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A correct genome annotation is fundamental for research in the field of molecular and 
structural biology. The annotation of the reference genome Chaetomium thermophilum 
has been reported previously, but it is limited to open reading frames (ORFs) of genes 
and contains only a few noncoding transcripts. In this study, we identified and annotated 
by deep RNA sequencing full-length transcripts of C.thermophilum. We annotated 7044 
coding genes and a large number of noncoding genes (n=4567). Astonishingly, 23% of 
the coding genes are alternatively spliced. We identified 679 novel coding genes and 
corrected the structural organization of more than 50% of the previously annotated 
genes. Furthermore, we substantially extended the Gene Ontology (GO) and Enzyme 
Commission (EC) lists, which provide comprehensive search tools for potential industrial 
applications and basic research. The identified novel transcripts and improved 
annotation will help understanding the gene regulatory landscape in C.thermophilum. 
The analysis pipeline developed here can be used to build transcriptome assemblies 
and identify coding and noncoding RNAs of other species. The R packages for gene and 
GO annotation database can be found under https://www.bzh.uni-
heidelberg.de/brunner/Chaetomium_thermophilum. 

Introduction 
The Chaetomium thermophilum is a thermophilic filamentous ascomycete, with the 
ability to grow at 50-52ºC from degrading plant material (1). C.thermophilum produces, 
owned by it’s lingocellulolytic life style, different thermostable enzymes such as 
cellulase, xylanase, laccase, chitinases and proteases (2–6). The thermostability of 
these enzymes makes C.thermophilum a model organism of choice in various 
pharmaceutical and food processing industries. In the past decade C.thermophilum has 
attracted the attention for different applications such as starch degradation, hydrolysis of 
cellulose for bioethanol production as well as other applications requiring enzymatic 
activities at higher temperatures (6–14). Additionally, many C.thermophilum proteins and 
complex protein assemblies have been reported in highest resolutions in various 
crystallisation and cryo-electron microscopy studies, which improved our understanding 
of the structural organization and function of protein complexes. These include the Crm1 
export factor, the splicing factor Cwc27, mRNA export factor Mex67-Mtr2, the FACT 
complex, the eukaryotic RAC chaperone, the nuclear pore Nsp1-channel complex, and 
the 90S pre-ribosomal complex (15–22). The genome of C.thermophilum was first 
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reported by (23) and afterwards substantially improved in its annotation by (24). It has a 
size of 28.3 Mb and assembled into 20 scaffolds containing 7165 protein coding and 387 
noncoding transcripts. Despite of recent advances in sequencing technologies (25–28) 
the C.thermophilum genome has not been substantially upgraded. The reported 
C.thermophilum genome lacks proper annotation of untranslated regions (UTRs), and 
the majority of intron-exon structures are computationally predicted rather than 
experimentally determined. Given the substantial increase in the number of genomic 
studies on C.thermophilum a comprehensive genome annotation will be helpful for 
further functional, structural, proteomic, genomic and transcriptomic analyses. In this 
study, we present an improved annotation of the C.thermophilum genome based on 
deep RNA sequencing and establish pipeline tools for the analysis of sequencing data. 
Our annotation identified 7044 expressed protein-coding genes and 4567 long 
noncoding RNAs (lncRNAs). Moreover, our pipeline detected UTRs and intron-exon 
boundaries as well as transcript isoforms. Sequence homology studies revealed that 
C.thermophilum and Thermothelomyces thermophila share close sequence similarity of 
coding transcripts. The downstream analysis of genomic and transcriptomic sequence 
data is often used to predict the function of genes, identification of biomarkers, grouping 
and classifying gene expression patterns. Therefore, we present an extended Gene 
Ontology (GO) and Enzyme Commission (EC) numbers that are associated with protein 
coding genes of C.thermophilum. 

MATERIALS AND METHODS 

RNA Isolation and sequencing 

The C.thermophilum strain was received from DSMZ, Braunschweig, Germany (No. 
1495). The mycelium scraped off a freshly grown agar plate were grown in 250 ml 
baffled Erlenmeyer flasks at 52ºC for 6 h. Mycelium was grown in modified CCM 
medium as described in (29): 0.5 g NaCl, 0.65 g K2HPO4·3H2O, 0.5 g MgSO4·7H2O, 
0.01 g Fe(III)-sulfatehydrate, 8 g D-glucose and 1 g each of peptone and yeast extract 
per liter H2O, pH 7.0. C.thermophilum mycelia were harvested through a sieve and 
grounded to a fine powder in liquid nitrogen. About 100 mg mycelia from three 
independent biological replicates were used directly for total RNA-extraction using the 
SV total RNA isolation system (Promega). The libraries were prepared with the NEBNext 
Ultra II Directional RNA Preparation Kit for Illumina in combination with NEBNext Poly A 
selection Module, plus the NEBNext Multiplex Oligos for Illumina, and sequencing was 
performed by CellNetworks Deep Sequencing Core Facility (Heidelberg, Germany) on 
Illumina NextSeq 500 platform (single-end). 

RNA sequencing data analysis 
The data quality assessment of raw sequence data was performed by FastQC (Version: 
FastQC 0.11.5, (http://www.bioinformatics. babraham.ac.uk/projects/fastqc/). No 
samples were discarded from the analysis. C.thermophilum reference genome and gene 
annotation files were downloaded from ENSEMBLE (https://fungi.ensembl.org) and a 
pipeline was developed to annotate UTR region and to identify the putative novel 
transcripts (Figure -1A). The raw reads were mapped to C.thermophilum genome using 
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HISAT2 with the following parameters (Version: 2.1.0; [hisat2 -p 8 -x -max-intronlen 
2000 -dta-U])(30). The mapped reads from HISAT2 for each sample were assembled 
separately using StringTie with parameter settings (Version: 1.3.3b; [stringtie -o -m 50 -p 
8 -j 3 -c 5 -g 15])(31). The multiple transcript assembly files from the different samples 
were used together to produce a distinctive transcriptome set using gffcompare with 
parameter settings (Version: v0.10.1; [gffcompare-merge -K -o gffcomp -i]) (25). Based 
on the previous assembly results, transcripts shorter than 200 nt were excluded to 
identify transcripts from the merged transcript assembly. According to the gffcompare 
class codes "i", "u","y" and "x" are considered as novel transcriptional loci. The coding 
potential calculator (CPC2) was used to evaluate the coding potential of all transcripts 
(32). 

Sequence conservation and GO annotation 
The sequence conservation analysis was performed using dc-mega BLAST (Version: 
2.7.1+) (33). All coding and noncoding transcripts including the identified novel 
transcripts sequences were used for this analysis. Sordaria macrospora (NCBI taxid-
5147), Neurospora crassa (NCBI taxid-5141), Aspergillus niger (NCBI taxid-5061), 
Saccharomyces cerevisiae (NCBI taxid-4932), Takifugu rubripes (NCBI taxid-31033) 
and Thermothelomyces thermophila (NCBI taxid-78579) were chosen to study the 
sequence similarity analysis using BLAST (E value,1e-3). phyloT 
(https://phylot.biobyte.de) was used for the construction and visualization of phylogenetic 
tree of the above mentioned species. Additionally, functional annotation of 
C.thermophilum transcripts were analyzed using Blast2GO [Version 5.1.1] (34) as 
described in the manual. The annotated GO terms from Thermothelomyces thermophila, 
Neurospora crassa and Sordaria macrospora were used as an input for the Blast2GO 
analysis, based on local blastx. Enzyme Commission numbers were obtained using the 
same method. The data visualization was carried out using R (Version 3.3.3; 
http://www.R-project.org/) (35). 

Isoform annotation 
To create the isoform annotation, the 9755 coding transcripts were analyzed. The 
longest non-reverse ORF, in search order of [blastx-hit - frame1 - frame2 - frame3], 
using ATG only as start codon and obligatory stop codon was obtained from Blast2GO. 
Sequences were grouped by the transcription loci tags pyfaidx python package (36). All 
groups were aligned [-output=aln] and similarities were calculated [-other_pg 
seq_reformat -output sim] using T-Coffee software (37). Pairwise similarity scores 
formed two distinct groups. Based on this, the score cutoff level was set at 49 for 
designating isoforms. All low scoring accepted hits (score 49-60) were manually 
checked and visualized for correctness. The accepted protein sequence pairs were 
merged into isoform groups by connectivity calculation in R. Noncoding transcripts were 
grouped by overlapping features. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2019. ; https://doi.org/10.1101/826354doi: bioRxiv preprint 

https://doi.org/10.1101/826354
http://creativecommons.org/licenses/by-nc-nd/4.0/


RESULTS 

Transcripts reassembly and Identification of novel transcripts 
The single end RNA seq data of C.thermophilum was obtained in triplicates with a length 
of 85bp. We performed short read gapped alignment using HISAT2 (30) and recovered 
more than 95% mapped reads as shown in Table-1. Further, we used StringTie (31) to 
de novo assemble all three samples separately. The assembled transcript files from 
these three samples were merged into a combined set of transcripts using the 
gffcompare utility provided by Cufflinks. After manual curation (17 transcripts) a total of 
15363 reliable transcripts were obtained after filtering the transcript length (�200nt) 
(Figure-1C). In total, the transcripts correspond to 7044 coding genes, represented by 
9772 transcripts and transcript isoforms, and 4567 noncoding genes, represented by 
5591 transcripts and transcript isoforms. Gffcompare statistics on the comparison of the 
found transcripts compared to the previous annotation are shown in Figure-1B, and the 
transcripts annotated class codes are listed in Table-2, Figure-1D represents the 
increased lengths of the newly annotated transcripts compared to the earlier annotation, 
which did not include UTRs. Transcripts annotated to gffcompare classes u (no overlap, 
n = 2744) and x (opposite strand, n = 1754), as well as i (contained in reference intron, n 
= 28) and y (contains a reference gene within intron, 5 transcripts) are called as a novel 
transcript in our analysis. By these criteria, we identified 679 novel coding genes 
represented by 892 transcripts and isoforms as well as 2878 novel noncoding genes 
represented by 3639 transcripts and isoforms. 749 genes that were classified as a 
coding in the previous annotation were not detected/expressed under our experimental 
condition. These non-expressed putative genes are less conserved in related fungi 
(below 40%), suggesting that this group may contain falsely annotated genes. The total 
number of newly identified coding and noncoding transcripts is shown in Figure-1C. 
Finally, we created a gene annotation database containing all above information in TxDb 
framework in R package for C.thermophilum (38). The gene annotation file in gtf format 
can be found in supplementary file-1. 

Annotation of the novel noncoding RNAs in C.thermophilum 
We identified 5591 noncoding RNA transcripts based on CPC2 analysis. These include 
highly expressed contaminant RNA species such as ribosomal RNAs, t-RNAs, 
snoRNAs, RNase RNAs and snRNAs. The remaining non-coding transcripts were 
classified as intronic, intregenic, sense overlap with coding gene and antisense based 
on association with annotated protein-coding genes as shown in Figure-2D. In total we 
identified 2188 lincRNA genes as intregenic, 1949 antisense and 530 genes overlapping 
in sense direction. 166 genes are in both sense and antisense, these could represent 
truncated mRNAs or functional RNAs involved in gene regulation as shown in Figure-
2C. 

Sequence conservation and functional annotation 
A phylogenetic tree including 6 other species indicates that C.thermophilum is closely 
related to Thermothelomyces thermophila and more distantly to Neurospora crassa and 
Sordaria macrospora (Figure-2F). Local dc-megaBLAST similarity search was carried 
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out for the newly annotated coding, anti-sense and lincRNAs of C.thermophilum. We 
found that 90% of the coding and 45% of the non-coding sequences resulted in a 
significant hit with Thermothelomyces thermophila (Figure-2E). We also observed that 
both Sordaria macrospora and Neurospora crassa appear to be sharing 80% coding and 
25% noncoding sequence similarity (Figure-2E). The similarity search against the other 
three species revealed lower sequence similarities as shown in Figure-2A. The gene 
ontology (GO) facilitates the functional characterization of genes; therefore, Blast2GO 
was used to associate the transcripts with a functional annotation. We found altogether 
4283 GO terms, 1428 belong to Molecular Function (MF), 2140 to Biological Process 
(BP), and 715 to Cellular Component (CC)(Figure-2B). With these, we could annotate 
4336 coding genes. All GO terms are listed in supplementary file-2 as well as top 10 
GO-slim terms for each category (MF, CC, BP) are shown in supplementary Figure-1. 
Further, we created a GO annotation R package for C.thermophilum using function 
makeOrgPackage (38). To facilitate functional gene finding for industrial applications, we 
also retrieved Enzyme Commission numbers (E.C) from the Blast2GO analysis. We 
could associate 1366 coding genes with 643 E.C. numbers. The main EC classes 
distribution is shown in Figure-3.   

DISCUSSION 
C.thermophilum is an economically important species in pharmaceutical and food 
processing industries, and a useful model organism in basic research, particularly in the 
field of ribosome biogenesis (12–14, 22, 39, 40). In this study an analysis pipeline was 
developed to characterize the transcriptome of C.thermophilum. The main aim of the 
present study was to provide a comprehensive gene annotation, containing high fidelity 
coding and noncoding transcripts and isoforms with both 3’ and 5’ UTRs. We evaluated 
all transcript class codes from our transcriptome assembly and compared it with the 
previous annotation. We observed substantial discrepancies with the previous 
annotation of C.thermophilum, as only 2935 coding and 143 noncoding transcripts 
displayed a complete intron match (class code "="). The majority of coding transcripts 
showed at least one intron mismatch with the old annotation (class code "j"). We 
observed that 749 coding and 254 noncoding transcripts of the previous annotation were 
not expressed (no overlaps with any identified transcript) in our analysis. 104 of these 
genes were potentially expressed in other growth conditions (� 100 read counts, 
unpublished RNA sequencing data), while the remaining genes were not expressed. 
Furthermore, most of these genes had no homology in related species, suggesting that 
they might have been wrongly annotated. These unexpressed transcripts are listed in 
supplementary files-4.  

Our transcript assembly revealed that 1640 genes express at least 2-3 transcript 
isoforms (4368 transcripts, 44.7%), indicating rather complex alternative splicing in 
C.thermophilum. A hand full of genes may express even higher numbers of isoforms. 
However, due to theoretical limitations in the analysis of the single end sequencing data 
such potentially complex isoforms cannot be reliably predicted. Here we present all 
potential transcript isoforms, and the corresponding predicted protein sequences are 
listed in supplementary file-3. Our analysis also revealed a surprisingly high number of 
noncoding transcripts, both lincRNA and antisense RNAs. Taken together with the 
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alternative splicing of coding genes our data suggests an astonishing complexity of the 
genome architecture and transcriptional network of C.thermophilum. Such complexity is 
usually found in higher eukaryotes where it is supposed to permit complex life style. 
Comparative analysis uncovered that Thermothelomyces thermophila shows 90% 
genome sequence similarity with C.thermophilum as shown in Figure-2E). The high 
sequence similarity of Thermothelomyces thermophila and C.thermophilum is likely to 
reflect related functions, potentially associated with their thermophilic lifestyle. Functional 
annotation through Gene Ontology (GO) associations facilitates the interpretation of 
genomic and transcriptomic sequence data. Functional annotation achieved by the 
integration of several databases such as KEGG (43), UniProt (44), InterPro(45), 
Pfam(46), NCBI (47), SEED (48), ConsensusPathDB (49) and Reactome (50) may help 
addressing this question. Our Blast2GO analysis substantially expands the GO term 
annotations in C.thermophilum. Hence, our annotation and transcript assembly opens 
opportunities for the systematic analysis of C.thermophilum. An example would be a 
known protein fragment of a laccase enzyme from C.thermophilum (Uniprot ID: Q692I0) 
that was so far not annotated in the genome and the full protein sequence was 
unknown. We found the gene expressed in our conditions and have annotated the 
complete transcript and protein sequence (Gene001724). C.thermophilum genes 
responsible for the formation conidia are another example for an extended functional 
annotation. The reproduction cycle of C.thermophilum is not well understood, and 
previously only a single gene had been associated with the formation of asexual spores 
(conidia). Our GO term annotation revealed that several additional genes, such as 
Gene000283; Gene003743; Gene006754; Gene006902, are associated with the 
conidiation process (GO:0048315, GO:0030437, GO:0030435).  
Our analysis is solely based on a single growth condition with single-end RNA seq data.  
Hence, different growth conditions, as well as paired-end sequencing data could further 
improve the gene annotation. RNA degradation seems to be a general problem in 
C.thermophilum. Therefore, improvement of the RNA isolation procedure could 
decrease the number of truncated transcripts. In summary, we detected a large number 
of novel coding and noncoding transcripts and discovered a high diversity of alternative 
splicing in C.thermophilum. Thus, our study provides useful resources for functional 
genomics and proteomics research on C.thermophilum and facilitates the analysis of 
biological and biochemical processes. Moreover, our analysis pipeline can be used for 
the genome annotation of other organisms. 

 

AVAILABILITY 
 

The GO Term and gene annotation R packages of C.thermophilum are available in the 
following link. The gene annotation R package can be found in https://www.bzh.uni-
heidelberg.de/brunner/Chaetomium_thermophilum/TxDb.Chaetomium.ct39.knownGene
_1.0.0.tar.gz and GO annotation can be found in https:/www.bzh.uni 
heidelberg.de/brunner/Chaetomium_thermophilum/org.Cthermophilum.eg.db_1.0.0.tar.g
z 
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ACCESSION NUMBERS 
 
The RNA seq data are deposited in the Gene Expression Omnibus database under 
accession no GSE116834. 

SUPPLEMENTARY DATA 
 
We provide the following files for both scientific and industrial applications. 
 
1. The C.thermophilum_new.gtf file containing the essential attributes/annotation 

features that can be used further in genomics and transcriptomics data analysis of 
C.thermophilum 

2. The C.thermophilum.xlsx file containing all genes associated with GO annotation 
and E.C. numbers. 

3. The C.thermophilum protein.fasta file contains all the translated protein sequences, 
ORF with both start and stop codons in the forward strand, with at least 50 AA 
lengths. 

4. Missing.genes.xlsx contains the 749 coding genes from the old annotations where 
we found no expression in excel format. 
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Table- 1: RNA-seq data alignment results for reads of different samples. 

Table- 2: Different classes of assembled transcripts 

Figure-1: Transcriptome-based annotation of the genome of C.thermophilum. A) 
Systematic overview of the analysis pipeline. B) Identification of the novel intron and 
exon loci in percentage from newly annotated genome. C) Stack bar plot of genes of the 
old and new annotation. The stacked grey bar for the coding genes in the old annotation 
represents genes that were not expressed in our conditions. In the stacked bar of the 
new annotation, the colors represent differences compared to the previous annotation. 
The individual colors indicate for the following features: Beige; genes without change in 
the intron structure (n=2440). Yellow: genes where at least one isoform has a novel 
splicing variant (n=493). Green: genes where all transcripts have at least one intron-
exon junction different than in the previous annotation (n=2132). Pink; genes where all 
junctions are different (n=1234). Blue; genes that are flipped (opposite strand with same 
or similar splice junctions) (n=19). Orange; completely novel genes (n=679). On the top 
the aquamarine represents the uncategorized genes (n=47). D) Histograms representing 
the coding transcript lengths from the new C.thermophilum genome annotation (beige) 
compared to the length of the previous annotation of ORFs (black). A detailed 
description of the methods is given in the respective section of the main text. 

Figure-2: A) Transcript assemblies and gffcompare class codes. Stack bar plot 
represents the gffcompare class codes containing coding and noncoding transcripts. 
Darker shading represents the part where the corresponding transcript in the old 
annotation has the same biotype. B) GO annotations associated with genes, 
representing biological process (BP), molecular function (MF) and cellular compartment 
(CC). C) Bar plot representing different types of noncoding genes. D) Graphical notation 
of different types of noncoding transcripts by location. E) Phylogenic tree of 6 compared 
species. F) Stack bar plot representing the sequence similarity of transcripts of 6 
compared species. Darker shade for the non-coding transcripts, light shade for the 
coding. 

Figure-3: Bar plot enzyme class code distribution with transcripts. 6 different enzyme 
classes are distributed throughout the transcripts. Each bar plot (1-6) containing top 5 
enzymes with specific enzyme class code.   

Supplementary Figure-1: Bar plot of top abundant GO slim terms obtained from 
Blast2GO analysis. Y- axis represents the GO term and x- axis represents the total 
number of transcripts are involved in particular term. Different color code such as light-
yellow corresponds to the cellular component and light green to biological process and 
light blue to molecular functions.  
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