
1 
 

Enhanced prediction of gene and missense rare-variant pathogenicity by joint analysis of 
gene burden and amino-acid residue position 
 
Waring A.J.1, Harper A.R.1,2, Salatino S.1, Kramer C.M.4, Neubauer S2, HCMR Investigators, Thomson K.L.2,3, 
Watkins H.1,2, Farrall M.1,2 
 
1. Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK 
 
2. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Division of 
Cardiovascular Medicine, John Radcliffe Hospital, Oxford, OX3 9DU 
 
3. Oxford Medical Genetics Laboratories, Churchill Hospital, Oxford, OX3 7LE 
 
4. University of Virginia Health System, Charlottesville, VA, USA 
 
 
Correspondence to: Martin Farrall (martin.farrall@cardiov.ox.ac.uk) 
 
 
 
 
 
Author contributions 
 
Waring: Conceptualization, Formal Analysis, Investigation, Methodology, Software, Visualization, Writing – 
Original Draft Preparation 
 
Harper, Salatino, Kramer, Neubauer, HCMR Investigators: Data Curation 
 
Thomson: Conceptualization, Writing – Review & Editing 
 
Watkins: Conceptualization, Writing – Review & Editing 
 
Farrall: Conceptualization, Methodology, Supervision, Writing – Review & Editing 
 
 
 
 
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2019. ; https://doi.org/10.1101/826164doi: bioRxiv preprint 

mailto:martin.farrall@cardiov.ox.ac.uk
https://doi.org/10.1101/826164
http://creativecommons.org/licenses/by/4.0/


2 
 

Abstract 
 
Although rare missense variants underlying a number of Mendelian diseases have been noted to cluster in 
specific regions of proteins, this information may be underutilized when evaluating the pathogenicity of a 
gene or variant. We introduce ClusterBurden and GAMs, two methods for rapid association testing and 
predictive modelling, respectively, that combine variant burden and amino-acid residue clustering, in case-
control studies. We show that ClusterBurden increases statistical power to identify disease genes driven by 
missense variants, in simulated and experimental 34-gene panel for hypertrophic cardiomyopathy. We 
then demonstrate that GAMs can be used to apply the ACMG criteria PM1 and PP3 quantitatively, and 
resolve a wide range of pathogenicity potential amongst variants of uncertain significance. An R package is 
available for association testing using ClusterBurden, and a web application (Pathogenicity_by_Position) is 
available for missense variant risk prediction using GAMs for six sarcomeric genes. In conclusion, the 
inclusion of amino-acid residue positional information enhances the accuracy of gene and rare variant 
pathogenicity interpretation. 
 
 
 
Author Summary 
 
Two statistical methods have been developed that utilize signal in the residue position of missense variants. 
The first is a rapid association method that tests the joint hypothesis of an excess of rare-variants and rare-
variant clustering. The method, ClusterBurden, is powerful when rare-missense variants cluster in discrete 
pathogenic regions of the protein. It can be applied to exome-scans to discover novel Mendelian disease-
genes, that may not be identified by classic burden testing. The second method is a statistical model for 
rare-missense variant interpretation. It provides superior predictive performance compared to generic in 
silico predictors by training on our large case-control dataset. The method represents a data-driven 
quantitative approach to apply hotspot and in-silico prediction criteria from the ACMG variant 
interpretation guidelines.   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2019. ; https://doi.org/10.1101/826164doi: bioRxiv preprint 

https://doi.org/10.1101/826164
http://creativecommons.org/licenses/by/4.0/


3 
 

1. Introduction 

It has been frequently reported that pathogenic missense variants, tend to cluster in specific regions or 

domains of proteins [1-7]. A plausible mechanism underpinning this phenomenon is the presence of 

multiple loss or gain-of-function variants within functionally important domains, which disrupt critical 

aspects of protein function [8]. Despite numerous examples of variant clustering, there have been few 

attempts to explicitly model variant residue position as a predictor of pathogenicity [9]. 

Pathogenic genes for Mendelian diseases were historically identified by linkage and candidate gene studies 

in multiple affected families [10]. Advances in high-throughput DNA sequencing technology allow scanning 

of whole-exome or whole-genome sequencing of patient cohorts to offer an alternative strategy to identify 

novel pathogenic genes and variants. The aggregated burden of variants in affected cases compared to 

healthy controls has proved to be a useful statistical test to confirm the pathogenicity of candidate genes 

[11] as well as identify novel putative pathogenic genes [12]. However, for genes where variant 

pathogenicity is not uniform, including positional information alongside burden may improve power to 

detect associated genes.  

The American College of Medical Genetics and Genomics (ACMG) have produced general guidelines to 

interpret variant pathogenicity [13]. These guidelines integrate a variety of diverse data, including 

population frequency, functional and segregation data, and classify variants into five categories from 

benign to pathogenic. However, due to low counts of observed variants in case datasets, a lack of 

segregation data and functional evidence, or presence in control datasets, many variants fall into the 

category ‘variant of uncertain significance’ (VUS).  

Hypertrophic cardiomyopathy (HCM), a relatively common disease (1 in 500 prevalence), is an exemplar 

for this. It is a major cause of heart disease in people of all ages [14-15] and a cause of sudden cardiac death. 

Eight sarcomeric genes collectively provide firm molecular diagnoses for ~27% of HCM patients, with a 

further ~13% of patients carrying VUS in the same genes. It has been suggested that disease and gene-

specific approaches are needed to improve interpretation [16] and guidelines have been produced for 

specific genes and/or disease areas [17-21]. Missense variant clustering is a gene-specific metric that falls 

under the ACMG evidence category PM1(‘mutational hotspot’). However, there has previously been limited 

data to define these ‘hotspots’ quantitatively. Therefore this category is only used subjectively for a limited 

number of genes. 

Here we introduce two new statistical methods to aid in the identification of novel causal genes and 

reassess the pathogenicity of variants in well-established disease genes. We show that information on a 

variants’ amino-acid position can usefully augment power to detect novel pathogenic genes compared to 

simpler, mutation burden-based tests. We apply the methods to an extensive dataset of 5,338 HCM cases 

and use 125,748 gnomAD population controls [22], to visualise the landscape of burden and position 

signals across 34 cardiomyopathy genes. Finally, we develop and apply a flexible statistical modelling 

framework that can integrate variant burden with residue annotation data to predict pathogenicity 

potential in six well-established pathogenic HCM genes.  

 

2. Methods 

A computationally rapid, rare variant association test (ClusterBurden) was developed to test the joint 

hypothesis of an excess of rare missense variants, clustered with respect to amino-acid residue position in 

case-control data. This was accomplished by combining p-values from a rare variant burden test with a 

second binning test that detects variant clustering.  
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2.1 ClusterBurden – A combined rare variant burden and cluster test 

A 2 x 2 contingency table was constructed to summarise variant carrier status in cases and controls. The 

tables, which sometimes include low (fewer than 5) or zero cell counts, are conveniently analysed by 

Fisher’s exact test (FE). While we recognize that, as the number of observed variants is not fixed, a singly-

conditioned exact test of odds-ratios (OR) is a more appropriate statistical test for case-control studies [23], 

FE was pragmatically used for its speed of computation and ease of implementation. As there are no known 

examples of a protective burden of rare exonic variants in cardiomyopathy, we consider only one-sided 

significance tests, where the p-value is the proportion of contingency tables with ORs higher than the 

observed one. 

To test for distributional differences, along the length of a protein, the protein’s linear sequence of amino-

acid residues was split into k bins of equal length. To test the hypothesis that variants cluster in specific 

bins, in affected cases compared to controls, we applied a chi-squared two-sample test (hereafter BIN-test) 

to a k x 2 contingency table of binned variant counts in cases and controls. The BIN-test statistic is defined 

as: 

𝐵 =  ∑
(𝐾1𝑅𝑖 −  𝐾2𝑆𝑖)2

𝑅𝑖 +  𝑆𝑖

𝑘

𝑖=1
 

where R is the frequency in bin Ki for the cases and S is the frequency in bin Ki for controls. The test statistic 

B is asymptotically chi-squared distributed with k degrees of freedom. We used the k ~ n2/5 heuristic [24] 

to select the number of bins (k) dependent on n, the number of observations. We compared the 

performance of the BIN-test with Anderson-Darling (AD) [25] and Kolmogorov-Smirnov (KS) [26] two-

sample distributional tests. 

Fisher’s method [27] was used to calculate the joint significance of the contributing burden and cluster 

tests by summing the natural logarithms of the two p-values, multiplied by minus two, to produce a chi-

squared statistic with 4 degrees of freedom. An important assumption of this method is that the two p-

values are uncorrelated; this was assessed in simulated data using Spearman’s rank correlation test [28].  

2.2 A combined rare variant burden and annotation prediction model  

We fitted gene-specific generalized additive models (GAM) [29] implemented in the R package “mgcv” [30], 

to model rare missense variants in firmly-established pathogenic genes. The model was trained on disease 

status in our HCM-gnomAD case-control dataset and is unsupervised with respect to variant pathogenicity. 

The model is therefore not reliant on previous classifications and includes all rare-variants in both cases 

and controls to make estimates of odds-ratios. This allows us to quantify pathogenicity and uncertainty for 

variants, taking background variation and incomplete penetrance into account. 

GAMs adaptively model linear and non-linear relationships of varying complexity, between explanatory 

variables (e.g. burden, residue position) and the response variable (case-control status). Non-linear terms 

specified as smooth functions are built from underlying basis functions whose linear combination sum to 

smooth the predictor fully. Automatic optimisation by penalized maximum likelihood reduces over-fitting 

as increased ‘wiggliness’ comes at a user-specified cost. GAMs therefore facilitate a flexible and 

parsimonious non-linear model-selection strategy to integrate rare variant burden and amino-acid 

annotation data. 

The primary predictive features were carrier status (to model rare-variant gene-level burden) and residue 

position (to model clustering). Secondary predictive features included several variant prediction scores 

(e.g. SIFT [31]) extracted from the dbNSFP4.0 database [32]. To include the gene ‘burden’ in the model, 

non-carriers (i.e. samples without a variant in the gene) were included in the model. However, variant-level 

features such as amino-acid position are undefined (i.e. meaningless) for non-carriers, so a nested 

hierarchical model structure is required, whereby features are included in the model only as an interaction 
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with carrier status. Carrier status as a binary indicator variable is then multiplied with the model matrix 

for smoothed terms, such as amino-acid position. For non-carriers, the indicator variable is zero to exclude 

this undefined data from the analysis.  

The structure of an example GAM with three independent predictors, a [0,1] indicator variable for carrier 

status (car), a continuous variable for amino-acid position (aapos) and the continuous variable for SIFT 

score (sift_score) is as follows: 

Ln(P/1-P) = β0 + β1 car + s1 (aapos, by = car) + s2 (sift_score, by=car) + ε 

where Ln(P/1-P) is a logistic function specifying the probability of being a case (P), β0 the model intercept, 

β1 a linear coefficient for car, s1 a smoothed (i.e. non-linear) function for aapos, s2 a  smoothed function for 

sift_score, by is used to generate factor smooth interactions and ε is a binomial random residual error term. 

GAMs were fitted using thin-plate regressions and parameters were estimated by restricted maximum 

likelihood (REML). A strict two-stage feature selection procedure was implemented to avoid overfitting. In 

stage 1, only features with a marginal p-value < 0.002 (0.05/24 for Bonferroni correction) were selected. 

In stage 2, backwards elimination was implemented using p-values Bonferroni corrected for the number of 

features selected in stage 1. 

Six genes (MYBPC3, MYH7, MYL2, MYL3, TNNI3 and TNNT2) each carrying at least 20 rare missense variants 

in our HCM cases and with a significant positional signal, were informative for GAM analysis. Carrier status 

(gene burden) and amino-acid residue position (local burden) were included as primary predictive features 

(posGAM). A two-stage selection of secondary features (e.g. SIFT scores) was then performed to model the 

relationship between HCM status with the primary features and any retained secondary features (fullGAM). 

ORs with standard errors were computed for each variant to predict their respective strengths of 

association. Two other sarcomeric genes that showed evidence of excessive burden, ACTC1 and TPM1, but 

had insufficient evidence of clustering, so positional GAM modelling was less informative for these genes. 

Our GAM models are capable of integrating pathogenicity data underpinning two ACMG criteria; PM1 

(mutational hotspot) and PP3 (in silico prediction algorithms). There is currently no quantitative way to 

activate PM1 and PP3. For criteria PP1 and PS4, [17] propose OR thresholds for MYH7 to quantify evidence 

of pathogenicity as 10-30 for supporting, 30-100 for moderate and >100 for strong. Adopting the same 

thresholds, GAMs can compute variant-specific ORs that can quantitatively apply the PM1 and PP3 criteria, 

as supporting, moderate or strong evidence.  

The relative performance of alternative GAM models was assessed by receiver operator characteristic 

(ROC) curves across ten cross-fold validations using 80:20 splits. Model predictions were stratified by 

manual variant classifications, obtained from an in-house database to determine correlation.  

2.3 Simulated and observed data 

A computationally rapid forward-time rare variant simulator was coded in R to model missense variants in 

proteins, clustered in pathogenic regions under high selection (S1 Methods). Briefly, demography was 

based on European population history, mutations followed an infinite sites model and mating was 

dependent on selection. Three clustering scenarios were considered: 1) a uniform pathogenicity model 2) 

a single cluster model equivalent to a protein with one discrete pathogenic region and 3) a multiple cluster 

model where the protein contains several pathogenic regions. Simulation parameters such as mutation rate 

were tuned to generate a simulated case-control cohort with properties comparable to weakly associated 

genes in our HCM-gnomAD dataset. Simulated ORs were kept intentionally low for two reasons; to ensure 

power was <95% for each test to facilitate comparisons of power, and to highlight that the power to detect 

associations for relatively low penetrance genes requires highly efficient methods. 

Synthetic data were generated for 5,000 cases and 125,000 controls and variants were filtered at a minor 

allele frequency of <0.0001. The type 1 error and power of ClusterBurden was compared to two published 
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position-informed association methods: DoEstRare [9] and CLUSTER [33], and three position-uninformed 

methods: C-alpha [34], SKAT [35], WST [36], using 10,000 replicate datasets, under the three different 

clustering scenarios and two different protein lengths (500 and 1,000). Power and type 1 error were 

calculated using the (r+1)/(n+1) estimator where r represents the number of simulated datasets with p-

values less than the 0.05 and n is the number of simulations [37]. Implementation details for all tests 

considered are found in S1 Table.  

Next-generation sequence (NGS) data for 34 cardiomyopathy genes were available for two large HCM 

cohorts; 2,757 probands referred to the Oxford Medical Genetics Laboratory (OMGL) for genetic testing 

and 2,636 HCM probands recruited to the HCMR project [38]. High coverage exonic sequences were 

captured by target enrichment and sequenced on the MiSeq platform (Illumina Inc.). Bioinformatic 

processing of NGS data followed the Genome Analysis ToolKit version 4 best practice guidelines 

(https://software.broadinstitute.org/gatk/best-practices/). OMGL variants were confirmed by Sanger 

sequencing, HCMR variants were manually checked by inspection of BAM files. 

In all analyses, only missense variants were considered, defined as single nucleotide polymorphisms that 

cause a single amino acid residue substitution in the protein sequence. The gnomAD population reference 

database was used as a control group, which includes variant frequency data based on up to 125,748 

individuals. Individual sample-level information is unavailable for gnomAD, so we assumed that no sample 

carried more than one variant in each gene. Although individual sample-level information was available for 

the HCM cases, the same simplification was applied. This was justified by the low proportion of case 

samples with multiple variants across the gene. For 5,338 samples in the combined OMGL-HCMR dataset, 

over 34 genes, there were an average of 0.77 samples with multiple missense variants post-filtering per 

gene. We define rare variants by reference to their allele frequencies in unaffected controls, which for rare 

Mendelian diseases is approximated by population reference databases such as gnomAD [11-12]. Rare 

variants were selected with a gnomAD population maximum (popmax) allele frequency less than 0.0001 to 

exclude potentially common, and thus unlikely to be pathogenic for HCM, ancestry-specific polymorphic 

variants.  

 

3. Results  

3.1 ClusterBurden – a clustered rare variant burden test 

Correlation between p-values from the BIN-test and FE tests were compared under the null and disease 

(cluster/burden) models in simulated data. For the disease model, there was an expected positive 

correlation (Spearman’s rank correlation rho=0.398) between the p-values, as the power of both tests 

covary with the number of observed data points (i.e. number of rare variant carriers). However, under the 

null model, the p-values were completely uncorrelated, satisfying the independence assumption of the 

Fisher p-value combination method. 

Table 1 shows summary statistics for each simulation model as well as type 1 error and power estimates. 

For the disease models mean ORs across 10,000 replicate populations range from 1.71 to 2.49 across the 

different simulation models. Under the null hypothesis of no excessive burden or differential clustering, the 

type 1 errors for the BIN and Anderson-Darling (AD) tests were adequately controlled, and the 

Kolmogorov-Smirnov (KS) test was slightly conservative. The BIN-test had greater power than AD or KS 

under both clustering scenarios.  
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Table 1: Type 1 error and power comparisons and properties of simulated datasets. Mean estimates from 10,000 simulations are shown for the null or disease 

hypothesis for 6 scenarios, consisting of three clustering models (uniform, one cluster and multiple clusters) and two protein lengths (500 and 1000); estimates for 

the disease model are followed by the null model value in parentheses. The upper table reports the number of unique variants in cases and controls, as well as the 

burden odds-ratio. The lower table shows the proportion of significant results (alpha < 0.05) under each scenario for the disease model (i.e. power) and the null 

model (i.e. type 1 error). The ‘Uniform’ model describes a gene where mutated amino-acid residues uniformly increase the risk of disease. The ‘One cluster’ model 

represents a gene with a single causal region and the ‘Multi-cluster’ model represents a gene with multiple causal regions. The ‘Null’ model represents a gene with 

neither burden nor position signal. For the clustered models, ClusterBurden was the most powerful test and BIN-test was the most powerful position test (highlighted 

in green). Power was not computed for WST and SKAT as the type 1 error for these tests was excessively inflated.  

 Clustering model: Uniform One cluster Multiple clusters 
 Protein length: 500 1000 500 1000 500 1000 

Cases Unique variants  13.1 (5.8) 26.1 (11.6) 9.7 (6.2) 19.4 (12.6) 12.4 (6.3) 24.8 (12.7) 

Controls  Unique variants  81.9 (82.2) 163.9 (164.5) 85.7 (85.9) 171.1 (172.2) 86.0 (86.3) 172.3 (172.9) 

  Burden odds-ratio 2.49 (1.02) 2.49 (1.03) 1.71 (1.02) 1.71 (1.03) 2.28 (1.01) 2.26 (1.02) 
        

Burden  Fisher-exact test 0.8 (0.042) 0.97 (0.05) 0.39 (0.044) 0.58 (0.05) 0.69 (0.042) 0.87 (0.053) 

Position 

BIN-test 0.058 (0.051) 0.058 (0.047) 0.31 (0.051) 0.52 (0.05) 0.45 (0.05) 0.73 (0.047) 

Kolmorgorov-Smirnov 0.036 (0.023) 0.039 (0.03) 0.16 (0.024) 0.31 (0.032) 0.26 (0.026) 0.49 (0.033) 

Anderson-Darling 0.056 (0.051) 0.054 (0.049) 0.18 (0.05) 0.31 (0.05) 0.27 (0.05) 0.48 (0.049) 

Position-informed 
RVATs 

ClusterBurden 0.72 (0.05) 0.94 (0.05) 0.48 (0.049) 0.7 (0.053) 0.76 (0.047) 0.93 (0.052) 

DoEstRare 0.8 (0.058) 0.96 (0.062) 0.46 (0.06) 0.64 (0.06) 0.74 (0.058) 0.9 (0.063) 

CLUSTER 0.82 (0.054) 0.97 (0.056) 0.42 (0.055) 0.61 (0.059) 0.71 (0.053) 0.88 (0.057) 

Generic rare-variant 
association tests 

C-alpha 0.75 (0.051) 0.94 (0.056) 0.42 (0.053) 0.59 (0.058) 0.7 (0.051) 0.87 (0.057) 

WST NA  (0.17) NA (0.089) NA (0.16) NA (0.086) NA (0.16) NA (0.08) 

SKAT NA (0.18) NA (0.2) NA (0.18) NA (0.21) NA (0.18) NA (0.2) 
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Type 1 errors for ClusterBurden, DoEstRare, CLUSTER and C-alpha were all well controlled. Conversely, 

SKAT and WST showed markedly inflated false-positives under the null and were not examined further. 

ClusterBurden was the most powerful method when clustering was present, whereas CLUSTER was most 

powerful under the uniform (i.e. burden-only) association model. Amongst the position-informed tests, 

ClusterBurden was the most rapid to compute per gene (<1 second) whereas DoEstRare took >20 minutes 

and CLUSTER took >4 minutes. 

3.2 ClusterBurden analysis of cardiomyopathy gene panel 

We examined 34 cardiomyopathy genes for rare missense variant associations with the FE (burden), BIN-

test (cluster) and ClusterBurden (combined cluster/burden) tests in HCM cases and gnomAD controls (Fig. 

1). Significance thresholds were Bonferroni adjusted to allow for 34 genes x 3 methods (i.e. p-values 

adjusted for 102 tests to p < 0.00049). Significant burden signals were detected in 11 genes with FE; MYH7 

(p < 5.44 x 10-252), MYBPC3 (p < 1.74 x 10-229), TNNI3 (p < 1.46 x 10-50), TNNT2 (p < 1.11 x 10-24), TPM1 (p < 

6.56 x 10-21), ACTC1 (9.61 x 10-14), GLA (1.61 x 10-10), FLH1 (1.02 x 10-9), MYL2 (1.87 x 10-9), CSRP3 (3.56 x 

10-8) and MYL3 (6.53 x 10-6). The BIN-test detected significant cluster signals for 6 core sarcomeric genes; 

MYH7 (p < 1.36 x 10-73), MYBPC3 (p < 1.55 x 10-78), TNNI3 (p < 3.34 x 10-13), MYL2 (p < 5.83 x 10-10), TNNT2 

(p < 1.69 x 10-7) and MYL3 (p < 1.7 x 10-4). Two additional core sarcomeric genes did not show Bonferroni 

significant associations; ACTC1 (p<0.0412) and TPM1 (p< 0.0494). ClusterBurden confirmed the association 

for 12 genes that showed burden signals and calculated substantially lower p-values for all eight core-

sarcomeric genes, consistent with enhanced power for this approach. 

3.3 Combining rare variant burden, amino-acid position and annotation scores to predict pathogenicity 

Figure 2 summarises the results of GAM analyses of six sarcomeric proteins. The relationship between a 

variant’s predicted OR and its location within the linear amino-acid sequence illuminates the architecture 

of HCM association across each pathogenic gene. Predicted ORs vary substantially across the linear 

sequence of the proteins. For all models, except for MYL3 which has no secondary features, features from 

dbNSFP further partitioned variant risk. Risk predictions in the posGAM (i.e. burden and position only) and 

fullGAM (i.e. including primary and secondary features) are accompanied by 95% confidence intervals (S1-

12 Figures). For each gene, features that passed selection and their marginal p-values are displayed in Table 

2. Due to the covariance of power to detect an association and the number of observations, genes with more 

variants supported the use of more features.  

 

Table 2: Features used to generate gene-specific generalized-additive models and their marginal p-

values for six sarcomeric genes.   

Gene Features P-values 

MYH7 Residue position, CADD, MPC, MVP, MetaLR, 

MutationAssessor, PrimateAI, REVEL and SiPhy 

29way logodds 

9.9x10-65, 5.5x10-25, 9.2x10-57, 1.3x10-

25, 2x10-33, 1.5x10-7, 9.6x10-15, 2.3x10-

39 and 1.3x10-8 

MYBPC3 Residue position, CADD, Deogen2, MetaLR, 

MutationAssessor, PROVEAN, REVEL, and VEST4 

1.7x10-36, 5.6x10-37, 6.7x10-52, 1.7x10-

38, 3.4x10-55, 7.3x10-34, 1.3x10-55 and 

7.6x10-68 

TNNT2 Residue position, MPC, SiPhy 29way logodds and 

Phylop 100way vertebrate  

3.4x10-7, 8x10-6, 2.8x10-4 and 3.9x10-

6 
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TNNI3 Residue position and MPC  6.8x10-11 and 1.2x10-7 

MYL2 Residue position, MutationAssessor and 

primateAI  

2.1x10-7, 1.6x10-5 and 2.7 x 10-4 

MYL3 Residue position  3.1x10-4 

 

The receiver operator characteristic (ROC) area under the curve (AUC) metric was calculated for ten cross-

fold validations with 80:20 splits. The two GAM models, fullGAM and posGAM, were compared to models 

that stratified samples into cases or controls based on individual in silico variant prediction scores. Linear 

thresholds for the individual score models were determined to give the maximum possible AUC for each 

score, conditional on the observed data. Figure 3 displays the mean and standard deviation AUC across the 

ten cross-fold splits for the five highest-scoring models in each gene. For all six HCM genes, the fullGAM had 

a higher mean AUC than any individual in silico predictor. With the exception of MYBPC3, the posGAM 

performed better than any in silico predictor from dbNSFP.  The AUC standard deviations for MYH7 and 

MYBPC3 were considerably lower than the remaining genes.  

There was a strong correspondence between fullGAM predictions and expert classifications made by OMGL 

for variants in each gene (Fig. 4). In MYH7 cases, mean predicted ORs for pathogenic, likely pathogenic and 

VUS variants were 74, 50 and 20 respectively.  Notably, the VUS class had high heterogeneity, with 

predicted ORs ranging from 0.25 to 197. For 53% of these VUS’s, limited information is available, as they 

are observed in a single case and were not present in gnomAD. Based on these observed frequencies, and 

after Haldane continuity correction [39], the empirical OR for each of these variants is 44.9 with wide 

uninformative 95% CIs [1.5, 1338.3.] Conversely, ORs generated by the fullGAM for each of these variants 

have much higher confidence and provide a range of different point estimates. Five of these VUS’s 

(p.Glu894Lys, p.Met435Thr, p.Lys865Glu, p.Phe758Cys, p.Gly407Val) have a predicted ORs greater than 

100 with lower 95% CIs of at least 57. Three (p.Glu45Asp, p.Gln27Arg, p.Gln1237His) have ORs less than 1 

with upper 95% CIs at least below 1.6.  

Predictions from the GAMs allow quantitative application of the ACMG PM1 and PP3 criteria. For MYH7, 

utilising the PM1 rule in the posGAM model gives; none, supporting or moderate evidence for 25.9%, 53.7% 

and 20.4% of variants respectively. With the inclusion of PP3 in the fullGAM model; 13%, 18%, 58.4% and 

10.6% of variants were assigned none, supporting, moderate or strong evidence of pathogenicity.  

A web application, Pathogeniicty by postion, was developed to facilitate the exploration of the GAM 

modelling approach (R Shiny: https://adamwaring.shinyapps.io/Pathogenicity_by_position/). Users can 

explore models and submit their own missense variants to retrieve predicted ORs and support intervals. 

An R package is available for association testing using ClusterBurden 

(https://github.com/adamwaring/ClusterBurden). 

 

4. Discussion  

We have developed two new analytic methods; ClusterBurden and GAMs, which incorporate information on 

amino-acid residue position to examine the pathogenic potential of rare coding variants in Mendelian 

disease genes. We apply the methods to gene panel data from HCM patients to illustrate the applications of 

this approach for rare variant interpretation, and for pathogenic gene discovery. 
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4.1 ClusterBurden 

ClusterBurden is a gene association test with superior power over a standalone burden test in situations 

where rare pathogenic variants cluster in specific protein regions. ClusterBurden was devised to be suitable 

for scanning large-scale whole-exome sequencing projects designed to identify novel pathogenic genes for 

rare Mendelian diseases.  The combination of FE and BIN-test to model clustering and burden minimizes 

the computation overhead required to calculate p-values making analyses of >20,000 genes [40] in 

hundreds of thousands of cases and controls, practical in terms of execution time and computer memory 

requirements. For genes with a significant BIN-test ‘cluster’ p-value, ClusterBurden calculated considerably 

lower p-values that the traditional Fisher’s exact ‘burden’ test, implying an increase in statistical power 

(Table 1). Although ClusterBurden has reduced power whenever clustering is absent, we observe clustering 

for the majority of well-established HCM genes where missense variants cause disease, so expect that the 

method will often be more powerful to detect novel Mendelian genes than a burden-only test. 

4.2 GAMs 

We show that generalized additive models can be informative to assess pathogenicity of rare coding 

variants based on our study of several well-established HCM genes. We report strikingly different predicted 

ORs depending on where in the linear protein sequence a variant falls. For 5 out of 6 core sarcomeric genes; 

MYH7, TNNT2, TNNI3, MYL2 and MYL3, variant residue position relative to gnomAD population controls 

was the best predictor of case or control status. For MYBPC3, several bioinformatics annotation features in 

dbNSFP had improved predictive performance over residue position.  

GAMs have attractive statistical properties that are not necessarily shared by other machine-learning 

approaches, in that they produce familiar interpretable results via variant-specific ORs and quantify 

uncertainty in estimates by 95% confidence intervals. Unlike empirical ORs that are based on the observed 

case-control frequencies of the given variant in isolation, GAM ORs draw upon a much larger pool of 

information, including in silico prediction scores and features of other variants in close proximity. These 

estimates implicitly combine information on both pathogenicity and penetrance, have much tighter 

confidence intervals (even when observed counts are very low), and could be calculated for novel singleton 

or hypothetical variants.  

Model predictions were positively correlated with classifications made by experts at OMGL. Discordant 

predictions highlight variants with potential for reclassification. GAM predictions therefore offer a useful 

metric for stratification of rare missense variants and suggest a natural ranking to variants that can be 

considered for reclassification as (likely) pathogenic or (likely) benign. The GAMs developed here overlap 

with two ACMG criteria; PM1 and PP3. The posGAM model represents a quantitative data-driven approach 

to applying criteria PM1. Under the ACMG guidelines, classifications are made when a specific number of 

criteria have been met at different levels (e.g. one strong and two moderate for a pathogenic classification). 

Therefore there is potential to lose information when multiple rules are captured in a single model i.e. 

fullGAM. However, in most cases, the addition of supporting evidence from PP3 will not impact 

classification. It is therefore possible in these circumstances, to combine signals PM1 and PP3 in the fullGAM 

to use available information as efficiently as possible.  

For genes burdened by clustered variants, GAM improved performance over other commonly used in silico 

predictors that are not optimized on gene-specific data. Unlike most variant prediction algorithms, 

including all those available in dbNSFP, where models are trained using variant pathogenicity as the 

response label, the GAM response variable is case status and not variant pathogenicity. This is necessary to 

ascribe ORs that simultaneously represent pathogenicity potential and penetrance. However, this does 

impose a limit on the maximum predictive accuracy for each model, as this is heavily influenced by 

incomplete penetrance. However, the relative increase in AUC when using this gene-specific approach, 

compared to generic in silico predictors was substantial.  
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4.3 Significant position signals in the HCM gene panel  

After popmax filtering at 0.0001, we detected Bonferroni significant clustering of variants in six genes in 

HCM cases compared to the gnomAD reference controls; MYH7, MYBPC3, TNNT2, TNNI3, MYL2 and MYL3 

(Figure 1). The strongest position signal was observed in the beta myosin heavy chain protein (MYH7: 

ENST00000355349), a finding that has been long recognised [41-42]. The highest variant density is 

observed in residues 100-900 that overlaps with the myosin-head motor domain, two peak densities in this 

region centre on residues 370 and 830 (Figure 2). The relatively low variant density in cases and high 

density in controls in the carboxy-terminus of this protein might lead an observer to hypothesise a regional 

protective effect on HCM risk (S13 Figure). In sharp contrast, the GAM model predicts a modestly excessive 

burden (OR ~3) across this entire region discounting the likelihood of a localised protective effect (Figure 

2).  

A strong position signal, driven by four potential clusters, was observed in the MYBPC3 gene 

(ENST00000545968), which encodes cardiac myosin-binding protein C C10 (Figure 2). Clusters peaked at 

residues 260, 518, 864 and 1274, which respectively fall in domains C1, C3, C7 and C10. Multiple functional 

roles are suspected for the region containing the C1 domain, including binding to myosin S2 and actin. The 

C10 domain is also a possible titin binding site [43]. To explore whether the signal was overly driven by 

founder mutations found at high frequencies in our cardiomyopathy cases, seven variants with allele counts 

above 10; p.Arg810His, p.Asp770Asn, p.Glu542Gln, p.Arg502Trp, p.Arg495Gln, p.Glu258Lys and 

p.Val219Leu were masked in a sensitivity analysis. In their absence, there is still strong evidence of a 

position signal (p < 3 x 10-9) and the remaining peak densities overlap with the locations of the (masked) 

founder mutations (S14 Figure).  

The majority of variants, 24 (89%) in the TNNT2 gene (ENST00000509001), which encodes cardiac 

troponin T, map to clusters between residues 67-179 and residues 250-282 (Figure 2). The first peak at 

residue 90 overlies a previously reported region at residues 79-179 that binds tropomyosin [44-45]. 

Mutations between residues 92-110 have been previously noted to impair tropomyosin dependent 

functions in TNNT2 [46] and 6 of 27 variants map to this region (p.Ala104Val, p.Lys97Asn, p.Arg94His, 

p.Arg94Leu, p.Arg92Gln and p.Arg92Trp). In TNNI3 (ENST00000344887), which encodes cardiac troponin 

I, 31 (91%) of variants mapped to a cluster spanning residues 128-209. This accords with previous studies 

documenting disease-causing variant clustering in the carboxy-terminus of this sarcomeric protein [47]. In 

MYL2 (ENST00000228841), which encodes myosin regulatory light chain, 15 variants cluster between 

residues 25 and 100, whereas control variants tended to cluster towards the C-terminus (Figure 2). In MYL3 

(ENST00000395869), which encodes myosin essential light chain, 11 out of 14 variants cluster between 

residues 125 and 175 whereas control variants were more uniformly distributed.   

5. Conclusion  

As the GAM modelling framework is a data-dependent approach to pathogenicity interpretation, increasing 

the size of the training dataset should increase the accuracy and confidence of model predictions for HCM. 

This is especially relevant if this model is to be integrated within the ACMG classification pipeline. With 

large datasets to drive these models, criteria PM1 and PP3 can be applied to confidently to variants 

observed in the clinic. Furthermore, this modelling approach has general application to other Mendelian 

diseases with sufficiently large case cohorts for a data-driven modelling approach.  

Our present analytic methods assume an autosomal dominant genetic model. With sample-level 

information to distinguish homozygotes and compound heterozygotes, it is conceivable to extend 

ClusterBurden and the GAM methods to analyse a recessively inherited disease by judicious choices of 

indicator-variable coding.  The GAM approach could also be extended from the 1-dimensional linear protein 

sequence to 3-dimensional protein structures, by including smoothed linear variables to model x, y and z 

protein coordinates. This is potentially a more informative way to model variant clustering; however it is 

limited by the availability of complete high-resolution 3-dimensional structures. For the HCM genes we 
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examined, no suitably complete structures were available; as more structures are solved and possibly for 

other Mendelian diseases, a 3-D GAM analysis might offer further improvements in variant interpretation.  

In conclusion, with the assembly of large patient and population control datasets to quantify mutation 

clustering, missense residue position is an important feature to consider in analyses of rare-variants in 

Mendelian diseases. The ClusterBurden and GAM methods have the potential to improve power to detect 

novel pathogenic genes and probe in detail the genetic architecture of risk variants, analyses that could 

improve interpretation of genetic testing to provide more reliable information to families and patients. 
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Figure 1: Association analysis with Fisher’s-exact test (Burden), BIN-test (Cluster) and 

ClusterBurden of 34 cardiomyopathy genes. 

Our case-control dataset contains 5,338 hypertrophic cardiomyopathy cases and 125,748 gnomAD 

controls. For all tests only missense variants with a popmax MAF less than 0.01% were considered. P-values 

are presented on a -log10 scale. The number of observed case variants in each gene is displayed next to the 

gene symbol. P-values displayed in yellow are significant after Bonferroni correction for 34 genes x 3 tests 

(p < 0.00049), p-values in black are nominally significant (p < 0.05) and p-values in grey are insignificant 

(p > 0.05).  Asterix’s denote genes where the ClusterBurden p-value is lower than the Burden p-value. Two 

vertical dotted lines at 0.05 and 0.00049 indicate the nominal and Bonferroni significance thresholds.  
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Figure 2: Risk predictions generated by GAM for rare-missense variants in MYBPC3, MYH7, TNNI3, 

TNNT2, MYL2 and MYL3.  

Each point denotes a rare-variant in the HCM dataset and is coloured to indicate its expert Oxford Medical 

Genetics Laboratory classification. ORs on the y-axis are displayed on a log10 scale and were derived from 

fullGAM models including gene-burden, residue position and gene-specific significant secondary features 

from dbNSFP. The solid black curvy lines represent the predictions for each residue in the protein for a 

gene-burden and position model (posGAM).  Dashed red lines indicate an OR of 1, dashed blue lines 

indicates the OR for the uniform burden model.  
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Figure 3: Mean and standard deviations of area under the curve (AUC) metrics across different 

models after 10 cross-fold validations in our HCM-gnomAD dataset.  

For each gene, the fullGAM and posGAM models are compared to each individual in silico predictor from 

dbNSFP. For each gene, only the five highest mean AUC scoring models are displayed.  
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Figure 4: Model predictions stratified by their expert classifications for HCM variants in MYH7, 

MYBPC3, TNNT2, TNNI3, MYL2 and MYL3.  

Classifications for each variant were manually curated by the Oxford Medical Genetics Laboratory. Risk 

predictions generated by fullGAM models are displayed on the x-axis on a log10 scale. Only variants with a 

popmax frequency of less than 0.01% were considered, excluding most variants with a benign or likely 

benign classification.  
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Supporting information captions  
 
 
S1 Table: Implementation details for all statistical tests used for type 1 error and power calculations 
in this study. 
 
 
S1 Methods: Description of the forward-time simulation algorithm used to simulate rare-clustered 
variants.  
 

S1-6 Figures: ORs from the posGAM model for all amimo acid residues in MYH7, MYBPC3, TNNT2, 

TNNI3, MYL2, MYL3.  

Each plot shows predictions (odds-ratios) and 95% confidence intervals, for each possible residue in the 

protein, where residue position and carrier status (gene burden) are the only model predictors.  The GAM 

is trained on cardiomyopathy cases (n=5,338) and gnomAD controls (n=125,748). The dashed red line 

indicates an odds-ratio of 1 and the blue dashed line indicates the odds-ratio for the uniform burden model 

(i.e. gene odds-ratio). 

 

S7-12 Figures: ORs from the fullGAM model for our observed HCM variants in MYH7, MYBPC3, TNNT2, 

TNNI3, MYL2, MYL3.  

Each plot shows predictions (odds-ratios) generated by GAM, trained on cardiomyopathy cases (n=5,338) 

and gnomAD controls (n=125,748). Each point is a variant in our hypertrophic cardiomyopathy dataset, is 

coloured by its expert classification (made by the Oxford Medical Genetics Laboratory), and is accompanied 

by a 95% confidence interval bar. The dashed red line indicates an odds-ratio of 1, the blue dashed line 

indicates the odds-ratio for uniform burden, and the solid black line is the marginal odds-ratio for a model 

of only amino-acid residue number.  

 

S13 Figure: Distribution and risk predictions for rare-missense MYH7 variants in our case-control 

cohort.  

The variant positions and training data for the GAM are a case cohort of 5,338 hypertrophic 

cardiomyopathy cases and 125,748 gnomAD controls. The density plot (lower panel) may give the 

impression that there is an excess of control variants in the C-terminus of the MYH7 protein; however the 

GAM model (upper panel) resolves this potential misinterpretation and clearly shows an odds-ratio greater 

than 1 for the entire protein.   

 
 

S14 Figure: Rare-missense variant clustering in MYBPC3 with and without potential founder 

mutations.  

Variant clustering model (posGAM) are generated for three different frequency filtering strategies. The 

model identifies four discrete regions with high pathogenic potential regardless of whether the founder 

mutations are included in the analysis. However, the magnitude of the predicted ORs are higher under 

normal filtering conditions (e.g. popmax < 0.01%).  
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