (red) and non-carriers (blue). The
fitted values are corrected for the effect of the covariates in the model (number of births, current HRT use, ever used HRT, length since menopause, age at first birth, and
education).

tive main effect of estradiol levels on brain age gap (β =
−2.74 × 10−3,SE = 8.46 × 10−4, t = −3.24,p = 2.60 ×
10−3). Based on this finding the subsequent analyses were
also corrected for education and age at birth. Significant in-
teractions were also found for the brain age model based on
cortical thickness (β = 6.08 × 10−3,SE = 1.82 × 10−3, t =
3.35,p = 8.93 × 10−3,pcorr = 2.60 × 10−3), cortical vol-
ume (β = 6.59 × 10−3,SE = 1.49 × 10−3, t = 4.42,p =
1.28 × 10−5,pcorr = 6.39 × 10−5), and subcortical volume
(β = 5.47 × 10−3,SE = 1.93 × 10−3, t = 2.84,p = 4.82 ×
10−3,pcorr = 6.88 × 10−3). No effects were found on brain
age gap based on diffusion (β = 1.12 × 10−3,SE = 2.58 ×
10−3, t = 0.47,p = 0.64,pcorr = 0.64, n = 226). Follow-
up analyses showed main effects of estradiol levels on brain
age gap based on the full T1w model for both the APOE e4
carriers (n = 101; β = 5.13 × 10−3,SE = 1.52 × 10−3, t =
3.37,p = 1.10 × 10−3,pcorr = 2.60 × 10−3) and the non-
carriers (n = 310; β = −2.73×10−3,SE = 8.60×10−4, t=
−3.17,p= 1.67×10−3,pcorr = 2.78×10−3). The effect in
carriers was not dose-dependent (full T1w model: β= 3.10×
10−3,SE = 4.89×10−3, t= 0.63,p= 0.53,pcorr = 0.59, n
with 1 e4 allele = 90, n with 2 e4 alleles = 11).

3 Discussion
The results show that higher cumulative estrogen exposure,
higher endogenous exposure, and higher exogenous expo-
sure were each linked to higher brain age relative to chrono-
logical age. In APOE e4 carriers, starting hormone replace-
ment therapy earlier, particularly before onset of menopause,
was associated with less evident brain aging. No relationship
was seen between age at HRT onset and brain aging in non-
carriers. Higher estrogen levels during menopause were as-

sociated with higher brain age gap in carriers and lower brain
age gap in non-carriers. Two main conclusions can be drawn
from the results: I) In light of our recent findings showing a
link between parity and lower brain age relative to chronolog-
ical age (49), estrogen exposure and parity may differentially
relate to brain aging; II) The genotype-specific associations
between age at onset and dosage of HRT and brain aging sug-
gest that genetic factors are important to consider in clinical
settings.

In accordance with studies showing negative effects of es-
trogen exposure on cognition (12) and risk of dementia (20),
our results showed associations between estrogen exposure
and more evident brain aging, also in HRT users compared to
never-users. Effects of HRT have been conceptualized by two
theories: the ’healthy cell bias of estrogen action hypothesis’
(61) and the ’critical period hypothesis’ (62). The first hy-
pothesis states that neuronal viability and health before HRT
initiation might be of importance for estrogen to exert its ther-
apeutic effects. This mechanism might be relevant for HRT
effects in women undergoing hysterectomy and/or oophorec-
tomy based on medical indications (61). However, we did
not find differences in brain age gap between women who un-
derwent natural or surgical menopause (see SI). The ‘critical
period hypothesis’ states that HRT may be neuroprotective
if it is initiated near the time of cessation of ovarian func-
tion - approximately within 5 years of menopause (63, 64).
Our results lend further support to this hypothesis, as we
found that an earlier age at HRT initiation, particularly be-
fore menopause, was associated with less evident brain aging.
However, this relationship was present in APOE e4 carriers
only, indicating genotype-specific effects of HRT on brain
aging. Our findings also showed that higher brain age rela-
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tive to chronological age was linked to higher menopausal
levels of estradiol in carriers and lower estradiol levels in
non-carriers. Increased estradiol levels induced by estrogen
therapy have been associated with less cognitive decline and
reduced risk of developing AD in non-carriers, but not in car-
riers (19, 65). Thus, obtaining the APOE genotype may be
of particular importance for optimizing timing and dosage of
HRT in perimenopausal women.

Although millions of women worldwide use oral contra-
ceptives (OC; (66)), and emerging evidence suggests effects
of OC on aspects of brain structure and function in young
adults (reviewed by (67)), its impact on brain aging is un-
known. In the current study, neither OC use status nor age
at OC initiation showed an association with brain age gap in
pre-menopausal and menopausal women, but a positive asso-
ciation was found between duration of OC use and brain age
gap based on cortical volume. While longitudinal studies are
needed to draw conclusions, this finding could indicate that
chronic, ovarian hormone suppression may lead to lower cor-
tical volume later in life. This is contrary to previous findings
suggesting an increase in gray matter volume after short-term
OC use (68). However, evidence suggests that the direction
of any impact of OC on brain structure likely depends on the
drug formulation (67).

The opposite associations between estrogen exposure and
brain aging versus number of childbirths and brain aging in-
dicate that the inclusion of parity in approximations of es-
trogen exposure may complicate conclusions. Pregnancy in-
volves additional factors that influence brain aging, such as
immune regulations (39, 46, 69), and the pregnancy-induced
increase in concentration of regulatory T cells may have im-
plications for inflammatory susceptibility later in life (40).
The ‘pregnancy-compensation hypothesis’ (70) suggests that
women’s immune system ramps up throughout adulthood to
prepare for a sequence of pregnancies, as from an evolu-
tionary perspective and before birth control, the majority of
women would have been pregnant for many of their adult
years. According to Natri and colleagues, problems may
arise when the ‘expected’ pregnancies fail to occur; without
a frequent push-back from pregnancy-related mechanisms,
the immune system can become overly elevated and start re-
leasing auto-antibodies that attack healthy cells (70). Pos-
itive effects of parity on the brain may thus reflect mecha-
nisms related to immune factors rather than estrogen fluctu-
ations involved in pregnancy (40). The cessation of ovar-
ian hormone function during menopause has been linked to
altered inflammatory processes, increase in cytokine levels,
and changes in T cell biology (reviewed by (71)). These
processes might constitute a menopausal immune senescence
that may increase the risk for AD, of which the pathogenesis
is known to involve inflammatory processes (40, 72). Given
the pregnancy-related proliferation of regulatory T cells, a
first line of defence against inflammatory responses, one
could speculate that an enduring elevation of T cells (73)
might protect against menopause-related inflammation and
lead to more favorable aging trajectories in parous women.

However, prospective longitudinal studies are needed to in-
vestigate such hypotheses in depth.

To the best of our knowledge, the current study is the
first comprehensive study of the associations between en-
dogenous and exogenous hormone exposure, APOE geno-
type, and normal brain aging in a population-based co-
hort. Multidimensional large-scale studies are key to fos-
ter the understanding of who will undergo typical aging and
who may be at risk for neurodegenerative diseases. Such
knowledge is crucial to improve early interventions, treat-
ment regimes, and subsequent outcomes for individuals at
risk. Yet, the limitations of the presented work should be
considered: First, the cross-sectional nature of the study
does not enable causal inference, and longitudinal studies
are needed to fully understand how estrogen exposure influ-
ences women’s brain health across the lifespan. Secondly,
the cohort data lacks details on HRT and OC formulation,
administration, and dosage. While HRT commonly consists
of either combined hormone treatment (estrogen plus pro-
gestin) or unopposed estrogen treatment (estrogen alone),
combined OC mostly contains ethinylestradiol and varying
levels of progestins. Different compound compositions and
modes of administration may affect brain aging differently,
and study-specific differences in compounds and usage may
contribute to discrepancies in findings observed in the litera-
ture. In addition, duration of HRT/OC use was only avail-
able in years and not months or weeks, such that women
who took it for less than a year were labelled as non-users.
This lack of temporal resolution could have affected our re-
sults. The lack of information on breastfeeding, which is
known to reduce cumulative exposure to endogenous estro-
gen, may also have influenced the precision of our approx-
imations. Thirdly, genetic aging studies involve a bias to-
wards survivors, and the number of APOE e4 carriers is as-
sumed to decrease with increasing age (74). In the present
study, age was negatively associated with number of carri-
ers (r= −0.03,p= 0.80×10−4,95%CI = [−0.05,−0.02]),
possibly influencing the genotype-related results. Further,
oestradiol levels were only available for a subset of women,
and within this subset, a relatively high proportion of women
(80%) had oestradiol values in the lower range. The UK
Biobank notes that this reflects the menopausal status of the
participants at recruitment (with 25% being premenopausal
(https://biobank.ctsu.ox.ac.uk/biomarker_issues.pdf), which
is expected given the age range of the cohort. Hence, the
presented results may not apply to populations beyond those
represented in the UK Biobank (75). Finally, although the
brain age model based on diffusion-weighted MRI was the
most precise model in terms of age prediction (see Table 1),
it only showed significant associations with HRT status and
duration of OC, while the full T1w model showed associ-
ations with both endogenous and exogenous estrogen mea-
sures. While these differences may be genuine, they could
also be due to the lower size of the diffusion sample. The
inclusion of multiple brain age models can be informative in
patient groups where tissue types are differently affected by
disease (56, 57, 76–78), leading to varying brain age predic-
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tions across models. However, such models could be more
closely related in healthy samples (55) such as the current
cohort, which aligns with the relatively consistent results ob-
served across models (see Figure 1).

In conclusion, our findings indicate that I) estrogen ex-
posure may relate to women’s brain aging through different
pathways than parity, and II) particularly exogenous estrogen
exposure interacts with genotype, producing different associ-
ations between estrogen and brain aging in APOE e4 carriers
and non-carriers. Future studies should emphasize longitu-
dinal designs and genotype interactions to obtain a complete
understanding of how estrogen exposure influences women’s
brain aging.
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4 Materials and Methods

4.1 Sample: The sample was drawn from the UK
Biobank (www.ukbiobank.ac.uk), and included 16,854
pre-menopausal and menopausal women. For 9798 of
them, diffusion-weighted imaging measures were available.
Sample demographics are provided in Table 3.

4.2 Hormone exposure: Women who had missing data, or
had responded ’do not know’ or ’prefer not to answer’ for
any of the relevant variables, were excluded for each anal-
ysis. For relevant analyses, women with a reported age at
menarche (n = 1) or age at OC start (n = 1) at 5 years
were excluded. ICEE was approximated by including age
at menarche and menopause, duration of hormone replace-
ment therapy in years (HRT), body mass index (BMI), and
time since menopause in years. The variables were first
standardized and then either added (duration HRT, age at
menopause, BMI) to or subtracted (age at menarche, time
since menopause) from the index depending on their impact
on endogenous estrogen (7). After removing women with
missing data, 8,878 women were included in the ICEE anal-
yses involving the main brain-age model, while 5,080 women
were included in the analysis involving the diffusion model.
Reproductive span was calculated as age at menopause —
age at menarche. After removing missing data, 9,188 women
were included in the analyses involving the full T1w model,
while 52,89 women were included in the analysis involv-
ing the diffusion model. For HRT, 11,139 never-users and
5,546 users were included in the analyses involving the full
T1w model, while 64,61 never-users and 3,240 users were
included in the analysis involving the diffusion model. For
OC, 2,213 never-users and 14,615 users were included in the
analyses involving the full T1w model, while 1,279 never-
users and 8,501 users were included in the analysis involving
the diffusion model. Women who had never used HRT/OC
were coded 0, while current and former users were coded 1.

Multiple regression analyses were run to investigate the asso-
ciation between estimates of hormone exposure and brain age
gap models. All analyses were corrected for number of child-
births. In addition, model-specific covariates were included
to correct for potential confounds: (1) the reproductive span
models included ever used HRT and ever used OC, and (2)
the HRT models included had hysterectomy and/or oophorec-
tomy. To test whether other known confounders such as age
at first birth and education (49) could influence the results,
additional models including these variables were run. The
statistical analyses were conducted using R, version 3.5.2,
and Python 3.

4.3 Genotyping: For genotyping, we used the UK Biobank
version 3 imputed data, which has undergone extensive qual-
ity control procedures as described by the UK Biobank ge-
netics team (79). The APOE e genotype was approxi-
mated based on the two APOE e single-nucleotide poly-
morphisms - rs7412 and rs429358 (80). Further infor-
mation on the genotyping process is available in the UK
Biobank documentation (www.ukbiobank.ac.uk/scientists-
3/genetic-data), including detailed technical documentation
(genotyping_workflow.pdf). APOE e4 status was labelled
carrier for e3/e4 and e4/e4 combinations, and non-carrier
for e2/e2, e2/e3 and e3/e3 combinations (81). The homozy-
gous e2/e4 allele combination was removed due to its ambi-
guity with e1/e3 (82). To examine whether APOE e4 status
influenced the observed associations between estrogen expo-
sure and brain aging, we performed additional linear mod-
els including interaction terms for APOE e4 status and each
estimates of hormone exposure that showed significant re-
sults. Covariates were the same as those included in the main
analyses (provided in section 2.1 - 2.3). All the continuous
variables (ICEE, reproductive span, age started HRT and OC,
duration of HRT and OC use, and estradiol levels) were mean
centered for the interaction analyses.

4.4 Hormone assay: Serum blood samples were taken at
day of MRI scan. Estradiol was analyzed at the UK
Biobank’s purpose-build laboratory in Stockport, and mea-
sured by two step competitive analysis on a Unicel DXI 800
Access Immunoassay System (Beckman Coulter, UK, Ltd;
analytical range: 73 - 17621 pmol/l). Further information on
the immunoassay and quality control steps is available in the
UK Biobank documentation (serum_biochemistry.pdf). To
investigate whether APOE e4 status interacted with circulat-
ing estradiol levels in menopausal women, multiple linear re-
gressions were run including an APOE e4 status * circulating
estradiol level interaction term. The models were corrected
for current HRT use, ever used HRT, length since menopause,
and number of births.

4.5 MRI processing: An accurate overview of the data ac-
quisition, protocol parameters, and image validation can
be found in (83) and (84). Raw T1-weighted MRI data
for all participants were processed using a harmonized
analysis pipeline, including automated surface-based mor-
phometry and subcortical segmentation as implemented in
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Table 3. Demographics for the T1-weighted sample and the diffusion weighted sample. M ± SD = mean ± standard deviation. Ethnic background: W = white, B =
black, M = mixed, A = Asian, C = Chinese, O = other. Educational qualification: U = university/college degree, A = A levels or equivalent, O = O levels/General Certificate
of Secondary Education (GCSE) or equivalent, C = Certificate of Secondary Education (CSE) or equivalent, N = National Vocational Qualification (NVQ) or equivalent,
P = professional qualification, e.g. nursing/teaching, Noa = none of the above. For the categories, see http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=100305 and
http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=1001

DEMOGRAPHICS

Sample N Age (M ± SD) Ethnic background % Educational qualification %

T1w 16854 54.70 (7.29) W 97.39 | B 0.61 | M 0.52 | A 0.67 | C 0.33 | O 0.45 U 43.27 | A 13.97 | O 21.28 | C 4.14 | N 3.32 | P 5.75 | Noa 6.42

Diffusion 9829 54.68 (7.28) W 97.55 | B 0.87 | M 0.54 | A 0.63 | C 0.35 | O 0.40 U 41.52 | A 13.77 | O 22.57 | C 4.30 | N 3.26 | P 5.90 | Noa 6.76

Table 4. Responses on the question ‘Have you had your menopause?’ for the T1w sample and the diffusion sample. http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2724

MENOPAUSAL STATUS

Sample N ‘Yes’ ‘No’ ‘Not sure - had a hysterectomy’ ‘Not sure - other reason’ ‘Prefer not to answer’

T1w 16854 50.97% 30.29% 10.50% 10.50% 0.08%

Diffusion 9829 53.44% 30.69% 10.73% 5.06% 0.07%

FreeSurfer 5.3 (58). In line with recent large-scale imple-
mentations (51, 53), we utilized a fine-grained cortical par-
cellation scheme (59) to extract cortical thickness, area, and
volume for 180 regions of interest per hemisphere, in addition
to the classic set of subcortical and cortical summary statis-
tics from FreeSurfer (58). This yielded a total set of 1118
structural brain imaging features (360/360/360/38 for corti-
cal thickness/area/volume, as well as cerebellar/subcortical
and cortical summary statistics, respectively). The MRI vari-
ables were residualized with respect to scanning site, ethnic
background, intracranial volume, and Freesurfer-derived Eu-
ler numbers (85) using linear models. To remove outliers,
participants with Euler numbers of SD ± 4 were identified
and excluded (n = 159). In addition, participants with SD
± 4 on the global MRI measures mean cortical or subcorti-
cal gray matter volume were excluded (n = 79 and n = 13,
respectively), yielding a total of 16,854 participants with T1-
weighted MRI data.

For the diffusion-weighted MRI data, a conventional
Stejskal-Tanner monopolar spin-echo echo-planar imaging
sequence was used with multiband factor 3. Diffusion
weightings were 1000 and 2000 s/mm2 and 50 non-coplanar
diffusion directions per each diffusion shell. The spatial res-
olution was 2 mm3 isotropic, and 5 AP vs 3 PA images with
b = 0 s/mm2 were acquired. All diffusion data were post-
processed using an optimised diffusion pipeline (86) con-
sisting of 6 steps: noise correction (87, 88), Gibbs-ringing
correction (89), estimation of echo-planar imaging distor-
tions, motion, eddy-current and susceptibility distortion cor-
rections (90, 91), spatial smoothing using fslmaths from FSL
package (92) with the Gaussian kernel 1mm3, and diffu-
sion metrics estimation. Diffusion maps of diffusion ten-
sor imaging (DTI) and diffusion kurtosis imaging (DKI) de-
rived metrics were estimated using Matlab R2017a (Math-
Works, Natick, Massachusetts, USA) as proposed by Ver-
aart and colleagues (93). The DTI metrics included mean
diffusivity (MD), fractional anisotropy (FA), axial diffusiv-
ity, and radial diffusivity (94). The DKI metrics included
mean kurtosis, axial kurtosis and radial kurtosis (95). White

matter tract integrity included the metrics axonal water frac-
tion, extra-axonal axial diffusivity and extra-axonal radial
diffusivity (96). See (86) for details on the processing
pipeline. Tract-based spatial statistics was used to extract
diffusion metrics (97). Initially, all maps were aligned to
the FMRI58FA template supplied by FSL, using non-linear
transformation in FNIRT (98). Next, a mean FA image of
18600 subjects was obtained and thinned to create a mean
FA skeleton. The maximal FA values for each subject were
then projected onto the skeleton to minimize confounding ef-
fects due to partial voluming and any residual misalignments.
Finally, all diffusion metrics were projected onto the subject-
specific skeletons. For the brain age prediction, we used
mean diffusion values across the skeleton and in regions of
interests based on John Hopkins University atlases for white
matter tracts (with 0 thresholding). To remove outliers, we
excluded participants with Euler numbers of SD ± 4 (n = 89),
and/or SD ± 4 on the full skeleton-based measures mean FA
or mean MD (n = 58 and n = 9, respectively), yielding a total
of 9,829 participants with diffusion-weighted MRI data.

4.6 Principal component analysis (PCA): A PCA run
with z-transformed MRI variables z = (x−µ)/σ, where x
is an MRI variable of mean µ and standard deviation σ). The
top 100 components were used in the subsequent analyses,
explaining 56.48% of the total variance, as shown in Fig-
ure 3. As a cross check, the relationships between ICEE and
brain age gap was re-analyzed with 200 components, explain-
ing 70.61% of the total variance. With 200 components in-
cluded, the association between ICEE and brain age gap was
β = 0.03,SE = 0.01, t= 2.42,p= 0.02. As the results were
consistent, 100 components were chosen to reduce computa-
tional time.

4.7 Brain age prediction: Brain age prediction estimates
an individual’s apparent brain aging based on structural
brain characteristics derived from MRI. Subtracting chrono-
logical age from estimated brain age provides a measure
of an individual’s brain age gap; the difference between
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Fig. 3. Left: Cumulative explained variance for the PCA components based on
1118 z-transformed MRI variables used in the brain age analysis. Right: Explained
variance ratio shown for the top 10 PCA components used in the brain age analysis.

their estimated brain age and their chronological age. For
instance, if a 60 year old individual shows a brain age gap
of -5 years, their typical aging pattern resembles the brain
structure of a 55 year old individual, i.e. their brain is
‘younger looking’ than what is expected for their chrono-
logical age (50). The XGBRegressor model from XGBoost
(https://xgboost.readthedocs.io/en/latest/python/index.html)
was used to run the brain age prediction analysis with an
algorithm that has been used in recent large-scale brain age
studies (51, 52). Parameters were set to max depth = 3,
number of estimators = 100, and learning rate = 0.1 (de-
faults). The predicted age based on the PCA components was
estimated in a 10-fold cross validation with 10 repetitions
per fold, assigning an estimated brain age to each individual.
Brain age gap was calculated using estimated brain age - true
age. Average RMSE and R2 were calculated from the cross
validation and compared to null distributions calculated from
10,000 permutations. The results are shown in Figure 4.
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Fig. 4. Left: The mean ± SD root mean square error (RMSE) for the full T1w brain
age model was 6.06±0.09, based on a 10-fold cross validation with 10 repetitions
per fold (red vertical line). The null distribution calculated from 10,000 permutations
is shown in gray, with a mean ± SD of 7.32 ± 0.006. The number of permuted
results from the null distribution that exceeded the mean from the cross validation
was 0 (p= 1.00 × 10−4). Right: The mean ± SD R2 for the brain age model was
0.31 ± 0.09, based on a 10-fold cross validation with 10 repetitions per fold (red
vertical line). The null distribution calculated from 10,000 permutations is shown in
gray, with a mean ± SD of −0.007 ± 0.002 (p = 1.00 × 10−4).

In order to adjust for a frequently observed bias leading
to generally overestimated age predictions at low age and un-
derestimated predictions at high age (52, 99), we employed
the following regression:

Predicted age =A+B× True Age +C× True Age2 (1)

where the coefficients A, B and C parameterize the relation-
ship between the true and predicted age. These coefficients

were then used to remove the effect of the bias, as illus-
trated in Figure 5. To ensure that the bias correction was em-
ployed successfully, we tested the association between bias-
corrected brain age delta based on the full T1w model and
estimates of hormone exposure while controlling for chrono-
logical age. The test showed results consistent with the main
findings: ICEE: β = 0.05,SE = 0.01, t = 3.54,p = 3.98 ×
10−4; reproductive span: β = 0.02,SE = 6.13 × 10−3, t =
2.84,p= 4.49×10−3; HRT status: β = 0.17,SE = 0.06, t=
3.03,p = 2.49 × 10−3, age at HRT onset: β = 0.03,SE =
8.71 × 10−3, t = 3.03,p = 2.46 × 10−3; duration of HRT
use: β = 3.51×10−3,SE = 4.86×10−3, t= 0.72,p= 0.47;
OC status: β = 0.11,SE = 0.07, t = 1.64,p = 0.10; Age
at OC onset: : β = −4.21 × 10−3,SE = 6.31 × 10−3, t =
−0.67,p= 0.50; duration of OC use: β= 7.78×10−3,SE=
3.11×10−3, t= 2.50,p= 0.01

Fig. 5. left: Machine performance is biased towards the mean age, resulting in over-
estimated predictions at low age and underestimated predictions at high age. Right:
After bias correction using Eq. 1, the predictions follow the expected dependence.

For the brain age models based on cortical thickness, corti-
cal volume, and subcortical volume, and diffusion measures,
the number of MRI variables, RMSE values, and the correla-
tions between predicted and chronological age are shown in
Table 1. The correlations between brain age gap estimated
from the different models is shown in Figure 6.
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Fig. 6. The correlations between age corrected brain age gap estimated based on
the different sub-models.
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